Vaidya Collapse with Nonzero Radial Pressure and Charge
Abstract
:1. Introduction
2. Nonzero Charge in Vaidya
3. Radiating Rotating Stars
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Penrose, R. Gravitational collapse: The role of general relativity. Riv. Nuovo Cim. 1965, 1, 252–276. [Google Scholar]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Spacetime; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Hamid, A.I.M.; Goswami, R.; Maharaj, S.D. Cosmic censorship conjecture revisited: Covariantly. Class. Quantum Gravity 2014, 31, 135010. [Google Scholar] [CrossRef] [Green Version]
- Hamid, A.I.M.; Goswami, R.; Maharaj, S.D. Notes on cosmic censorship conjecture revisited: Covariantly. arXiv 2016, arXiv:1604.01157v1. [Google Scholar]
- Vaidya, P.C. The external field of a radiating star in general relativity. Curr. Sci. 1943, 12, 183. [Google Scholar] [CrossRef]
- Dwivedi, I.H.; Joshi, P.S. On the nature of naked singularities in Vaidya spacetimes. Class. Quantum Gravity 1989, 6, 1599–1606. [Google Scholar] [CrossRef]
- Ishwarchandra, N.; Singh, K.Y. Vaidya Solution in Non-Stationary de Sitter Background: Hawking’s Temperature. Int. J. Astron. Astrophys. 2013, 3, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Reiss, A.G.; Filippenko, A.V.; Challis, P.; Clocchiattia, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.B.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, S.; Aldering, G.; Della Valle, M.; Deustua, S.; Ellis, R.S.; Fabbro, S.; Fruchter, A.; Goldhaber, G.; Groom, D.E.; Hook, I.M.; et al. Discovery of a supernova explosion at half the age of the Universe. Nature 1998, 391, 51–54. [Google Scholar] [CrossRef] [Green Version]
- Wagh, S.M.; Maharaj, S.D. Naked Singularity of the Vaidya-deSitter Spacetime and Cosmic Censorship Conjecture. Gen. Relat. Gravit. 1999, 31, 975–979. [Google Scholar] [CrossRef]
- Sola, J. Towards the first compelling signs of vacuum dynamics in modern cosmological observations. Mon. Not. R. Astron. Soc. 2018, 478, 435–437. [Google Scholar]
- Basilakos, S.; Mavromatos, N.E.; Peracaula, J.S. Scalar field theory description of the running vacuum model: The vacuumon. J. Cosm. Astron. Phys. 2019, 12, 025. [Google Scholar] [CrossRef] [Green Version]
- Beesham, A.; Ghosh, S.G. Vaidya collapse with nonzero radial pressure. J. Phys. Conf. Ser. 2018, 1051, 012005. [Google Scholar] [CrossRef]
- Pannekoek, A. Ionization in stellar atmospheres. Bull. Astr. Inst. Neth. 1922, 1, 107. [Google Scholar]
- Neslusan, L. On the global electrostatic charge of stars. Astron. Astrophys. 2001, 372, 913. [Google Scholar] [CrossRef]
- Ray, S.; Espindola, A.L.; Malheiro, M.; Lemos, J.P.S.; Yanchin, V.T. Electrically charged compact stars and formation of charged black holes. Phys. Rev. D 2003, 68, 084004. [Google Scholar] [CrossRef] [Green Version]
- Rajagopal, K.; Lake, K. Strengths of singularities in Vaidya spacetimes. Phys. Rev. D 1987, 35, 1531–1532. [Google Scholar] [CrossRef]
- Szydlowski, M.; Stachowski, A.; Urbanowski, K. The evolution of the FRW universe with decaying metastable darkenergy—A dynamical system analysis. arXiv 2002, arXiv:1812.00616. [Google Scholar]
- Lake, K.; Zannias, T. Structure of singularities in the spherical gravitational collapse of a charged null fluid. Phys. Rev. D 1991, 43, 1798–1802. [Google Scholar] [CrossRef]
- Kerr, R. Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 1963, 11, 237–238. [Google Scholar] [CrossRef]
- Visser, M. The Kerr spacetime: A brief introduction. arXiv 2007, arXiv:0706.0622. [Google Scholar]
- Xu, D.-Y. Radiating charged rotating metric in de Sitter space in retarded time coordinates and the energy–momentum tensor. Class. Quantum Gravity 1998, 15, 153–165. [Google Scholar] [CrossRef]
- Xu, D.-Y. Timelike limit surfaces, apparent horizons and event horizons of radiating Kerr–Newman–de Sitter black holes, inflation and cosmic censorship. Class. Quantum Gravity 1999, 16, 343–350. [Google Scholar] [CrossRef]
- Mkenyeleye, M.D.; Goswami, R.; Maharaj, S.D. Gravitational collapse of generalized Vaidya spacetime. Phys. Rev. D 2014, 90, 064034. [Google Scholar] [CrossRef]
- Brassel, B.P.; Goswami, R.; Maharaj, S.D. Collapsing radiating stars with various equations of state. Phys. Rev. D 2017, 95, 124051. [Google Scholar] [CrossRef]
- Beesham, A.; Ghosh, S.G. Naked singularities in the charged Vaidya-deSitter spacetime. Int. J. Mod. Phys. D 2003, 12, 801–809. [Google Scholar] [CrossRef]
- Tangherlini, F.R. Schwarzschild Field in n Dimensions and the Dimensionality of Space Problem. Nuovo Cimento 1963, 27, 636–651. [Google Scholar] [CrossRef]
- De Sitter, W. On Einstein’s Theory of Gravitation and its Astronomical Consequences. Mon. Not. R. Astron. Soc. 1917, 78, 3–28. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.-K.; Ball, D.; Balokovic, M.; Barrett, J.; Bintley, D.; et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L1. [Google Scholar]
- Dey, D.; Joshi, P.S.; Joshi, A.; Bambhaniya, P. Towards an observational test of black hole versus naked singularity at the galactic center. Int. J. Mod. Phys. D 2019, 29, 1930024. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, C.; Kocherlakota, P.; Joshi, P.S. Spin precession in a black hole and naked singularity spacetimes. Phys. Rev. D 2017, 95, 04406. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, S.; Harko, T.; Kovacs, Z. Distinguishing Brans–Dicke–Kerr type naked singularities and black holes with their thin disk electromagnetic radiation properties. Eur. Phys. J. C 2020, 80, 162. [Google Scholar] [CrossRef]
- Bhattacharya, K.; Dey, D.; Mazumdar, A.; Sarkar, T. New class of naked singularities and their observational signatures. Phys. Rev. D 2020, 101, 043005. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, T. Thermodynamical aspects of gravity: New insights. Rep. Prog. Phys. 2010, 73, 046901. [Google Scholar] [CrossRef] [Green Version]
Positive Root | |||
---|---|---|---|
0.71 | 2 | 2.5 | 3.84 |
1 | 2 | 2.5 | 2.20 |
2 | 2 | 2.5 | 1.49 |
2 | 3 | 2.5 | 1.77 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beesham, A. Vaidya Collapse with Nonzero Radial Pressure and Charge. Axioms 2020, 9, 52. https://doi.org/10.3390/axioms9020052
Beesham A. Vaidya Collapse with Nonzero Radial Pressure and Charge. Axioms. 2020; 9(2):52. https://doi.org/10.3390/axioms9020052
Chicago/Turabian StyleBeesham, Aroonkumar. 2020. "Vaidya Collapse with Nonzero Radial Pressure and Charge" Axioms 9, no. 2: 52. https://doi.org/10.3390/axioms9020052
APA StyleBeesham, A. (2020). Vaidya Collapse with Nonzero Radial Pressure and Charge. Axioms, 9(2), 52. https://doi.org/10.3390/axioms9020052