Conditional Exponential Convex Functions on White Noise Spaces
Abstract
:1. Introduction
2. White Noise Spaces Induced by Conditional Exponential Convex Functions
- I.
- in the first coordinate is complex linear and in the second conjugate complex linear, i.e., for any and any
- II.
- is conjugate symmetric, i.e., for any
- III.
- is positive definite, meaning that for any
- (1)
- .
- (2)
- .
- (3)
- for some constant .
- (4)
- is radial.
- (1)
- ,
- (2)
- ,
- (3)
- .
3. Bochner–Minlos-Type Formula for Conditional Exponential Convex Functions
- (I)
- ,
- (ii)
- The function is continuous and conditionally exponential convex for all .
4. Reproducing Kernel Hilbert Space
5. Generalized Fourier Transform on Infinite Spaces
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berg, C.; Christensen, J.P.R.; Ressel, P. Harmonic Analysis on Semigroups: Theory of Positive Definite and Related Functions; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1984. [Google Scholar]
- Biagini, F.; Øksendal, B.; Sulem, A.; Wallner, N. An introduction to white-noise theory and malliavin calculus for fractional Brownian motion. Proc. R. Soc. A 2004, 460, 347–372. [Google Scholar] [CrossRef]
- Cochran, W.; Kuo, H.H.; Sengupta, A. A new class of white noise generalized functions. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1998, 1, 43–67. [Google Scholar] [CrossRef]
- Berezansky, Y.M.; Kondratiev, Y.G. Spectral Methods in Infinite Dimensional Analysis; Kluwer: Dordrecht, The Netherlands, 1995; Volume 12. [Google Scholar]
- Hida, T. Brownian Motion; Springer: New York, NY, USA, 1980. [Google Scholar]
- Colombeau, J.F. Elementary Introduction to New Generalized Functions, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 113. [Google Scholar]
- Aliukov, S.; Alabugin, A.; Osintsev, K. Review of Methods, Applications and Publications on the Approximation of Piecewise Linear and Generalized Functions. Mathematics 2022, 10, 3023. [Google Scholar] [CrossRef]
- Kuo, H.H. White Noise Distribution Theory, 1st ed.; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Grothaus, M.; Müller, J.; Nonnenmacher, A. An improved characterisation of regular generalised functions of white noise and an application to singular SPDEs. Stoch. PDE Anal. Comput. 2022, 10, 359–391. [Google Scholar] [CrossRef]
- Colombeau, J.F. New Generalized Functions and Multiplication of Distributions; Elsevier: Amsterdam, The Netherlands, 1984; Volume 84. [Google Scholar]
- Björck, G. Linear partial differential operators and generalized distributions. Ark. För Mat. 1965, 6, 351–407. [Google Scholar] [CrossRef]
- Gelfand, I.M.; Shilov, G.E. Generalized Function; Academic Press, Inc.: Cambridge, MA, USA, 1964. [Google Scholar]
- Hida, T.; Streit, L. On quantum theory in terms of white noise. Nagoya Math. J. 1977, 68, 21–34. [Google Scholar] [CrossRef]
- Ghany, H.A. Exact solutions for stochastic generalized Hirota-Satsuma coupled KdV equations. Chin. J. Phys. 2011, 49, 926–940. [Google Scholar]
- Holden, H.; Øsendal, B.; Ubøe, J.; Zhang, T. Stochastic Partial Differential Equations; Springer Science + Business Media, LLC: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Lighthill, J. Introduction to Fourier Analysis and Generalized Function; Cambridge University Press: Cambridge, UK, 1958. [Google Scholar]
- Liu, B.; Wang, W. An efficient numerical scheme in reproducing kernel space for space fractional partial differential equations. AIMS Math. 2024, 9, 33286–33300. [Google Scholar] [CrossRef]
- Serdyukov, S.I. Time-dependent generalized normal and gamma distributions as solutions of higher-order partial differential equations. Partial Differ. Equations Appl. Math. 2022, 6, 100453. [Google Scholar] [CrossRef]
- Berezansky, Y.M.; Samoilenko, Y.S. Nuclear spaces of functions of infinitely many variables. Ukr. Math. J. 1973, 25, 599–609. [Google Scholar] [CrossRef]
- Hida, T. Analysis of brownian functionals. In Stochastic Systems: Modeling, Identification and Optimization, I; Number 13 in Carleton Mathematical Lecture Notes; Springer: Berlin/Heidelberg, Germany, 1975. [Google Scholar]
- Okb El Bab, A.S.; Ghany, H.A.; Ramadan, S. On strongly negative definite functions for the product of commutative hypergroups. Int. J. Pure Appl. Math. 2011, 71, 581–594. [Google Scholar]
- Okb El Bab, A.S.; Shazly, M.S. Characterisation of convolution semigroups. Indian J. Theor. Phys. 1987, 4, 300–311. [Google Scholar]
- Paulsen, V.I.; Raghupathi, M. An Introduction to the Theory of Reproducing Kernel Hilbert Spaces; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Ghojogh, B.; Ghodsi, A.; Karray, F.; Crowley, M. Reproducing Kernel Hilbert Space, Mercer’s Theorem, Eigenfunctions, Nyström Method, and Use of Kernels in Machine Learning: Tutorial and Survey. arXiv 2021, arXiv:2106.08443. [Google Scholar] [CrossRef]
- Xu, Y. Sparse machine learning in Banach spaces. Appl. Numer. Math. 2023, 187, 138–157. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zabel, A.M.; Almoneef, A.A.; Nassar, A.; Hyder, A.-A. Conditional Exponential Convex Functions on White Noise Spaces. Axioms 2025, 14, 223. https://doi.org/10.3390/axioms14030223
Zabel AM, Almoneef AA, Nassar A, Hyder A-A. Conditional Exponential Convex Functions on White Noise Spaces. Axioms. 2025; 14(3):223. https://doi.org/10.3390/axioms14030223
Chicago/Turabian StyleZabel, Ahmed. M., Areej A. Almoneef, Ayat Nassar, and Abd-Allah Hyder. 2025. "Conditional Exponential Convex Functions on White Noise Spaces" Axioms 14, no. 3: 223. https://doi.org/10.3390/axioms14030223
APA StyleZabel, A. M., Almoneef, A. A., Nassar, A., & Hyder, A.-A. (2025). Conditional Exponential Convex Functions on White Noise Spaces. Axioms, 14(3), 223. https://doi.org/10.3390/axioms14030223