Rationality Levels in a Heterogeneous Dynamic Price Game
Abstract
:1. Introduction
2. Dynamic Price Models with Rationality Levels
2.1. The Model
2.2. The Stability Condition
3. Stability Characterization of the Price System with Rationality Levels
4. Numerical Simulations
5. Conclusions
- (a)
- (b)
- As decreases from one (towards the two-step reasoning model or the rationality level increases or the reasoning level increases), the stable region of the system enlarges, which means that allowing various bounded rationalities in a dynamic Bertrand game contributes to the price system’s stability rather than destroying it. There is no similar result in the literature.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simon, H.A. A behavioral model of rational choice. Q. J. Econ. 1955, 69, 99–118. [Google Scholar] [CrossRef]
- Colin, C. Behavioral Game Theory, Experiments in Strategic Interaction; Princeton University Press: Princeton, NJ, USA, 2003. [Google Scholar]
- Cournot, A. Réserches sur les Principles Mathemátiques de la Théorie de la Richesse; Hachette: Paris, France, 1838. [Google Scholar]
- Bertrand, J. Revue de la thórie de la recherche sociale et des recherches sur les principes math’ematiques de la thématiques de la th’eorie des richesses. J. Des Savants 1883, 67, 499–508. [Google Scholar]
- Agiza, H.N.; Elsadany, A.A. Chaotic dynamics in nonlinear duopoly game with heterogeneous players. Appl. Math. Comput. 2004, 149, 843–860. [Google Scholar] [CrossRef]
- Zhang, W.L.; Song, Q.Q.; Jiang, Y.R. Price discrimination in dynamic cournot competition. Discret. Dyn. Nat. Soc. 2019, 2019, 9231582. [Google Scholar] [CrossRef]
- Song, Q.Q.; Zhang, W.L.; Jiang, Y.R.; Geng, J. The effect of price discrimination on dynamic duopoly games with bounded rationality. Stud. Nonlinear Dyn. Econom. 2022, 25, 287–311. [Google Scholar] [CrossRef]
- Guo, M.; Song, Q.Q. Dynamic Games with heterogeneous N competitors and K-level price discrimination. J. Dyn. Games 2025, in press. [Google Scholar] [CrossRef]
- Andaluz, J.; Elsadany, A.A.; Jarne, G. Dynamic behavior in a Cournot duopoly with social responsibility. Chaos Solitons Fractals 2023, 172, 113511. [Google Scholar] [CrossRef]
- Zhang, J.; Da, Q.; Wang, Y. The dynamics of bertrand model with bounded rationality. Chaos Solitons Fractals 2009, 39, 2048–2055. [Google Scholar] [CrossRef]
- Ahmed, E.; Elettreby, M.; Hegazi, A. On puu’s incomplete information formulation for the standard and multi-team bertrand game. Chaos Solitons Fractals 2006, 30, 1180–1184. [Google Scholar] [CrossRef]
- Ahmed, E.; Elsadany, A.; Puu, T. On bertrand duopoly game with differentiated goods. Appl. Math. Comput. 2015, 251, 169–179. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, G. Complex dynamics of bertrand duopoly games with bounded rationality. World Acad. Sci. Eng. Technol. 2013, 79, 106–110. [Google Scholar]
- Fanti, L.; Gori, L.; Mammana, C.; Michetti, E. The dynamics of a bertrand duopoly with differentiated products: Synchronization, intermittency and global dynamics. Chaos Solitons Fractals 2013, 52, 73–86. [Google Scholar] [CrossRef]
- Elsadany, A.; Awad, A. Dynamics and chaos control of a duopolistic bertrand competitions under environmental taxes. Ann. Oper. Res. 2019, 274, 211–240. [Google Scholar] [CrossRef]
- Tremblay, C.H.; Tremblay, V.J. The cournot–bertrand model and the degree of product differentiation. Econ. Lett. 2011, 111, 233–235. [Google Scholar] [CrossRef]
- Naimzadam, A.; Tramontana, F. Dynamic properties of a cournot–bertrand duopoly game with differentiated products. Econ. Model. 2012, 29, 1436–1439. [Google Scholar] [CrossRef]
- Puu, T.; Tramontana, F. Can bertrand and cournot oligopolies be combined? Chaos Solitons Fractals 2019, 125, 97–107. [Google Scholar] [CrossRef]
- Awad, A.M.; Askar, S.S.; Elsadany, A.A. Complex dynamics investigations of a mixed Bertrand duopoly game: Synchronization and global analysis. Nonlinear Dyn. 2022, 107, 3983–3999. [Google Scholar] [CrossRef]
- Andaluz, J.; Jarne, G. On price stability and the nature of product differentiation. J. Evol. Econ. 2019, 29, 741–762. [Google Scholar] [CrossRef]
- Dixit, A. Comparative statics for oligopoly. Int. Econ. Rev. 1986, 27, 107–122. [Google Scholar] [CrossRef]
- Bischi, G.I.; Naimzada, A. Global analysis of a dynamic duopoly game with bounded rationality. In Advances in Dynamic Games and Applications; Filar, J.A., Gaitsgory, V., Mizukami, K., Eds.; Springer: Boston, MA, USA, 1999; Volume 5, pp. 361–385. [Google Scholar]
- Bischi, G.I.; Chiarella, C.; Kopel, M.; Szidarovszky, F. Nonlinear Oligopolies: Stability and Bifurcations; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Grau-Climent, J.; Garcia-Perez, L.; Losada, J.C.; Alonso-Sanz, R. Simulation of the quantum Bertrand CEdgeworth game. Quantum Inf. Process. 2023, 22, 411. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, M.; Song, Q. Rationality Levels in a Heterogeneous Dynamic Price Game. Axioms 2025, 14, 194. https://doi.org/10.3390/axioms14030194
Guo M, Song Q. Rationality Levels in a Heterogeneous Dynamic Price Game. Axioms. 2025; 14(3):194. https://doi.org/10.3390/axioms14030194
Chicago/Turabian StyleGuo, Min, and Qiqing Song. 2025. "Rationality Levels in a Heterogeneous Dynamic Price Game" Axioms 14, no. 3: 194. https://doi.org/10.3390/axioms14030194
APA StyleGuo, M., & Song, Q. (2025). Rationality Levels in a Heterogeneous Dynamic Price Game. Axioms, 14(3), 194. https://doi.org/10.3390/axioms14030194