Estimation and Optimal Censoring Plan for a New Unit Log-Log Model via Improved Adaptive Progressively Censored Data
Abstract
:1. Introduction
- The superiority of the ULL model in fitting real data sets compared to several competing models, such as the beta and Kumaraswamy models, among others, is demonstrated later in the real data section.
- To the best of our knowledge, this is the first investigation of the estimations of the ULL distribution under censorship plans. So we consider the IT2-APC scheme, which generalizes some common censoring plans such as Type-II censoring, T2-PC, and AT2-PC schemes. As a result, the estimations employing these schemes can be directly deduced from the findings of this study.
- It is critical to understand the appropriate estimation approach for the ULL distribution and which PSP provides more information about the unknown parameters.
- Obtaining the traditional and Bayesian estimations of the unknown parameters. Employing the asymptotic properties (APs) of the maximum likelihood estimates (MLEs), the traditional maximum likelihood (ML) approach is taken into consideration in order to derive the approximate confidence intervals (ACIs) in addition to the MLEs. The squared error loss function with the Markov chain Monte Carlo (MCMC) method was then used to obtain the Bayesian estimates. Additionally, the highest posterior density (HPD) ranges are calculated.
- Examining the effectiveness of the various point and interval estimations, it is worth mentioning that assessing the different estimations theoretically is more complex. For this reason, we employ simulations to accomplish this goal. Furthermore, we prove the validity of the ULL model and the suitability of the suggested techniques through the examination of two environmental and engineering actual data sets.
- Researching the issue of choosing the best PSP for the ULL model when IT2-APC data are available. This is conducted using four precision standards. By analyzing the two given genuine data sets, these standards are numerically compared.
2. Likelihood Methodology
2.1. Point Estimation
2.2. Interval Estimation of and
2.3. Interval Estimation of RF and HRF
3. Bayesian Methodology
3.1. Prior and Posterior Distributions
3.2. MCMC, Bayes Estimates and HPD Intervals
- Step 1.
- Set .
- Step 2.
- Put .
- Step 3.
- Use NPD and the M-H steps to simulate from (14).
- Step 4.
- Based on NPD and the M-H steps, generate from (15).
- Step 5.
- Use to estimate pute the RF and HRF as and .
- Step 6.
- Put .
- Step 7.
- Redo steps 3 to 6 and M replications to obtain
4. Numerical Evaluations
4.1. Simulation Scenarios
- Step 1.
- Fix the actual values of and .
- Step 2.
- Obtain a T2-PC sample as:
- a.
- Simulate an uniform sample denoted as ().
- b.
- Set .
- c.
- Set for .
- d.
- Obtain a T2-PC sample from as .
- Step 3.
- Find at , and ignore .
- Step 4.
- Find the first order statistics (say ) from a truncated distribution with sample size .
- Step 5.
- Obtain an IT2-APC sample case as follows:
- a.
- Case-1: If ; stop the test at .
- b.
- Case-2: If ; stop the test at .
- c.
- Case-3: If ; stop the test at .
4.2. Simulation Results
- The most significant finding is that the provided , , , or estimates are accurate.
- As n(or m) grows, all estimates of , , , or behave better. When decreases, a similar conclusion is offered.
- As for increase, all offered estimates of , , , or perform satisfactorily.
- Due to the additional information we already have about and , the Bayes estimates of all parameters are more accurate than other estimates, as expected. The same thing is noticed when comparing the HPD credible intervals with the ACIs.
- By changing the hyperparameters from Pr.A to Pr.B, we can observe the same conclusion that the Bayes point estimates and HPD credible intervals outperform those based on the ML method.
- Because the variance of Pr.B is smaller than the variance of Pr.A, all the Bayes estimations based on Pr.B are more accurate than others.
- Comparing the proposed schemes L, M, R, D, and U, it is observed that all results of , , , or behave superiorly based on censoring-U ‘uniformly’ (next, censoring-D ‘doubly’) than others.
- So, in order to obtain accurate results for any parameter of life, the practitioner doing the experiment needs to make the experiment last for as long as possible if and only if the experiment cost is enough.
- In summary, when dealing with data gathered using an IT2-APC process, it is recommended to use the Bayes’ framework with M-H sampling to estimate the ULL parameters ( and ) or reliability features ( and ).
5. Real-Life Applications
5.1. Environmental Data Analysis
- (1)
- unit-Birnbaum-Saunders (UBS) by Mazucheli et al. [26];
- (2)
- unit-Gompertz (UGom) by Mazucheli et al. [27];
- (3)
- unit-Weibull (UW) by Mazucheli et al. [28];
- (4)
- unit-gamma (UG) by Mazucheli et al. [29];
- (5)
- Topp-Leone (TL) by Topp and Leone [30];
- (6)
- Kumaraswamy (Kum) by Mitnik and Baek [31];
- (7)
- Beta by Gupta and Nadarajah [32].
- (1)
- Estimated log-likelihood (say ), where ;
- (2)
- Akaike information (), where ;
- (3)
- Bayesian information (), where ;
- (4)
- Consistent Akaike information (), where ;
- (5)
- Hannan-Quinn information (), where ;
- (6)
- The Kolmogorov–Smirnov () statistic is defined as
- (7)
- Anderson–Darling () statistic is defined as
- (8)
- Cramér-von Mises () statistic is defined as
5.2. Engineering Data Analysis
6. Optimum Progressive Scenario
6.1. Optimum Progressive Using Environmental Data
- Via Crit[i] for ; the R-censoring (in Sample C) is the optimum than others.
- Via Crit[2]; the U-censoring (in Sample E) is optimal one vs. others.
6.2. Optimum Progressive Using Engineering Data
- Via Crit[1]; the L-censoring (in Sample A) is the optimal one vs. others.
- Via Crit[2]; the U-censoring (in Sample E) is the optimal one vs. others.
- Via Crit[i] for ; the R-censoring (in Sample C) is the optimal one vs. others.
7. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balakrishnan, N.; Aggarwala, R. Progressive Censoring: Theory, Methods, and Applications; Springer Science & Business Media: Berlin, Germany, 2000. [Google Scholar]
- Ng, H.K.T.; Kundu, D.; Chan, P.S. Statistical analysis of exponential lifetimes under an adaptive Type-II progressive censoring scheme. Nav. Res. Logist. 2009, 56, 687–698. [Google Scholar] [CrossRef]
- Kundu, D.; Joarder, A. Analysis of Type-II progressively hybrid censored data. Comput. Stat. Data Anal. 2006, 50, 2509–2528. [Google Scholar] [CrossRef]
- Sobhi, M.M.A.; Soliman, A.A. Estimation for the exponentiated Weibull model with adaptive Type-II progressive censored schemes. Appl. Math. Model. 2016, 40, 1180–1192. [Google Scholar] [CrossRef]
- Chen, S.; Gui, W. Statistical analysis of a lifetime distribution with a bathtub-shaped failure rate function under adaptive progressive type-II censoring. Mathematics 2020, 8, 670. [Google Scholar] [CrossRef]
- Panahi, H.; Moradi, N. Estimation of the inverted exponentiated Rayleigh distribution based on adaptive Type II progressive hybrid censored sample. J. Comput. Appl. Math. 2020, 364, 112345. [Google Scholar] [CrossRef]
- Kohansal, A.; Shoaee, S. Bayesian and classical estimation of reliability in a multicomponent stress-strength model under adaptive hybrid progressive censored data. Stat. Pap. 2021, 62, 309–359. [Google Scholar] [CrossRef]
- Du, Y.; Gui, W. Statistical inference of adaptive type II progressive hybrid censored data with dependent competing risks under bivariate exponential distribution. J. Appl. Stat. 2022, 49, 3120–3140. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, R.; Elshahhat, A.; Rezk, H.; Nassar, M. Inferences for Alpha Power Exponential Distribution Using Adaptive Progressively Type-II Hybrid Censored Data with Applications. Symmetry 2022, 14, 651. [Google Scholar] [CrossRef]
- Yan, W.; Li, P.; Yu, Y. Statistical inference for the reliability of Burr-XII distribution under improved adaptive Type-II progressive censoring. Appl. Math. Model. 2021, 95, 38–52. [Google Scholar] [CrossRef]
- Nassar, M.; Elshahhat, A. Estimation procedures and optimal censoring schemes for an improved adaptive progressively type-II censored Weibull distribution. J. Appl. Stat. 2023, 1–25. [Google Scholar] [CrossRef]
- Elshahhat, A.; Nassar, M. Inference of improved adaptive progressively censored competing risks data for Weibull lifetime models. Stat. Pap. 2023, 1–34. [Google Scholar] [CrossRef]
- Elbatal, I.; Nassar, M.; Ben Ghorbal, A.; Diab, L.S.G.; Elshahhat, A. Reliability Analysis and Its Applications for a Newly Improved Type-II Adaptive Progressive Alpha Power Exponential Censored Sample. Symmetry 2023, 15, 2137. [Google Scholar] [CrossRef]
- Alam, F.M.A.; Nassar, M. On Entropy Estimation of Inverse Weibull Distribution under Improved Adaptive Progressively Type-II Censoring with Applications. Axioms 2023, 12, 751. [Google Scholar] [CrossRef]
- Dutta, S.; Kayal, S. Inference of a competing risks model with partially observed failure causes under improved adaptive type-II progressive censoring. Proceedings of the Institution of Mechanical Engineers. Part J. Risk Reliab. 2023, 237, 765–780. [Google Scholar]
- Korkmaz, M.Ç.; Korkmaz, Z.S. The unit log–log distribution: A new unit distribution with alternative quantile regression modeling and educational measurements applications. J. Appl. Stat. 2023, 50, 889–908. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, M.Ç.; Karakaya, K.; Akdoğan, Y.; Yener, Ü.N.A.L. Parameters Estimation for the Unit log-log Distribution. Cumhur. Sci. J. 2023, 44, 224–228. [Google Scholar] [CrossRef]
- Greene, W.H. Econometric Analysis, 4th ed.; Prentice-Hall: NewYork, NY, USA, 2000. [Google Scholar]
- Alevizakos, V.; Koukouvinos, C. An asymptotic confidence interval for the process capability index Cpm. Commun.-Stat.-Theory Methods 2019, 48, 5138–5144. [Google Scholar] [CrossRef]
- Nassar, M.; Alotaibi, R.; Elshahhat, A. Reliability Estimation of XLindley Constant-Stress Partially Accelerated Life Tests using Progressively Censored Samples. Mathematics 2023, 11, 1331. [Google Scholar] [CrossRef]
- Noii, N.; Khodadadian, A.; Ulloa, J.; Aldakheel, F.; Wick, T.; Francois, S.; Wriggers, P. Bayesian inversion with open-source codes for various one-dimensional model problems in computational mechanics. Arch. Comput. Methods Eng. 2022, 29, 4285–4318. [Google Scholar] [CrossRef]
- Henningsen, A.; Toomet, O. maxLik: A package for maximum likelihood estimation in R. Comput. Stat. 2011, 26, 443–458. [Google Scholar] [CrossRef]
- Plummer, M.; Best, N.; Cowles, K.; Vines, K. CODA: Convergence diagnosis and output analysis for MCMC. R News 2006, 6, 7–11. [Google Scholar]
- Dumonceaux, R.; Antle, C.E. Discrimination between the log-normal and the Weibull distributions. Technometrics 1973, 15, 923–926. [Google Scholar] [CrossRef]
- Dey, S.; Menezes, A.F.; Mazucheli, J. Comparison of estimation methods for unit-gamma distribution. J. Data Sci. 2019, 17, 768–801. [Google Scholar] [CrossRef]
- Mazucheli, J.; Menezes, A.F.; Dey, S. The unit-Birnbaum-Saunders distribution with applications. Chil. J. Stat. 2018, 9, 47–57. [Google Scholar]
- Mazucheli, J.; Menezes, A.F.; Dey, S. Unit-Gompertz distribution with applications. Statistica 2019, 79, 25–43. [Google Scholar]
- Mazucheli, J.; Menezes, A.F.B.; Fern, L.B.; De Oliveira, R.P.; Ghitany, M.E. The unit-Weibull distribution as an alternative to the Kumaraswamy distribution for the modeling of quantiles conditional on covariates. J. Appl. Stat. 2020, 47, 954–974. [Google Scholar] [CrossRef] [PubMed]
- Mazucheli, J.; Menezes, A.F.B.; Dey, S. Improved maximum-likelihood estimators for the parameters of the unit-gamma distribution. Commun.-Stat.-Theory Methods 2018, 47, 3767–3778. [Google Scholar] [CrossRef]
- Topp, C.W.; Leone, F.C. A family of J-shaped frequency functions. J. Am. Stat. Assoc. 1955, 50, 209–219. [Google Scholar] [CrossRef]
- Mitnik, P.A.; Baek, S. The Kumaraswamy distribution: Median-dispersion re-parameterizations for regression modeling and simulation-based estimation. Stat. Pap. 2013, 54, 177–192. [Google Scholar] [CrossRef]
- Gupta, A.K.; Nadarajah, S. Handbook of Beta Distribution and Its Applications; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Stephens, M.A. Tests based on EDF statistics. In Goodness-of-Fit Techniques; D’Agostino, R.B., Stephens, M.A., Eds.; Marcel Dekker: New York, NY, USA, 1986. [Google Scholar]
- Murthy, D.N.P.; Xie, M.; Jiang, R. Weibull Models; Wiley Series in Probability and Statistics; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Ng, H.K.T.; Chan, C.S.; Balakrishnan, N. Optimal progressive censoring plans for the Weibull distribution. Technometrics 2004, 46, 470–481. [Google Scholar] [CrossRef]
- Pradhan, B.; Kundu, D. On progressively censored generalized exponential distribution. Test 2009, 18, 497–515. [Google Scholar] [CrossRef]
Case | ||||
---|---|---|---|---|
1 | 0 | m | m | 0 |
2 | m | |||
3 |
Test | Censoring | S | |
---|---|---|---|
40[50%] | 1 | L | |
2 | M | ||
3 | R | ||
4 | D | ||
5 | U | ||
40[75%] | 6 | L | |
7 | M | ||
8 | R | ||
9 | D | ||
10 | U | ||
80[50%] | 1 | L | |
2 | M | ||
3 | R | ||
4 | D | ||
5 | U | ||
80[75%] | 6 | L | |
7 | M | ||
8 | R | ||
9 | D | ||
10 | U |
Par. | Test | MLE | MCMC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Prior→ | Pr.A | Pr.B | |||||||||
(0.2, 0.3) | 1 | 0.790 | 0.215 | 0.197 | 0.587 | 0.184 | 0.174 | 0.772 | 0.141 | 0.142 | |
2 | 0.803 | 0.192 | 0.187 | 0.656 | 0.160 | 0.166 | 0.815 | 0.135 | 0.132 | ||
3 | 0.825 | 0.175 | 0.175 | 0.836 | 0.157 | 0.146 | 0.690 | 0.122 | 0.124 | ||
4 | 0.762 | 0.163 | 0.157 | 0.638 | 0.146 | 0.139 | 0.773 | 0.114 | 0.090 | ||
5 | 0.772 | 0.153 | 0.147 | 0.749 | 0.135 | 0.127 | 0.784 | 0.109 | 0.085 | ||
(0.4, 0.6) | 1 | 0.777 | 0.224 | 0.185 | 0.749 | 0.180 | 0.165 | 0.859 | 0.125 | 0.112 | |
2 | 0.787 | 0.207 | 0.174 | 0.823 | 0.154 | 0.151 | 0.839 | 0.117 | 0.108 | ||
3 | 0.820 | 0.187 | 0.163 | 0.723 | 0.146 | 0.142 | 0.774 | 0.101 | 0.082 | ||
4 | 0.945 | 0.154 | 0.147 | 0.892 | 0.137 | 0.126 | 0.751 | 0.092 | 0.076 | ||
5 | 0.780 | 0.145 | 0.131 | 0.840 | 0.132 | 0.121 | 0.807 | 0.082 | 0.072 | ||
(0.2, 0.3) | 1 | 1.496 | 0.214 | 0.192 | 1.736 | 0.153 | 0.164 | 1.472 | 0.136 | 0.112 | |
2 | 1.487 | 0.193 | 0.186 | 1.798 | 0.141 | 0.152 | 1.559 | 0.130 | 0.101 | ||
3 | 1.472 | 0.174 | 0.174 | 1.444 | 0.135 | 0.143 | 1.564 | 0.124 | 0.096 | ||
4 | 1.525 | 0.164 | 0.170 | 1.626 | 0.129 | 0.140 | 1.415 | 0.112 | 0.085 | ||
5 | 1.509 | 0.157 | 0.167 | 1.574 | 0.124 | 0.135 | 1.573 | 0.107 | 0.078 | ||
(0.4, 0.6) | 1 | 1.508 | 0.204 | 0.188 | 1.584 | 0.146 | 0.158 | 1.447 | 0.100 | 0.093 | |
2 | 1.498 | 0.187 | 0.181 | 1.478 | 0.135 | 0.148 | 1.461 | 0.098 | 0.086 | ||
3 | 1.459 | 0.169 | 0.164 | 1.596 | 0.129 | 0.138 | 1.516 | 0.093 | 0.078 | ||
4 | 1.381 | 0.157 | 0.155 | 1.304 | 0.118 | 0.124 | 1.465 | 0.084 | 0.077 | ||
5 | 1.506 | 0.151 | 0.142 | 1.389 | 0.113 | 0.116 | 1.467 | 0.078 | 0.068 | ||
(0.2, 0.3) | 1 | 0.484 | 0.152 | 0.128 | 0.603 | 0.115 | 0.113 | 0.475 | 0.074 | 0.087 | |
2 | 0.481 | 0.148 | 0.121 | 0.648 | 0.109 | 0.110 | 0.544 | 0.072 | 0.081 | ||
3 | 0.463 | 0.133 | 0.114 | 0.452 | 0.096 | 0.092 | 0.527 | 0.068 | 0.079 | ||
4 | 0.503 | 0.124 | 0.098 | 0.547 | 0.081 | 0.085 | 0.430 | 0.066 | 0.074 | ||
5 | 0.494 | 0.115 | 0.095 | 0.539 | 0.077 | 0.082 | 0.549 | 0.061 | 0.070 | ||
(0.4, 0.6) | 1 | 0.492 | 0.147 | 0.124 | 0.537 | 0.113 | 0.103 | 0.467 | 0.070 | 0.084 | |
2 | 0.489 | 0.136 | 0.119 | 0.481 | 0.083 | 0.096 | 0.476 | 0.069 | 0.075 | ||
3 | 0.466 | 0.127 | 0.108 | 0.547 | 0.080 | 0.087 | 0.508 | 0.066 | 0.073 | ||
4 | 0.401 | 0.119 | 0.088 | 0.351 | 0.077 | 0.081 | 0.465 | 0.063 | 0.071 | ||
5 | 0.490 | 0.109 | 0.085 | 0.425 | 0.074 | 0.076 | 0.475 | 0.061 | 0.067 | ||
(0.2, 0.3) | 1 | 1.958 | 0.178 | 0.182 | 1.826 | 0.170 | 0.162 | 1.955 | 0.135 | 0.096 | |
2 | 1.973 | 0.170 | 0.173 | 1.958 | 0.166 | 0.157 | 2.108 | 0.128 | 0.088 | ||
3 | 1.939 | 0.166 | 0.165 | 1.964 | 0.162 | 0.154 | 1.918 | 0.124 | 0.084 | ||
4 | 1.955 | 0.162 | 0.160 | 1.841 | 0.157 | 0.149 | 1.884 | 0.115 | 0.079 | ||
5 | 1.960 | 0.156 | 0.152 | 2.001 | 0.147 | 0.141 | 2.073 | 0.107 | 0.076 | ||
(0.4, 0.6) | 1 | 1.960 | 0.153 | 0.172 | 1.972 | 0.133 | 0.143 | 2.048 | 0.124 | 0.083 | |
2 | 1.971 | 0.147 | 0.153 | 2.012 | 0.125 | 0.132 | 2.039 | 0.118 | 0.080 | ||
3 | 1.980 | 0.141 | 0.142 | 1.971 | 0.119 | 0.126 | 2.006 | 0.109 | 0.079 | ||
4 | 1.947 | 0.135 | 0.134 | 1.929 | 0.110 | 0.119 | 1.912 | 0.104 | 0.077 | ||
5 | 1.956 | 0.129 | 0.122 | 2.045 | 0.101 | 0.108 | 1.998 | 0.097 | 0.074 |
Par. | Test | ACI | HPD | |||||
---|---|---|---|---|---|---|---|---|
Prior→ | Pr.A | Pr.B | ||||||
(0.2, 0.3) | 1 | 0.566 | 0.942 | 0.507 | 0.950 | 0.365 | 0.955 | |
2 | 0.558 | 0.945 | 0.482 | 0.954 | 0.348 | 0.958 | ||
3 | 0.530 | 0.949 | 0.456 | 0.958 | 0.334 | 0.961 | ||
4 | 0.521 | 0.951 | 0.442 | 0.960 | 0.323 | 0.963 | ||
5 | 0.512 | 0.952 | 0.424 | 0.961 | 0.313 | 0.964 | ||
(0.4, 0.6) | 1 | 0.549 | 0.947 | 0.487 | 0.955 | 0.356 | 0.959 | |
2 | 0.533 | 0.950 | 0.467 | 0.958 | 0.339 | 0.962 | ||
3 | 0.484 | 0.952 | 0.445 | 0.961 | 0.328 | 0.964 | ||
4 | 0.464 | 0.955 | 0.436 | 0.963 | 0.316 | 0.966 | ||
5 | 0.459 | 0.957 | 0.427 | 0.965 | 0.294 | 0.968 | ||
(0.2, 0.3) | 1 | 0.554 | 0.937 | 0.519 | 0.940 | 0.358 | 0.949 | |
2 | 0.538 | 0.939 | 0.507 | 0.942 | 0.325 | 0.951 | ||
3 | 0.522 | 0.941 | 0.490 | 0.944 | 0.317 | 0.953 | ||
4 | 0.515 | 0.942 | 0.476 | 0.945 | 0.310 | 0.954 | ||
5 | 0.504 | 0.943 | 0.464 | 0.946 | 0.284 | 0.956 | ||
(0.4, 0.6) | 1 | 0.547 | 0.941 | 0.494 | 0.944 | 0.352 | 0.952 | |
2 | 0.532 | 0.943 | 0.478 | 0.946 | 0.323 | 0.955 | ||
3 | 0.518 | 0.944 | 0.469 | 0.947 | 0.315 | 0.956 | ||
4 | 0.507 | 0.945 | 0.454 | 0.948 | 0.304 | 0.957 | ||
5 | 0.490 | 0.947 | 0.439 | 0.951 | 0.288 | 0.960 | ||
(0.2, 0.3) | 1 | 0.368 | 0.953 | 0.338 | 0.957 | 0.305 | 0.962 | |
2 | 0.336 | 0.956 | 0.313 | 0.960 | 0.291 | 0.964 | ||
3 | 0.313 | 0.958 | 0.282 | 0.962 | 0.272 | 0.965 | ||
4 | 0.294 | 0.960 | 0.272 | 0.964 | 0.257 | 0.967 | ||
5 | 0.284 | 0.961 | 0.266 | 0.965 | 0.248 | 0.969 | ||
(0.4, 0.6) | 1 | 0.319 | 0.956 | 0.306 | 0.960 | 0.297 | 0.965 | |
2 | 0.289 | 0.959 | 0.283 | 0.963 | 0.276 | 0.968 | ||
3 | 0.278 | 0.961 | 0.270 | 0.965 | 0.266 | 0.969 | ||
4 | 0.274 | 0.962 | 0.264 | 0.966 | 0.254 | 0.971 | ||
5 | 0.266 | 0.963 | 0.255 | 0.967 | 0.243 | 0.973 | ||
(0.2,0.3) | 1 | 0.465 | 0.946 | 0.416 | 0.950 | 0.369 | 0.954 | |
2 | 0.434 | 0.947 | 0.407 | 0.951 | 0.356 | 0.955 | ||
3 | 0.413 | 0.949 | 0.388 | 0.953 | 0.338 | 0.957 | ||
4 | 0.399 | 0.951 | 0.365 | 0.955 | 0.324 | 0.959 | ||
5 | 0.385 | 0.953 | 0.359 | 0.956 | 0.316 | 0.960 | ||
(0.4,0.6) | 1 | 0.436 | 0.948 | 0.399 | 0.953 | 0.357 | 0.956 | |
2 | 0.427 | 0.949 | 0.385 | 0.954 | 0.349 | 0.957 | ||
3 | 0.404 | 0.951 | 0.367 | 0.956 | 0.326 | 0.960 | ||
4 | 0.384 | 0.953 | 0.356 | 0.958 | 0.318 | 0.962 | ||
5 | 0.376 | 0.955 | 0.342 | 0.959 | 0.311 | 0.963 |
0.654 | 0.613 | 0.315 | 0.449 | 0.297 | 0.402 | 0.379 | 0.423 | 0.379 | 0.324 |
0.269 | 0.740 | 0.418 | 0.412 | 0.494 | 0.416 | 0.338 | 0.392 | 0.484 | 0.265 |
Model | MLE(St.Er) | (p-Value) | (p-Value) | (p-Value) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
ULL | 2.9191(0.5538) | 1.9338(0.2183) | −16.581 | −29.163 | −27.171 | −28.457 | −28.774 | 0.312(0.449) | 0.054(0.450) | 0.136(0.850) |
UBS | 0.3782(0.0598) | 0.8373(0.0695) | −12.681 | −21.362 | −19.371 | −20.656 | −20.973 | 1.087(0.008) | 0.184(0.009) | 0.229(0.247) |
UGom | 0.0150(0.0132) | 4.1252(0.7504) | −16.362 | −28.724 | −26.732 | −28.018 | −28.335 | 0.314(0.448) | 0.056(0.424) | 0.146(0.786) |
UW | 1.0287(0.2393) | 3.8928(0.7087) | −16.081 | −28.163 | −26.171 | −27.457 | −27.774 | 0.358(0.442) | 0.058(0.401) | 0.138(0.848) |
UG | 8.7372(2.7118) | 9.7335(3.1095) | −14.191 | −24.383 | −22.391 | −23.677 | −23.994 | 0.531(0.174) | 0.085(0.180) | 0.150(0.761) |
TL | 2.2450(0.5020) | − | −7.3682 | −12.736 | −11.741 | −12.514 | −12.542 | 0.743(0.053) | 0.122(0.057) | 0.335(0.022) |
Kum | 3.3634(0.6033) | 11.788(5.3583) | −12.869 | −21.737 | −19.746 | −21.031 | −21.348 | 1.014(0.011) | 0.170(0.013) | 0.211(0.336) |
Beta | 6.7594(2.0954) | 9.1141(2.8525) | −14.065 | −24.130 | −22.139 | −23.424 | −23.742 | 0.785(0.042) | 0.129(0.045) | 0.199(0.408) |
Sample | S | Data | ||||
---|---|---|---|---|---|---|
A | 0.28(1) | 0.38(6) | 12 | 0.38 | 0.265, 0.297, 0.315, 0.324, 0.338, 0.379 | |
B | 0.35(5) | 0.40(7) | 9 | 0.40 | 0.265, 0.269, 0.297, 0.315, 0.324, 0.379, 0.392 | |
C | 0.38(7) | 0.41(9) | 7 | 0.41 | 0.265, 0.269, 0.297, 0.315, 0.324, 0.338, 0.379, 0.392, 0.402 | |
D | 0.30(2) | 0.42(8) | 8 | 0.42 | 0.265, 0.297, 0.315, 0.324, 0.338, 0.379, 0.402, 0.412 | |
E | 0.40(6) | 0.45(9) | 5 | 0.45 | 0.265, 0.297, 0.315, 0.338, 0.379, 0.392, 0.402, 0.418, 0.449 |
Sample | Par. | MLE | Bayes | 95% ACI | 95% HPD | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Est. | St.Er | Est. | St.Er | Lower | Upper | IW | Lower | Upper | IW | ||
A | 2.4579 | 0.7964 | 2.3583 | 0.1394 | 0.8969 | 4.0189 | 3.1220 | 2.1549 | 2.5446 | 0.3896 | |
2.1845 | 0.3376 | 2.0836 | 0.1411 | 1.5227 | 2.8462 | 1.3235 | 1.9019 | 2.2834 | 0.3815 | ||
0.7564 | 0.0896 | 0.7195 | 0.0502 | 0.5808 | 0.9320 | 0.3511 | 0.6516 | 0.7817 | 0.1301 | ||
4.5760 | 1.9959 | 4.6472 | 0.3034 | 0.6640 | 8.4879 | 7.8239 | 4.0739 | 5.2101 | 1.1362 | ||
B | 2.3422 | 0.7217 | 2.2417 | 0.1394 | 0.9276 | 3.7568 | 2.8292 | 2.0564 | 2.4362 | 0.3798 | |
2.1207 | 0.3123 | 2.0148 | 0.1457 | 1.5087 | 2.7327 | 1.2240 | 1.8208 | 2.2102 | 0.3895 | ||
0.7334 | 0.0900 | 0.6918 | 0.0560 | 0.5569 | 0.9099 | 0.3530 | 0.6186 | 0.7631 | 0.1445 | ||
4.5327 | 1.8593 | 4.5880 | 0.2904 | 0.8887 | 8.1768 | 7.2882 | 4.0626 | 5.1461 | 1.0834 | ||
C | 2.6412 | 0.7105 | 2.5412 | 0.1392 | 1.2487 | 4.0338 | 2.7850 | 2.3555 | 2.7355 | 0.3800 | |
2.0153 | 0.2721 | 1.9090 | 0.1459 | 1.4820 | 2.5485 | 1.0665 | 1.7154 | 2.1047 | 0.3893 | ||
0.7043 | 0.0889 | 0.6574 | 0.0632 | 0.5301 | 0.8785 | 0.3484 | 0.5749 | 0.7381 | 0.1632 | ||
5.3347 | 1.8934 | 5.4167 | 0.3249 | 1.6238 | 9.0456 | 7.4218 | 4.8409 | 6.0460 | 1.2051 | ||
D | 2.6103 | 0.7286 | 2.5099 | 0.1395 | 1.1822 | 4.0384 | 2.8561 | 2.3246 | 2.7047 | 0.3801 | |
2.1247 | 0.3060 | 2.0190 | 0.1454 | 1.5248 | 2.7245 | 1.1997 | 1.8248 | 2.2145 | 0.3898 | ||
0.7415 | 0.0881 | 0.7002 | 0.0557 | 0.5688 | 0.9141 | 0.3453 | 0.6270 | 0.7711 | 0.1441 | ||
4.9861 | 1.8918 | 5.0804 | 0.3223 | 1.2781 | 8.6940 | 7.4159 | 4.5321 | 5.7340 | 1.2019 | ||
E | 2.5401 | 0.6582 | 2.4398 | 0.1393 | 1.2500 | 3.8303 | 2.5803 | 2.2546 | 2.6346 | 0.3800 | |
2.2081 | 0.3109 | 2.1022 | 0.1456 | 1.5987 | 2.8174 | 1.2187 | 1.9081 | 2.2979 | 0.3898 | ||
0.7655 | 0.0823 | 0.7278 | 0.0507 | 0.6043 | 0.9268 | 0.3225 | 0.6613 | 0.7920 | 0.1307 | ||
4.6503 | 1.6834 | 4.7470 | 0.3131 | 1.3510 | 7.9497 | 6.5987 | 4.2212 | 5.3891 | 1.1679 |
0.067 | 0.068 | 0.076 | 0.081 | 0.084 | 0.085 | 0.085 | 0.086 | 0.089 | 0.098 |
0.098 | 0.114 | 0.114 | 0.115 | 0.121 | 0.125 | 0.131 | 0.149 | 0.160 | 0.485 |
Model | MLE(St.Er) | (p-Value) | (p-Value) | (p-Value) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
ULL | 6.0225(0.8731) | 1.0038(0.0029) | −37.808 | −71.617 | −69.625 | −70.911 | −71.228 | 0.540(0.167) | 0.067(0.303) | 0.124(0.919) |
UBS | 0.2841(0.0449) | 2.1427(0.1347) | −26.103 | −48.205 | −46.214 | −47.499 | −47.817 | 2.787(0.001) | 0.452(0.001) | 0.276(0.094) |
UGom | 0.0022(0.0005) | 2.6088(0.1255) | −36.867 | −69.734 | −67.742 | −69.028 | −69.345 | 0.544(0.163) | 0.070(0.278) | 0.211(0.335) |
UW | 0.0031(0.0013) | 6.7294(0.4996) | −35.819 | −67.639 | −65.647 | −66.933 | −67.250 | 0.866(0.026) | 0.112(0.078) | 0.160(0.683) |
UG | 17.648(5.5289) | 7.9145(2.5150) | −29.272 | −54.544 | −52.553 | −53.839 | −54.156 | 1.647(0.008) | 0.238(0.009) | 0.215(0.314) |
TL | 0.6248(0.1397) | − | −13.743 | −25.486 | −24.490 | −25.264 | −25.291 | 2.249(0.005) | 0.348(0.002) | 0.484(0.005) |
Kum | 1.5865(0.2442) | 21.809(10.172) | −25.648 | −47.297 | −45.305 | −46.591 | −46.908 | 2.764(0.001) | 0.448(0.001) | 0.263(0.126) |
Beta | 3.1129(0.9369) | 21.826(7.0425) | −27.881 | −51.763 | −49.771 | −51.057 | −51.374 | 2.415(0.004) | 0.379(0.002) | 0.254(0.152) |
Sample | S | Data | ||||
---|---|---|---|---|---|---|
A | 0.069(1) | 0.087(6) | 12 | 0.087 | 0.067, 0.076, 0.081, 0.084, 0.085, 0.085 | |
B | 0.085(5) | 0.090(7) | 9 | 0.090 | 0.067, 0.068, 0.076, 0.081, 0.084, 0.086, 0.089 | |
C | 0.087(7) | 0.099(9) | 7 | 0.099 | 0.067, 0.068, 0.076, 0.081, 0.084, 0.085, 0.085, 0.089, 0.098 | |
D | 0.070(1) | 0.098(9) | 10 | 0.098 | 0.067, 0.076, 0.081, 0.084, 0.085, 0.086, 0.089, 0.098 | |
E | 0.118(8) | 0.122(9) | 3 | 0.122 | 0.067, 0.081, 0.084, 0.086, 0.089, 0.098, 0.114, 0.115, 0.121 |
Sample | Par. | MLE | Bayes | ACI | HPD | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Est. | St.Er | Est. | St.Er | Lower | Upper | IW | Lower | Upper | IW | ||
A | 7.7872 | 3.9505 | 0.0444 | 15.530 | 15.486 | 7.7872 | 0.0001 | 7.7870 | 7.7874 | 0.0004 | |
1.0007 | 0.0028 | 0.9953 | 1.0062 | 0.0110 | 1.0007 | 0.0001 | 1.0005 | 1.0009 | 0.0004 | ||
0.4685 | 0.2138 | 0.0495 | 0.8876 | 0.8381 | 0.4666 | 0.0571 | 0.3545 | 0.5770 | 0.2225 | ||
30.672 | 18.793 | 0.0000 | 67.506 | 67.506 | 30.617 | 0.8980 | 28.841 | 32.285 | 3.4442 | ||
B | 7.0692 | 2.4827 | 2.2031 | 11.935 | 9.7322 | 7.0692 | 0.0001 | 7.0690 | 7.0694 | 0.0004 | |
1.0014 | 0.0033 | 0.9950 | 1.0078 | 0.0128 | 1.0014 | 0.0001 | 1.0012 | 1.0016 | 0.0004 | ||
0.4744 | 0.1467 | 0.1869 | 0.7620 | 0.5751 | 0.4738 | 0.0315 | 0.4122 | 0.5355 | 0.1233 | ||
27.759 | 11.727 | 4.7745 | 50.743 | 45.969 | 27.744 | 0.4575 | 26.840 | 28.620 | 1.7800 | ||
C | 7.0653 | 2.1581 | 2.8354 | 11.295 | 8.4597 | 7.0653 | 0.0001 | 7.0651 | 7.0654 | 0.0004 | |
1.0014 | 0.0028 | 0.9958 | 1.0069 | 0.0111 | 1.0014 | 0.0001 | 1.0012 | 1.0016 | 0.0004 | ||
0.4725 | 0.1279 | 0.2217 | 0.7233 | 0.5015 | 0.4719 | 0.0315 | 0.4104 | 0.5334 | 0.1230 | ||
27.772 | 10.155 | 7.8678 | 47.675 | 39.807 | 27.756 | 0.4535 | 26.861 | 28.625 | 1.7643 | ||
D | 6.7975 | 2.0105 | 2.8570 | 10.738 | 7.8811 | 6.7975 | 0.0001 | 6.7974 | 6.7977 | 0.0004 | |
1.0019 | 0.0037 | 0.9947 | 1.0092 | 0.0144 | 1.0019 | 0.0001 | 1.0017 | 1.0021 | 0.0004 | ||
0.5266 | 0.1234 | 0.2847 | 0.7685 | 0.4838 | 0.5261 | 0.0241 | 0.4791 | 0.5733 | 0.0942 | ||
25.900 | 9.4594 | 7.3602 | 44.440 | 37.080 | 25.892 | 0.3983 | 25.112 | 26.667 | 1.5548 | ||
E | 5.4851 | 1.4151 | 2.7116 | 8.2587 | 5.5471 | 5.4851 | 0.0001 | 5.4849 | 5.4853 | 0.0004 | |
1.0073 | 0.0097 | 0.9882 | 1.0264 | 0.0382 | 1.0073 | 0.0001 | 1.0071 | 1.0075 | 0.0004 | ||
0.6403 | 0.1023 | 0.4397 | 0.8409 | 0.4011 | 0.6402 | 0.0070 | 0.6265 | 0.6541 | 0.0276 | ||
19.063 | 6.4921 | 6.3385 | 31.787 | 25.448 | 19.063 | 0.1364 | 18.795 | 19.329 | 0.5340 |
Criterion | Subject |
---|---|
Crit[1] | |
Crit[2] | |
Crit[3] | |
Crit[4] |
Sample | Crit[1] | Crit[2] | Crit[3] | Crit[4] | ||
---|---|---|---|---|---|---|
0.3 | 0.6 | 0.9 | ||||
A | 20.062 | 0.7483 | 0.03730 | 0.00085 | 0.00292 | 0.00870 |
B | 24.673 | 0.6184 | 0.02506 | 0.00085 | 0.00288 | 0.00836 |
C | 30.878 | 0.5788 | 0.01874 | 0.00057 | 0.00180 | 0.00549 |
D | 23.073 | 0.6246 | 0.02707 | 0.00066 | 0.00205 | 0.00620 |
E | 20.706 | 0.5299 | 0.02559 | 0.00067 | 0.00193 | 0.00572 |
Sample | Crit[1] | Crit[2] | Crit[3] | Crit[4] | ||
---|---|---|---|---|---|---|
0.3 | 0.6 | 0.9 | ||||
A | 92,435,021.523 | 15.607 | 1.688 | 5.729 | 3.189 | 2.284 |
B | 28,664,462.023 | 6.1640 | 2.150 | 3.654 | 1.838 | 1.348 |
C | 28,897,096.810 | 4.6575 | 1.612 | 2.981 | 1.383 | 1.007 |
D | 13,740,904.859 | 4.0422 | 2.942 | 3.508 | 1.540 | 1.086 |
E | 974,049.19863 | 2.0026 | 2.056 | 5.371 | 2.193 | 1.503 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alotaibi, R.; Nassar, M.; Elshahhat, A. Estimation and Optimal Censoring Plan for a New Unit Log-Log Model via Improved Adaptive Progressively Censored Data. Axioms 2024, 13, 152. https://doi.org/10.3390/axioms13030152
Alotaibi R, Nassar M, Elshahhat A. Estimation and Optimal Censoring Plan for a New Unit Log-Log Model via Improved Adaptive Progressively Censored Data. Axioms. 2024; 13(3):152. https://doi.org/10.3390/axioms13030152
Chicago/Turabian StyleAlotaibi, Refah, Mazen Nassar, and Ahmed Elshahhat. 2024. "Estimation and Optimal Censoring Plan for a New Unit Log-Log Model via Improved Adaptive Progressively Censored Data" Axioms 13, no. 3: 152. https://doi.org/10.3390/axioms13030152
APA StyleAlotaibi, R., Nassar, M., & Elshahhat, A. (2024). Estimation and Optimal Censoring Plan for a New Unit Log-Log Model via Improved Adaptive Progressively Censored Data. Axioms, 13(3), 152. https://doi.org/10.3390/axioms13030152