Some New Results on a Three-Step Iteration Process
Abstract
1. Introduction
2. Preliminaries
3. Convergence Results in Banach Spaces
4. Numerical Example and Rate of Convergence
5. Application
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Caccioppoli, R. Un teorema generale sull’ esistenza di elementi uniti in una transformazione funzionale. Rend. Accad. Lincei 1930, 11, 794–799. [Google Scholar]
- Browder, F.E. Nonexpansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. USA 1965, 54, 1041–1044. [Google Scholar] [CrossRef]
- Gohde, D. Zum Prinzip der Kontraktiven Abbildung. Math. Nachr. 1965, 30, 251–258. [Google Scholar] [CrossRef]
- Kirk, W.A. A fixed point theorem for mappings which do not increase distance. Am. Math. Mon. 1965, 72, 1004–1006. [Google Scholar] [CrossRef]
- Suzuki, T. Fixed point theorems and convergence theorems for some generalized non-expansive mapping. J. Math. Anal. Appl. 2008, 340, 1088–1095. [Google Scholar] [CrossRef]
- Garcia-Falset, J.; Llorens-Fuster, E.; Suzuki, T. Fixed point theory for a class of generalized nonexpansive mappings. J. Math. Anal. Appl. 2011, 375, 185–195. [Google Scholar] [CrossRef]
- Usurelu, G.I.; Bejenaru, A.; Postolache, M. Operators with property (E) as concerns numerical anaysis and visualization. Numer. Func. Anal. Optim. 2020. [Google Scholar] [CrossRef]
- Mann, W.R. Mean value methods in iteration. Proc. Am. Math. Soc. 1953, 4, 506–510. [Google Scholar] [CrossRef]
- Ishikawa, S. Fixed points by a new iteration method. Proc. Am. Math. Soc. 1974, 44, 147–150. [Google Scholar] [CrossRef]
- Agarwal, R.P.; O’Regon, D.; Sahu, D.R. Iterative construction of fixed points of nearly asymtotically non-expansive mappings. J. Nonlinear Convex Anal. 2007, 8, 61–79. [Google Scholar]
- Noor, M.A. New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 2000, 251, 217–229. [Google Scholar] [CrossRef]
- Abbas, M.; Nazir, T. A new faster iteration process applied to constrained minimization and feasibility problems. Math. Vesnik 2014, 66, 223–234. [Google Scholar]
- Thakur, B.S.; Thakur, D.; Postolache, M. New iteration scheme for numerical reckoning fixed points of nonexpansive mappings. J. Inequal. Appl. 2014, 2014, 328. [Google Scholar] [CrossRef]
- Maniu, G. On a three-step iteration process for Suzuki mappings with qualitative study. Numer. Funct. Anal. Optim. 2020. [Google Scholar] [CrossRef]
- Agarwal, R.P.; O’Regan, D.; Sahu, D.R. Fixed Point Theory for Lipschitzian-Type Mappings with Applications Series; Topological Fixed Point Theory and Its Applications; Springer: New York, NY, USA, 2009; Volume 6. [Google Scholar]
- Takahashi, W. Nonlinear Functional Analysis; Yokohoma Publishers: Yokohoma, Japan, 2000. [Google Scholar]
- Clarkson, J.A. Uniformly convex spaces. Trans. Am. Math. Soc. 1936, 40, 396–414. [Google Scholar] [CrossRef]
- Opial, Z. Weak and strong convergence of the sequence of successive approximations for non-expansive mappings. Bull. Am. Math. Soc. 1967, 73, 591–597. [Google Scholar] [CrossRef]
- Schu, J. Weak and strong convergence to fixed points of asymptotically non-expansive mappings. Bull. Austral. Math. Soc. 1991, 43, 153–159. [Google Scholar] [CrossRef]
- Senter, H.F.; Dotson, W.G. Approximating fixed points of non-expansive mappings. Proc. Am. Math. Soc. 1974, 44, 375–380. [Google Scholar] [CrossRef]
- Censor, Y.; Elfving, T. A multiprojection algorithm using Bregman projections in a product space. Numer. Algor. 1994, 8, 221–239. [Google Scholar] [CrossRef]
- Byrne, C. Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Prob. 2002, 18, 411–453. [Google Scholar] [CrossRef]
- Feng, M.; Shi, L.; Chen, R. A new three-step iterative algorithm for solving the split feasibility problem. Univ. Politeh. Buch. Ser. A 2019, 81, 93–102. [Google Scholar]
- Xu, H.K. A variable Krasnoselskii-Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 2006, 22, 2021–2034. [Google Scholar] [CrossRef]
- Xu, H.K. Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 2010, 26, 105018. [Google Scholar] [CrossRef]
Three-Step Thakur | Three-Step Abbas | Three-Step Noor | |
---|---|---|---|
0.5 | 0.5 | 0.5 | |
0.329178000000000 | 0.354592000000000 | 0.354888000000000 | |
0.216716311368000 | 0.251470972928000 | 0.251890985088000 | |
0.142676483886991 | 0.178339190464970 | 0.178786175831820 | |
0.093931919225903 | 0.126475300450709 | 0.126898136737206 | |
0.061840642613889 | 0.089694259474836 | 0.090069251900787 | |
0.040713158108709 | 0.063609733711402 | 0.063928993337133 | |
0.026803751919817 | 0.045111005392387 | 0.045375265174857 | |
0.017646410898923 | 0.031992003248194 | 0.032206274214749 | |
0.011617620493771 | 0.022688216831560 | 0.022859240487047 | |
0.007648530157797 | 0.016090120365478 | 0.016224940275934 | |
0.005035455720566 | 0.011410855921271 | 0.011516073209292 | |
0.003315122486369 | 0.008092396445671 | 0.008173832378198 | |
0.002182530779636 | 0.005738998080926 | 0.005801590050068 | |
0.000261903693556 | 0.004070005615023 | 0.004117829379377 | |
0 | 0.002886382862085 | 0.002922736465576 | |
0 | 0.002046976543664 | 0.002074488197591 | |
0 | 0 | 0.000311173229638 |
Number of Iterates Required to Reach Fixed Point. | |||
---|---|---|---|
Initial Points | Three-Step Noor | Three-Step Abbas | Three-Step Thakur |
0.10 | 23 | 15 | 13 |
0.25 | 26 | 18 | 16 |
0.50 | 27 | 21 | 17 |
0.75 | 28 | 22 | 18 |
0.95 | 29 | 23 | 19 |
Number of Iterates Required to Reach Fixed Point. | |||
---|---|---|---|
Initial Points | Three-Step Noor | Three-Step Abbas | Three-Step Thakur |
0.10 | 18 | 11 | 10 |
0.25 | 19 | 14 | 11 |
0.50 | 20 | 16 | 12 |
0.75 | 20 | 17 | 13 |
0.95 | 20 | 17 | 13 |
Number of Iterates Required to Reach Fixed Point. | |||
---|---|---|---|
Initial Points | Three-Step Noor | Three-Step Abbas | Three-Step Thakur |
0.10 | 24 | 15 | 13 |
0.25 | 25 | 18 | 16 |
0.50 | 25 | 20 | 17 |
0.75 | 25 | 21 | 18 |
0.95 | 25 | 22 | 19 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, K.; Ahmad, J.; de la Sen, M. Some New Results on a Three-Step Iteration Process. Axioms 2020, 9, 110. https://doi.org/10.3390/axioms9030110
Ullah K, Ahmad J, de la Sen M. Some New Results on a Three-Step Iteration Process. Axioms. 2020; 9(3):110. https://doi.org/10.3390/axioms9030110
Chicago/Turabian StyleUllah, Kifayat, Junaid Ahmad, and Manuel de la Sen. 2020. "Some New Results on a Three-Step Iteration Process" Axioms 9, no. 3: 110. https://doi.org/10.3390/axioms9030110
APA StyleUllah, K., Ahmad, J., & de la Sen, M. (2020). Some New Results on a Three-Step Iteration Process. Axioms, 9(3), 110. https://doi.org/10.3390/axioms9030110