Change-Point Estimation and Detection for Mixture of Linear Regression Models
Abstract
:1. Introduction
2. Statistical Model and Assumptions
3. Parameter Inference
3.1. Estimation Procedure
Algorithm 1 EM algorithm considering change point |
Intput: , the number of mixture component C, the maximum iterations T. |
Output:
|
3.2. Hypothesis Test
3.3. Consistency
4. Simulation
4.1. Estimation Experiment
4.2. Detection Experiment
5. Concluding Remarks
6. Limitations and Future Research Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Appendix for Proof
References
- Goldfeld, S.M.; Quandt, R.E. A Markov model for switching regressions. J. Econom. 1973, 1, 3–15. [Google Scholar] [CrossRef]
- Frühwirth-Schnatter, S. Finite Mixture and Markov Switching Models; Springer: New York, NY, USA, 2006; pp. 241–275. [Google Scholar]
- Hurn, M.; Justel, A.; Robert, C.P. Estimating Mixtures of Regressions. J. Comput. Graph. Stat. 2003, 12, 55–79. [Google Scholar] [CrossRef]
- Li, P.; Chen, J. Testing the Order of a Finite Mixture. J. Am. Stat. Assoc. 2010, 105, 1084–1092. [Google Scholar] [CrossRef]
- Chen, J.; Li, P.; Fu, Y. Inference on the Order of a Normal Mixture. J. Am. Stat. Assoc. 2012, 107, 1096–1105. [Google Scholar] [CrossRef]
- Huang, M.; Yao, W. Mixture of Regression Models With Varying Mixing Proportions: A Semiparametric Approach. J. Am. Stat. Assoc. 2012, 107, 711–724. [Google Scholar] [CrossRef]
- Huang, M.; Li, R.; Wang, S. Nonparametric Mixture of Regression Models. J. Am. Stat. Assoc. 2013, 108, 929–941. [Google Scholar] [CrossRef]
- Page, E.S. Continuous inspection schemes. Biometrika 1954, 41, 100–115. [Google Scholar] [CrossRef]
- Sen, A.; Srivastava, M.S. On tests for detecting change in mean. Ann. Stat. 1975, 3, 98–108. [Google Scholar] [CrossRef]
- Sen, A.; Srivastava, M.S. Some one-sided tests for change in level. Technometrics 1975, 17, 61–64. [Google Scholar] [CrossRef]
- Hawkins, D.M. Testing a sequence of observations for a shift in location. J. Am. Stat. Assoc. 1977, 72, 180–186. [Google Scholar] [CrossRef]
- James, B.; James, K.; Siegmund, D. Tests for a change-point. Biometrika 1987, 74, 71–83. [Google Scholar] [CrossRef]
- Srivastava, M.S.; Worsley, K.J. Likelihood ratio tests for a change in the multivariate normal mean. J. Am. Stat. Assoc. 1986, 81, 199–204. [Google Scholar] [CrossRef]
- Bassevile, M.; Nikiforov, I. Detection of Abrupt Changes: Theory and Applications; Prentice Hall: Hoboken, NJ, USA, 1993. [Google Scholar]
- Wang, G.; Zou, C.; Yin, G. Change-point detection in multinomial data with a large number of categories. Ann. Stat. 2018, 46, 2020–2044. [Google Scholar] [CrossRef]
- Xia, Z.; Qiu, P. Jump information criterion for statistical inference in estimating discontinuous curves. Biometrika 2015, 102, 397–408. [Google Scholar] [CrossRef]
- Bai, J. Least squares estimation of a shift in linear processes. J. Time Ser. Anal. 1994, 15, 453–472. [Google Scholar] [CrossRef]
- Baranowski, R.; Chen, Y.; Fryzlewicz, P. Narrowest-over-threshold detection of multiple change points and change-point-like features. J. R. Stat. Soc. Ser. Stat. Methodol. 2019, 81, 649–672. [Google Scholar] [CrossRef]
- Follain, B.; Wang, T.; Samworth, R.J. High-dimensional changepoint estimation with heterogeneous missingness. J. R. Stat. Soc. Ser. Stat. Methodol. 2022, 84, 1023–1055. [Google Scholar] [CrossRef]
- Drabech, Z.; Douimi, M.; Zemmouri, E. A Markov random field model for change points detection. J. Comput. Sci. 2024, 83, 102429. [Google Scholar] [CrossRef]
- Ratnasingam, S.; Gamage, R. Empirical likelihood change point detection in quantile regression models. Comput. Stat. 2025, 40, 999–1020. [Google Scholar] [CrossRef]
- Gong, Y.; Dong, X.; Zhang, J.; Chen, M. Latent evolution model for change point detection in time-varying networks. Inf. Sci. 2023, 646, 119376. [Google Scholar] [CrossRef]
- Kiefer, J. K-sample analogues of the Kolmogorov-Smirnov and Cramér-Von Mises tests. Ann. Math. Stat. 1959, 30, 420–447. [Google Scholar] [CrossRef]
- McLachlan, G.; Peel, D. Finite Mixture Models; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Billingsley, P. Convergence of Probability Measures, 2nd ed.; Wiley: New York, NY, USA, 1999. [Google Scholar]
n = 500 | CPEM | (0.994, 2.004) | (0.975, 3.023) | (2.993, 4.004) | (2.999, 4.999) |
(0.045, 0.029) | (0.150, 0.129) | (0.064, 0.041) | (0.085, 0.057) | ||
NCPEM | (2.235, 1.911) | (0.988, 3.048) | (3.086, 3.874) | (3.022, 4.941) | |
(9.906, 1.624) | (7.933, 1.290) | (9.285, 1.609) | (0.511, 0.278) | ||
n = 1000 | CPEM | (0.982, 2.054) | (1.006, 2.993) | (2.992, 4.005) | (2.996, 5.001) |
(0.042, 0.017) | (0.104, 0.077) | (0.039, 0.024) | (0.058, 0.038) | ||
NCPEM | (0.452, 2.220) | (0.884, 3.044) | (1.550, 4.192) | (3.187, 4.939) | |
(8.490, 1.664) | (3.710, 0.678) | (8.211, 1.367) | (2.540, 0.484) | ||
n = 2000 | CPEM | (1.000, 1.999) | (1.014, 2.995) | (2.930, 4.017) | (3.001, 4.997) |
(0.022, 0.014) | (0.069, 0.046) | (0.030, 0.019) | (0.041, 0.035) | ||
NCPEM | (1.225, 2.054) | (1.318, 2.975) | (2.880, 3.921) | (3.009, 4.975) | |
(4.212, 0.624) | (2.383, 0.505) | (0.557, 0.342) | (0.182, 0.107) |
n = 500 | CPEM | 0.099 (0.006) | 0.199 (0.012) | 0.100 (0.008) | 0.197 (0.011) |
NCPEM | 0.193 (0.466) | 0.346 (0.626) | 0.171 (0.436) | 0.441 (0.786) | |
n = 1000 | CPEM | 0.098 (0.011) | 0.200 (0.005) | 0.099 (0.006) | 0.199 (0.008) |
NCPEM | 0.143 (0.287) | 0.375 (0.686) | 0.147 (0.338) | 0.376 (0.661) | |
n = 2000 | CPEM | 0.100 (0.003) | 0.203 (0.015) | 0.099 (0.011) | 0.204 (0.005) |
NCPEM | 0.153 (0.339) | 0.333 (0.616) | 0.096 (0.022) | 0.376 (0.687) |
n = 500 | CPEM | 0.601 (0.031) | 0.399 (0.031) | 0.301 (0.030) | 0.699 (0.030) |
NCPEM | 0.182 (0.053) | 0.310 (0.050) | 0.189 (0.045) | 0.320 (0.062) | |
n = 1000 | CPEM | 0.594 (0.063) | 0.406 (0.063) | 0.295 (0.019) | 0.705 (0.019) |
NCPEM | 0.189 (0.060) | 0.310 (0.044) | 0.193 (0.039) | 0.308 (0.056) | |
n = 2000 | CPEM | 0.599 (0.014) | 0.401 (0.013) | 0.298 (0.033) | 0.702 (0.033) |
NCPEM | 0.194 (0.035) | 0.311 (0.058) | 0.186 (0.049) | 0.310 (0.045) |
n | 500 | 1000 | 2000 |
---|---|---|---|
size | 0.07 | 0.06 | 0.05 |
n | ||||
---|---|---|---|---|
500 | 0.60 | 0.83 | 0.59 | |
1000 | 0.96 | 0.88 | 0.67 | |
2000 | 1 | 0.98 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Cheng, T.; Xia, Z. Change-Point Estimation and Detection for Mixture of Linear Regression Models. Axioms 2025, 14, 402. https://doi.org/10.3390/axioms14060402
Zhao W, Cheng T, Xia Z. Change-Point Estimation and Detection for Mixture of Linear Regression Models. Axioms. 2025; 14(6):402. https://doi.org/10.3390/axioms14060402
Chicago/Turabian StyleZhao, Wenzhi, Tian Cheng, and Zhiming Xia. 2025. "Change-Point Estimation and Detection for Mixture of Linear Regression Models" Axioms 14, no. 6: 402. https://doi.org/10.3390/axioms14060402
APA StyleZhao, W., Cheng, T., & Xia, Z. (2025). Change-Point Estimation and Detection for Mixture of Linear Regression Models. Axioms, 14(6), 402. https://doi.org/10.3390/axioms14060402