Trigonometric Sums via Lagrange Interpolation
Abstract
1. Introduction and Outline
2. Trigonometric Sums of Even Powers
2.1. Sums About Even Powers of Cosecant Function
2.2. Sums About Even Powers of Cosecant with mth Term Missing
2.3. Sums About Even Powers of Secant Function
2.4. Sums About Even Powers of Secant with mth Term Missing
2.5. Sums About Even Powers of Cotangent Function
2.6. Sums About Even Powers of Cotangent with mth Term Missing
2.7. Sums About Even Powers of Tangent Function
2.8. Sums About Even Powers of Tangent with mth Term Missing
3. Trigonometric Sums of Odd Powers
3.1. Sums About Odd Powers of Cosecant Function
3.2. Sums About Odd Powers of Secant Function
3.3. Sums About Odd Powers of Cotangent Function
3.4. Sums About Odd Powers of Tangent Function
4. Concluding Comments and Further Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Byrne, G.; Smith, S.J. Some integer–valued trigonometric sums. Proc. Edinb. Math. Soc. 1997, 40, 393–401. [Google Scholar] [CrossRef]
- Chu, W. Summations on trigonometric functions. Appl. Math. Comput. 2003, 141, 161–176. [Google Scholar] [CrossRef]
- Chu, W. Partial fraction decompositions and trigonometric sum identities. Proc. Am. Math. Soc. 2008, 136, 229–237. [Google Scholar] [CrossRef]
- Chu, W. Reciprocal relations for trigonometric sums. Rocky Mt. J. Math. 2018, 48, 121–140. Available online: https://www.jstor.org/stable/26499723 (accessed on 12 August 2025). [CrossRef]
- Tričković, S.B.; Stankovic, M.S. On closed forms of some trigonometric series. Axioms 2024, 13, 631. [Google Scholar] [CrossRef]
- Williams, K.S.; Zhang, N.Y. Evaluation of two trigonometric sums. Math. Slovaca 1994, 44, 575–583. Available online: http://dml.cz/dmlcz/136630 (accessed on 12 August 2025).
- Kilar, N.; Simsek, Y. New computational formulas for special numbers and polynomials derived from applying trigonometric functions to generating functions. Milan J. Math. 2021, 89, 217–239. [Google Scholar] [CrossRef]
- Smajlovic, L.; Šabanac, L.; Šceta, L. Evaluation of some cosecant and secant sums via Fibonacci and Lucas polynomials. Fibonacci Quart. 2025, 63, 427–438. [Google Scholar] [CrossRef]
- Shevelev, V.; Moses, P.J.C. Tangent power sums and their applications. Integers Electron. J. Comb. Number Theory 2014, 14, A64. [Google Scholar]
- Dowker, J.S. On Verlinde’s formula for the dimensions of vector bundles on moduli spaces. J. Phys. A Math. Gen. 1992, 25, 2641–2648. [Google Scholar] [CrossRef]
- Hassan, H.A. New trigonometric sums by sampling theorem. J. Math. Anal. Appl. 2008, 339, 811–827. [Google Scholar] [CrossRef]
- Jelitto, H. Generalized trigonometric power sums covering the full circle. J. Appl. Math. Phys. 2022, 10, 405–414. [Google Scholar] [CrossRef]
- Apostol, T.M. Elementary proof of Euler’s formula for ζ(2n). Amer. Math. Mon. 1973, 80, 425–431. [Google Scholar]
- Liu, Z.G. Some inverse relations and theta function identities. Int. J. Number Theory 2012, 8, 1977–2002. [Google Scholar] [CrossRef]
- Milovanović, G.V.; Simsek, Y. Dedekind and Hardy type sums and trigonometric sums induced by quadrature formulas. In Trigonometric Sums and Their Applications; Raigorodskii, A., Rassias, M.T., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 183–228. [Google Scholar] [CrossRef]
- Franke, J. Dirichlet series with trigonometric coefficients. Integers Electron. J. Comb. Number Theory 2021, 21, A23. [Google Scholar]
- Chu, W. Partial fractions and Riesz’ interpolation formula for trigonometric polynomials. Am. Math. Mon. 2018, 125, 175–178. [Google Scholar] [CrossRef]
- Riesz, M. Eine trigonometrische interpolationsformel und einige ungleichungen für Polynome. Jahresber. Dtsch. Math.–Ver. 1914, 23, 354–368. [Google Scholar]
- Annaby, M.A.; Hassan, H.A. Trigonometric sums by Hermite interpolations. Appl. Math. Comput. 2018, 330, 213–224. [Google Scholar] [CrossRef]
- Al-Sharif, M.A.; Ebaid, A.; Alrashdi, H.S.; Alenazy, A.H.S.; Kanaan, N.E. A novel ansatz method for solving the neutron diffusion system in cartesian geometry. JAMCS J. Adv. Math. Comput. Sci. 2022, 37, 90–99. [Google Scholar] [CrossRef]
- Weizang, C. Summation of trigonometric series by Fourier transforms. Appl. Math. Mech. 1989, 10, 385–397. [Google Scholar] [CrossRef]
- Beck, M.; Halloran, M. Finite trigonometric character sums via discrete Fourier analysis. Int. J. Number Theory 2010, 6, 51–67. [Google Scholar] [CrossRef]
- Zygmund, A. Trigonometric Series, 3rd ed.; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Bataille, M. Problem 12099. Am. Math. Mon. 2019, 126, 280. [Google Scholar]
- Costarelli, D.; Piconi, M.; Sharma, M.; Singh, U. Higher order convergence of a multivariate neural network interpolation operator for irregular grid. Results Math. 2025, 80, 189. [Google Scholar] [CrossRef]
- Gautschi, W. Interpolation before and after Lagrange. Rend. Sem. Mat. Univ. Politec. Torino 2012, 70, 347–368. [Google Scholar]
- Criscuolo, G.; Mastroianni, G. New Results on Lagrange Interpolation. In Approximation Theory, Spline Functions and Applications; Singh, S.P., Ed.; NATO ASI Series; Springer: Dordrecht, The Netherlands, 1992; Volume 356, pp. 333–340. [Google Scholar] [CrossRef]
- Jafari, M.A.; Aminataei, A. An extension of Lagrange interpolation formula and its applications. Math. Comput. Sci. 2023, 4, 13–20. [Google Scholar] [CrossRef]
- Elbori, A.; Zenad, W.A.; Albarki, A. Review new application using interpolation and polynomial approximation. Alq. J. Med. App. Sci. 2024, 7, 1318–1333. [Google Scholar] [CrossRef]
- Chu, W.; Marini, A. Partial fractions and trigonometric identities. Adv. Appl. Math. 1999, 23, 115–175. [Google Scholar] [CrossRef]
- Cvijovic, D. Closed–form summation of two families of finite tangent sums. Appl. Math. Comput. 2008, 196, 661–665. [Google Scholar] [CrossRef]
- Gauthier, N.; Bruckman, P.S. Sums of the even integral powers of the cosecant and secant. Fibonacci Quart. 2006, 44, 264–272. [Google Scholar] [CrossRef]
- Grabner, P.J.; Prodinger, H. Secant and cosecant sums and Bernoulli–Nörlund polynomials. Quaest. Math. 2007, 30, 159–165. [Google Scholar] [CrossRef]
- Carlitz, L. A Fibonacci array. Fibonacci Quart. 1963, 1, 17–28. [Google Scholar] [CrossRef]
- Chu, W.; Li, N.N. Power sums of Pell and Pell–Lucas polynomials. Fibonacci Quart. 2011, 49, 139–150. [Google Scholar] [CrossRef]
- Comtet, L. Advanced Combinatorics; Reidel Publishing Company: Dordrecht, The Netherlands, 1974. [Google Scholar]
- Sloane, N.J.A. The On–Line Encyclopedia of Integer Sequences (OEIS). Available online: http://oeis.org/ (accessed on 12 August 2025).
- Arikan, T.; Prodinger, H. Evaluation of some reciprocal trigonometric sums via partial fraction decomposition. Kuwait J. Sci. 2020, 47, 14–21. Available online: https://journalskuwait.org/kjs/index.php/KJS/article/view/7113 (accessed on 12 August 2025).
- Chen, H.W. On some trigonometric power sums. Int. J. Math. Math. Sci. 2002, 30, 185–191. [Google Scholar] [CrossRef]
- Datta, C.; Agrawal, P. A few finite trigonometric sums. Mathematics 2017, 5, 13. [Google Scholar] [CrossRef]
- He, Y. Explicit expressions for finite trigonometric sums. J. Math. Anal. Appl. 2020, 484, 123702. [Google Scholar] [CrossRef]
- Ejsmonta, W.; Lehner, F. The trace method for cotangent sums. J. Combin. Theory Ser. A 2021, 177, 105324. [Google Scholar] [CrossRef]
- Allouche, J.P.; Zeilberger, D. Human and automated approaches for finite trigonometric sums. Ramanujan J. 2023, 62, 189–214. [Google Scholar] [CrossRef]
- Eisenstein, G. Aufgaben und Lehrsätze. J. Reine Angew. Math. 1844, 27, 281–283. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.N.; Chu, W.; Wang, X. Trigonometric Sums via Lagrange Interpolation. Axioms 2025, 14, 724. https://doi.org/10.3390/axioms14100724
Chen MN, Chu W, Wang X. Trigonometric Sums via Lagrange Interpolation. Axioms. 2025; 14(10):724. https://doi.org/10.3390/axioms14100724
Chicago/Turabian StyleChen, Marta Na, Wenchang Chu, and Xiaoyuan Wang. 2025. "Trigonometric Sums via Lagrange Interpolation" Axioms 14, no. 10: 724. https://doi.org/10.3390/axioms14100724
APA StyleChen, M. N., Chu, W., & Wang, X. (2025). Trigonometric Sums via Lagrange Interpolation. Axioms, 14(10), 724. https://doi.org/10.3390/axioms14100724