Strong Stability of the Thermoelastic Bresse System with Second Sound and Fractional Delay
Abstract
1. Introduction and Problem Statement
2. Preliminary
3. The Major Results
4. Existence and Uniqueness
5. Exponential Stability
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choucha, A.; Ouchenane, D.; Zennir, K. Stability for thermo-elastic Bresse system of second sound with past history and delay term. Inter. J. Model. Ident. Control 2021, 6, 315–328. [Google Scholar]
- Lagnese, J.E.; Leugering, G.; Schmidt, E.J.P. Modelling of dynamic networks of thin thermo-elastic beams. Math. Meth. Appl. Sci. 1993, 16, 327–358. [Google Scholar] [CrossRef]
- Lagnese, J.E.; Leugering, G.; Schmidt, E.J.P.G. Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures, Systems and Control: Foundations and Applications; Springer: Boston, MA, USA, 1994. [Google Scholar]
- Nicaise, S.; Pignotti, C. Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 2006, 45, 1561–1585. [Google Scholar] [CrossRef]
- Suh, I.H.; Bien, Z. Use of time delay action in the controller design. IEEE Trans. Autom. Contr. 1980, 25, 600–603. [Google Scholar] [CrossRef]
- Beniani, A.; Bahri, N.; Alharbi, R.; Bouhali, K.; Zennir, K. Stability for Weakly Coupled Wave Equations with a General Internal Control of Diffusive Type. Axioms 2023, 12, 48. [Google Scholar] [CrossRef]
- Choucha, A.; Ouchenane, D.; Mirgani, S.M.; Hassan, E.I.; Alfedeel, A.H.A.; Zennir, K. Exploring thermo-elastic Effects in Damped Bresse Systems with Distributed Delay. Mathematics 2024, 12, 857. [Google Scholar] [CrossRef]
- Elhindi, M.; Zennir, K.; Ouchenane, D.; Choucha, A.; El Arwadi, T. Bresse-Timoshenko type systems with thermodiffusion effects: Well-possedness, stability and numerical results. Rend. Circ. Mat. Palermo Ser. 2023, 72, 169–194. [Google Scholar] [CrossRef]
- Zennir, K.; Feng, B. One spatial variable thermo-elastic transmission problem in viscoelasticity located in the second part. Math. Meth. Appl. Sci. 2018, 41, 6895–6906. [Google Scholar] [CrossRef]
- Djeradi, F.S.; Yazid, F.; Georgiev, S.G.; Hajjej, Z.; Zennir, K. On the time decay for a thermo-elastic laminated beam with microtemperature effects, nonlinear weight, and nonlinear time-varying delay. AIMS Math. 2023, 8, 26096–26114. [Google Scholar] [CrossRef]
- Dridi, H.; Zennir, K. Well-posedness and energy decay for some thermo-elastic systems of Timoshenko type with Kelvin-Voigt damping. SeMA J. 2021, 78, 385–400. [Google Scholar] [CrossRef]
- Benaissa, A.; Gaouar, S. Stability result of the Lame’ system with a delay term in the internal fractional feedback. Acta Univ. Sapientiae Math. 2021, 13, 336–355. [Google Scholar] [CrossRef]
- Li, G.; Luan, Y.; Liu, W. Well-posedness and exponential stability of a thermo-elastic-Bresse system with second sound and delay. Hacet. J. Math. Stat. 2020, 49, 523–538. [Google Scholar] [CrossRef]
- Fatori, L.H.; Rivera, J.E.M. Rates of decay to weak thermo-elastic Bresse system. IMA J. Appl. Math. 2020, 75, 881–904. [Google Scholar] [CrossRef]
- Kafini, M.; Messaoudi, S.A.; Mustafa, M.I.; Apalara, T. Well-posedness and stability results in a Timoshenko-type system of thermo-elasticity of type III with delay. Z. Angew. Math. Phys. 2015, 66, 1499–1517. [Google Scholar] [CrossRef]
- Mbodje, B. Wave energy decay under fractional derivative controls. IMA J. Math. Contr. Inf. 2006, 23, 237–257. [Google Scholar] [CrossRef]
- Pazy, A. Semi-Groups of Linear Operators and Applications to Partial Differential Equations; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Liu, K. Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces. Chin. Sci. Bull. 1985, 44, 1343. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zennir, K.; Alkhalifa, L. Strong Stability of the Thermoelastic Bresse System with Second Sound and Fractional Delay. Axioms 2025, 14, 176. https://doi.org/10.3390/axioms14030176
Zennir K, Alkhalifa L. Strong Stability of the Thermoelastic Bresse System with Second Sound and Fractional Delay. Axioms. 2025; 14(3):176. https://doi.org/10.3390/axioms14030176
Chicago/Turabian StyleZennir, Khaled, and Loay Alkhalifa. 2025. "Strong Stability of the Thermoelastic Bresse System with Second Sound and Fractional Delay" Axioms 14, no. 3: 176. https://doi.org/10.3390/axioms14030176
APA StyleZennir, K., & Alkhalifa, L. (2025). Strong Stability of the Thermoelastic Bresse System with Second Sound and Fractional Delay. Axioms, 14(3), 176. https://doi.org/10.3390/axioms14030176