The Existence and Uniqueness of an Entropy Solution to Unilateral Orlicz Anisotropic Equations in an Unbounded Domain
Abstract
:1. Introduction
2. Mathematical Background and Auxiliary Results
3. The Existence of an Entropy Solution
- (a)
- (b)
- is bounded in
- (c)
- ( the characteristic function of ). Then
4. Uniqueness of the Entropy Solution
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Alber, H.D. Materials with Memory: Initial-Boundary Value Problems for Constitutive Equations with Internal Variables; Springer: New York, NY, USA, 2006. [Google Scholar]
- Ball, J.M. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 1976, 63, 337–403. [Google Scholar] [CrossRef]
- Benkhira, E.H.; Essoufi, E.H.; Fakhar, R. On convergence of the penalty method for a static unilateral contact problem with nonlocal friction in electro-elasticity. Eur. J. Appl. Math. 2016, 27, 1–22. [Google Scholar] [CrossRef]
- Chen, Y.; Levine, S.; Rao, M. Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 2006, 66, 1383–1406. [Google Scholar] [CrossRef] [Green Version]
- Bénilan, P.; Boccardo, L.; Gallouêt, T.; Gariepy, R.; Pierre, M.; Vázquez, J.L. An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Della Sc. Norm. Super. Pisa Cl. Sci. 1995, 22, 241–273. [Google Scholar]
- Aberqi, A.; Bennouna, J.; Mekkour, M.; Redwane, H. Nonlinear parabolic inequalities with lower order terms. Appl. Anal. 2017, 96, 2102–2117. [Google Scholar] [CrossRef]
- Benkirane, A.; Bennouna, J. Existence of solutions for nonlinear elliptic degenerate equations. Nonlinear Anal. Theory Methods Appl. 2003, 54, 9–37. [Google Scholar] [CrossRef]
- Benslimane, O.; Aberqi, A.; Bennouna, J. Existence and Uniqueness of Weak Solution of p(x)-Laplacian in Sobolev Spaces with Variable Exponents in Complete Manifolds. arXiv 2020, arXiv:2006.04763. [Google Scholar]
- Boureanu, M.M.; Udrea, C.; Udrea, D.N. Anisotropic problems with variable exponents and constant Dirichlet conditions. Electron. J. Differ. Equ. 2013, 2013, 1–13. [Google Scholar]
- Aberqi, A.; Bennouna, J.; Elmassoudi, M.; Hammoumi, M. Existence and uniqueness of a renormalized solution of parabolic problems in Orlicz spaces. Monatshefte Math. 2019, 189, 195–219. [Google Scholar] [CrossRef]
- Aharouch, L.; Bennouna, J. Existence and uniqueness of solutions of unilateral problems in Orlicz spaces. Nonlinear Anal. Theory Methods Appl. 2010, 72, 3553–3565. [Google Scholar] [CrossRef]
- Demengel, F.; Hebey, E. On some nonlinear equations involving the p-Laplacian with critical Sobolev growth. Adv. Differ. Equ. 1998, 3, 533–574. [Google Scholar]
- Evans, L.C. Weak Convergence Methods for Nonlinear Partial Differential Equations; American Mathematical Society: Providence, RI, USA, 1990. [Google Scholar]
- Domanska, O.V. Boundary problems for elliptic systems with anisotropic nonlinearity. Visnik Nats. Univ. Lviv. Politekhnika Fiz. Mat. Nauki 2009, 660, 5–13. [Google Scholar]
- Bendahmane, M.; Karlsen, K.H. Nonlinear anisotropic elliptic and parabolic equations in ℝN with advection and lower order terms and locally integrable data. Potential Anal. 2005, 22, 207–227. [Google Scholar] [CrossRef]
- Bokalo, M.; Domanska, O. On well-posedness of boundary problems for elliptic equations in general anisotropic Lebesgue-Sobolev spaces. Mat. Stud. 2007, 28, 77–91. [Google Scholar]
- Ayazoglu, R.; Akbulut, S.; Akkoyunlu, E. Uniform Boundedness of Kantorovich Operators in Variable Exponent Lebesgue Spaces. Filomat 2019, 33, 5755–5765. [Google Scholar] [CrossRef] [Green Version]
- Cammaroto, F.; Vilasi, L. On a perturbed p(x)-Laplacian problem in bounded and unbounded domain. J. Math. Anal. Appl. 2013, 402, 71–83. [Google Scholar] [CrossRef]
- Ragusa, M.A.; Tachikawa, A. Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 2020, 9, 710–728. [Google Scholar] [CrossRef]
- Korolev, A.G. Imbedding theorems for anisotropic Sobolev-Orlicz spaces. Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika 1983, 38, 32–37. [Google Scholar]
- Kozhevnikova, L.M. Existence of Entropic Solutions of an Elliptic Problem in Anisotropic Sobolev-Orlicz Spaces. J. Math. Sci. 2019, 241, 258–284. [Google Scholar] [CrossRef]
- Kozhevnikova, L.M. On the entropy solution to an elliptic problem in anisotropic Sobolev-Orlicz spaces. Comput. Math. Math. Phys. 2017, 57, 434–452. [Google Scholar] [CrossRef]
- Krasnosel’skii, M.A.; Rutickii, J.B. Convex Functions and Orlicz Spaces; Fizmatlit: Moscow, Russia, 1958. [Google Scholar]
- Mihăilescu, M.; Moroşanu, G.; Rădulescu, V. Eigenvalue problems for anisotropic elliptic equations: An Orlicz–Sobolev space setting. Nonlinear Anal. Theory Methods Appl. 2010, 73, 3239–3253. [Google Scholar] [CrossRef]
- Cianchi, A. A fully anisotropic Sobolev inequality. Pac. J. Math. 2000, 196, 283–294. [Google Scholar] [CrossRef] [Green Version]
- Alberico, A.; Chlebicka, I.; Cianchi, A.; Zatorska-Goldstein, A. Fully anisotropic elliptic problems with minimally integrable data. Calc. Var. Partial. Differ. Equ. 2019, 58, 186. [Google Scholar] [CrossRef] [Green Version]
- Boccardo, I.; Gallouët, T. Nonlinear elliptic equations with right hand side measures. Commun. Partial. Differ. Equ. 1992, 17, 189–258. [Google Scholar] [CrossRef]
- Gossez, J.P. Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients. Trans. Am. Math. Soc. 1974, 190, 163–205. [Google Scholar] [CrossRef]
- Lions, J.L. Quelques Méthodes de Résolution des Problemes aux Limites non Linéaires; Dunod: Paris, France, 1969. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benslimane, O.; Aberqi, A.; Bennouna, J. The Existence and Uniqueness of an Entropy Solution to Unilateral Orlicz Anisotropic Equations in an Unbounded Domain. Axioms 2020, 9, 109. https://doi.org/10.3390/axioms9030109
Benslimane O, Aberqi A, Bennouna J. The Existence and Uniqueness of an Entropy Solution to Unilateral Orlicz Anisotropic Equations in an Unbounded Domain. Axioms. 2020; 9(3):109. https://doi.org/10.3390/axioms9030109
Chicago/Turabian StyleBenslimane, Omar, Ahmed Aberqi, and Jaouad Bennouna. 2020. "The Existence and Uniqueness of an Entropy Solution to Unilateral Orlicz Anisotropic Equations in an Unbounded Domain" Axioms 9, no. 3: 109. https://doi.org/10.3390/axioms9030109
APA StyleBenslimane, O., Aberqi, A., & Bennouna, J. (2020). The Existence and Uniqueness of an Entropy Solution to Unilateral Orlicz Anisotropic Equations in an Unbounded Domain. Axioms, 9(3), 109. https://doi.org/10.3390/axioms9030109