Evaluations of Some General Classes of Mordell Integrals by Applying the Mellin-Barnes-Type Contour Integration
Abstract
1. Introduction, Definitions, and Preliminaries
2. A Discussion About Specialized Forms of the Mordell Integral
3. Evaluations of the Generalized Mordell Integral
4. Evaluations of the Generalized Mordell Integral
5. Transformation Formulas Involving the G-Function
6. Concluding Remarks and Observations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mordell, L.J. On some series whose n-th term involves the number of classes of binary quadratics of determinant-n. Messenger Math. 1919, 49, 65–72. [Google Scholar]
- Mordell, L.J. The value of the definite integral . Quart. J. Pure Appl. Math. 1920, 48, 329–342. [Google Scholar]
- Mordell, L.J. The definite integral and the analytic theory of numbers. Acta Math. 1933, 61, 323–360. [Google Scholar] [CrossRef]
- Bierens de Haan, D. Nouvelles Tables d’Intégrales Définies; P. Engels, Libraire Éditeur: Leide, The Netherland, 1867. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 8th ed.; Academic Press: New York, NY, USA; London, UK, 2015. [Google Scholar]
- Gröbner, W.; Hofreiter, N. Integraltafel. In Bestimmte Integrale; Springer: Berlin/Heidelberg, Germany, 1973; Volume 2. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series. In Volume 1: Elementary Functions; Queen, N.M., Translator; Gordon and Breach Science Publishers: Philadelphia, PA, USA, 1986. [Google Scholar]
- Nielsen, N. Handbuch der Theorie der Gammafunktion; Druck und Verlag von B. G. Teubner: Leipzig, Germany, 1906. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; National Bureau of Standards Applied Mathematics Series; United States Government Printing Office: Washington, DC, USA, 1964; Volume 55. [Google Scholar]
- Oberhettinger, F.; Badii, L.L. Tables of Laplace Transforms; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 1973. [Google Scholar]
- Rainville, E.D. Special Functions; The Macmillan Company: New York, NY, USA, 1960. [Google Scholar]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chishester, UK; Brisbane, Australia; Toronto, ON, Canada, 1984. [Google Scholar]
- Meijer, C.S. Neue Integralstellungen für Whittakersche Funktionen. I. Nederl. Akad. Wetensch. Proc. Ser. A 1941, 44, 81–92. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Company: New York, NY, USA; Toronto, ON, Canada; London, UK, 1953; Volume I. [Google Scholar]
- Luke, Y.L. The Special Functions and Their Approximations; Academic Press: New York, NY, USA; London, UK, 1969; Volume I. [Google Scholar]
- Agarwal, R.P. Resonance of Ramanujan’s Mathematics; New Age International (Private Limited) Publishers: New Delhi, India, 1996; Volume I. [Google Scholar]
- Ramanujan, S. Collected Papers of Srinivasa Ramanujan; Hardy, G.H., Aiyar, P.V.S., Wilson, B.M., Eds.; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Ramanujan, S. Notebooks of Srinivasa Ramanujan; Tata Institute of Fundamental Research: Bombay, India, 1957; Volume I–III. [Google Scholar]
- Ramanujan, S. The Lost Notebook and Other Unpublished Papers; Narosa Publishing House Private Limited: New Delhi, India, 1988. [Google Scholar]
- Siegel, C.L. Über Riemann Nachlass zur analytischen Zahlentheorie. Quellen Stud. Zur Gesch. Math. Astron. Phys. 1933, 2, 45–80. [Google Scholar]
- Andrews, G.E. Mordell integrals and Ramanujan’s “Lost Notebooks”. In Lecture Notes in Mathematics No. 899; Knopp, M.I., Ed.; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 1981; pp. 10–48. [Google Scholar]
- Bromwich, T.J.I. An Introduction to the Theory of Infinite Series, 2nd ed.; Macmillan and Company: London, UK, 1931. [Google Scholar]
- Kronecker, L. Summirung der Gaußschen Reihen . J. Reine Angew. Math. 1889, 105, 267–268. [Google Scholar] [CrossRef]
- Kronecker, L. Bemerkungen über die Darstellung von Reihen durch Integrale (Fortsetzung). J. Reine Angew. Math. 1889, 105, 345–354. [Google Scholar] [CrossRef]
- Lerch, M. Bemerkungen zur Theorie der elliptischen Funktionen. Jahrb. Fortschr. Math. 1892, 24, 442–445. [Google Scholar]
- Lerch, M. Beiträge zur Theorie der elliptischen Funktionen, unendlichen Reihen und bestimmten Integrale. Jahrb. üBer Die Fortschritte Der Math. 1892, 25, 791–793. [Google Scholar]
- Lerch, M. Zur Théorie der Gaußschen Summen. Math. Ann. 1903, 57, 554–567. [Google Scholar] [CrossRef]
- Bellman, R. A Brief Introduction to Theta Functions; Holt, Rinehart and Winston: New York, NY, USA, 1961. [Google Scholar]
- Zwegers, S.P. Mock Theta Functions. Ph.D. Thesis, Universiteit Utrecht, Utrecht, The Netherlands, 2002. [Google Scholar] [CrossRef]
- Chen, D.; Chen, R.; Zwegers, S.P. A Generalization of the Mordell Integral. 2024. Available online: https://www.researchgate.net/publication/378970238 (accessed on 5 July 2025).
- Chern, B.; Rhoades, R.C. The Mordell integral, quantum moduler forms and mock Jacobi forms. Res. Number Theory 2015, 1, 1–14. [Google Scholar] [CrossRef]
- Choi, Y.-S. Modular transformations involving the Mordell integral in Ramanujan’s lost notebook. Pac. J. Math. 2014, 272, 59–85. [Google Scholar] [CrossRef]
- Dixit, A.; Roy, A.; Zaharescu, A. Error functions, Mordell integrals and an integral analogue of a partial theta function. Acta Arith. 2017, 177, 1–37. [Google Scholar] [CrossRef]
- Kuznetsov, A. Computing the truncated theta function via Mordell integral. Math. Comput. 2015, 84, 2911–2926. [Google Scholar] [CrossRef]
- Males, J. A short note on higher Mordell integrals. J. Théor. Nombres Bordx. 2022, 34, 563–573. [Google Scholar] [CrossRef]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series. In Volume IV: Direct Laplace Transforms; Gordon and Breach Science Publishers: Philadelphia, PA, USA, 1992. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M.; Qureshi, M.I.; Baboo, M.S.; Gupta, B. Evaluations of Some General Classes of Mordell Integrals by Applying the Mellin-Barnes-Type Contour Integration. Axioms 2025, 14, 633. https://doi.org/10.3390/axioms14080633
Srivastava HM, Qureshi MI, Baboo MS, Gupta B. Evaluations of Some General Classes of Mordell Integrals by Applying the Mellin-Barnes-Type Contour Integration. Axioms. 2025; 14(8):633. https://doi.org/10.3390/axioms14080633
Chicago/Turabian StyleSrivastava, Hari Mohan, Mohd Idris Qureshi, Mohd Shahid Baboo, and Bhawna Gupta. 2025. "Evaluations of Some General Classes of Mordell Integrals by Applying the Mellin-Barnes-Type Contour Integration" Axioms 14, no. 8: 633. https://doi.org/10.3390/axioms14080633
APA StyleSrivastava, H. M., Qureshi, M. I., Baboo, M. S., & Gupta, B. (2025). Evaluations of Some General Classes of Mordell Integrals by Applying the Mellin-Barnes-Type Contour Integration. Axioms, 14(8), 633. https://doi.org/10.3390/axioms14080633