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Abstract: To gather enough data from studies that are ongoing for an extended duration, a newly
improved adaptive Type-II progressive censoring technique has been offered to get around this
difficulty and extend several well-known multi-stage censoring plans. This work, which takes this
scheme into account, focuses on some conventional and Bayesian estimation missions for parameter
and reliability indicators, where the unit log-log model acts as the base distribution. The point and
interval estimations of the various parameters are looked at from a classical standpoint. In addition
to the conventional approach, the Bayesian methodology is examined to derive credible intervals
beside the Bayesian point by leveraging the squared error loss function and the Markov chain Monte
Carlo technique. Under varied settings, a simulation study is carried out to distinguish between
the standard and Bayesian estimates. To implement the proposed procedures, two actual data sets
are analyzed. Finally, multiple precision standards are considered to pick the optimal progressive
censoring scheme.

Keywords: unit log-log model; reliability estimation; classical estimation; bayesian estimation;
optimal censoring

MSC: 62F10; 62F15; 62N01; 62N02; 62N05

1. Introduction

In the modern world, product reliability is more crucial than ever. Customers today
have the benefit of expecting great quality and a long lifespan from each item they buy.
One strategy used by manufacturers to bring customers to their products in this very
challenging market is to offer lifetime guarantees. Product failure-time distributions are
a critical topic for producers to understand in order to develop a cost-effective assurance.
Reliability tests are conducted to obtain this information before the release of products
onto the market; see Balakrishnan and Aggarwala [1]. Because newly released products
have a long lifespan, it is usual practice to obtain information about their lifetime through
censored data. When an experimenter fails to record the failure times of every unit put
through a life test, whether on purpose or accidentally, censored sampling occurs. Literature
has a wide variety of censorship techniques. One of the most commonly used plans is
progressive Type-II censoring (T2-PC). The T2-PC scheme is one of the most widely utilised
strategies. This plan allows some still-living units to be removed during the experiment
at predetermined points. Adaptive progressive Type-II censoring (AT2-PC) is a more
comprehensive censorship scheme that was presented by Ng et al. [2]. If a predetermined
time is met, the experimenter can modify the removal units in this technique. This strategy
is specifically designed to address a few observed issues with the progressive Type-I hybrid
censoring method by Kundu and Joarder [3]. Numerous research took the AT2-PC plan
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into account for certain lifetime models. Sobhi and Soliman [4], Chen and Gui [5], Panahi
and Moradi [6], Kohansal and Shoaee [7], Du and Gui [8], and Alotaibi et al. [9] are some
examples. On the other hand, if the test units are very dependable, the testing period will
be unduly long, and the AT2-PC will not have been effective in ensuring a suitable overall
test duration. To solve this issue, Yan et al. [10] created a new censoring method referred to
as an improved adaptive progressive Type-II censoring (IT2-APC) mechanism.

The following is a thorough explanation of the IT2-APC sample: Assume two limits,
T1 < T2, a progressive censoring plan (PSP) S = (S1, . . . , Sm), and the number of observed
failures m < n are assigned before starting of the test, which includes n independent
and identical units at time zero. A random subset of the remaining items S1 is removed
from the test at the time of the first failure X1:m:n. Again, following the second failure at
time X2:m:n, S2 items are eliminated at random from the test, and so on. We can obtain
one of the three probable outcomes from the IT2-APC plan: Case-1: If Xm:m:n < T1, then
Xm:m:n is where the experiment ends, and at the mth failure, all of the leftover items are
removed, that is Sm = n − m − ∑m−1

i=1 Si. The T2-PC sample is shown in this case. Case-2:
The test ends at Xm:m:n if T1 < Xm:m:n < T2. All items that did not fail are eliminated at
the mth failure, that is Sm = n − d1 − ∑d1

i=1 Si. The number of failures before the initial
limit T1 is denoted by d1 in this instance. It is significant to note that after experiencing
Xd1 :m:n, no items are eliminated from the test. As a result, the PSP is changed to be
S =

(
S1, . . . , Sd1 , 0, . . . , 0, Sm

)
. The AP2-PC sample is described in this case. Case-3: The

test stops at the limit T2 if T1 < T2 < Xm:m:n. All items that remain at this threshold are
eliminated, i.e., S⋆ = n − d2 − ∑d1

i=1 Si, where d2 represents the total number of observed
failures obtained prior to T2. When the experiment reaches T1, the PSP adjustment is
likewise used here as Case-2. As a result, S =

(
S1, . . . , Sd1 , 0, . . . , 0, S⋆

)
becomes the PSP.

The IT2-APC plan has not received much attention, according to a review of the literature.
Several estimation issues for some lifetime models were examined using the IT2-APC
scheme by Nassar and Elshahhat [11], Elshahhat and Nassar [12], Elbatal et al. [13], Alam
and Nassar [14] and Dutta and Kayal [15]. Let us now assume the observed IT2-APC
sample with PSP, denoted, respectively, as x = (x1 < · · · < xd1 < T1 < · · · < xd2 < T2) and
S. Next, it is possible to formulate the likelihood function (LF) of the unknown parameters
α; see Yan et al. [10], as

L(α|x) = C
J2

∏
i=1

f (xi)
J1

∏
i=1

[1 − F(xi)]
Si [1 − G(T∗)]S

∗
, (1)

where α is the unknown parameters vector, C is a constant and, for simplicity, xi = xi:m:n.
Table 1 lists the potential values of J1, J2, T∗, and S∗ for Cases 1, 2, and 3.

Table 1. Possible values of J1, J2, T∗, and S∗.

Case T∗ J1 J2 S∗

1 0 m m 0
2 xm d1 m n − m − ∑d1

i=1 Si
3 T2 d1 d2 n − d2 − ∑d1

i=1 Si

An essential issue in terms of inferences is modelling real data sets with novel statis-
tical models. A notable distinction can be observed between bounded (with boundaries)
and unbounded (without boundaries) distributions. Limited values such as fractions,
percentages, and proportions are frequently encountered in real-world scenarios. Instances
of such data include percentages of educational attainment, training data, fractional debt
payback, working hours, and international tests. Consequently, modelling methodologies
on the unit interval have increased recently, throughout the past ten years. Recovery rates,
death rates, proportions in educational assessments, and other particular challenges are
the subject of these models. To represent random variables within a range of zero to one,
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we require a distribution unit. Recently, Korkmaz and Korkmaz [16] introduced a novel
two-parameter distribution defined on the bounded (0,1) interval, named the unit–log–log
(ULL) distribution. A random variable X is said to have the ULL distribution, denoted as
X ∼ ULL(α), where α = (γ, σ)⊤, if its probability density function (PDF) and cumulative
distribution function (CDF) are given by

f (x; α) = γ log(σ)x−1[ω(x)]γ−1σ[ω(x)]γ e1−σ[ω(x)]γ
, x ∈ (0, 1) (2)

and
F(x; α) = e1−σ[ω(x)]γ

, (3)

respectively, where ω(x) = − log(x). The reliability function (RF) and hazard rate function
(HRF) correspond to X, and are given, respectively, by

R(x; α) = 1 − e1−σ[ω(x)]γ
(4)

and

h(x; α) =
γ log(σ)[ω(x)]γ−1σ[ω(x)]γ

x
{

eσ[ω(x)]γ−1 − 1
} , (5)

where γ > 0 and σ > 1. The main purpose of the ULL lifetime model order is to model the
educational measurements as well as other real data sets supported on the unit interval;
see Korkmaz and Korkmaz [16] for additional details. Korkmaz et al. [17] investigated
six classical estimation methods for the ULL model using the complete sample. Taking
several selections of γ and σ, Figure 1 indicates that the density in (2) can take different
shapes, including unimodal and U shape. On the other hand, the hazard rate in (5) can be
increasing, bathtub, or N-shaped. Figure 1 shows that the ULL model’s varied density and
hazard rate shapes make it highly flexible on the unit interval.
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Figure 1. Density (left) and Hazard rate (right) shapes of the ULL distribution.

We are motivated to complete the current work for the following three reasons:

1. The superiority of the ULL model in fitting real data sets compared to several compet-
ing models, such as the beta and Kumaraswamy models, among others, is demon-
strated later in the real data section.

2. To the best of our knowledge, this is the first investigation of the estimations of the
ULL distribution under censorship plans. So we consider the IT2-APC scheme, which
generalizes some common censoring plans such as Type-II censoring, T2-PC, and AT2-
PC schemes. As a result, the estimations employing these schemes can be directly
deduced from the findings of this study.

3. It is critical to understand the appropriate estimation approach for the ULL distribu-
tion and which PSP provides more information about the unknown parameters.
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Before progressing further, we refer to α, RF and HRF as the unknown parameters.
Considering the flexibility of the ULL model and the efficiency of the IT2-APC scheme, this
paper has three specific objectives, as listed below:

• Obtaining the traditional and Bayesian estimations of the unknown parameters. Em-
ploying the asymptotic properties (APs) of the maximum likelihood estimates (MLEs),
the traditional maximum likelihood (ML) approach is taken into consideration in
order to derive the approximate confidence intervals (ACIs) in addition to the MLEs.
The squared error loss function with the Markov chain Monte Carlo (MCMC) method
was then used to obtain the Bayesian estimates. Additionally, the highest posterior
density (HPD) ranges are calculated.

• Examining the effectiveness of the various point and interval estimations, it is worth
mentioning that assessing the different estimations theoretically is more complex.
For this reason, we employ simulations to accomplish this goal. Furthermore, we
prove the validity of the ULL model and the suitability of the suggested techniques
through the examination of two environmental and engineering actual data sets.

• Researching the issue of choosing the best PSP for the ULL model when IT2-APC data
are available. This is conducted using four precision standards. By analyzing the two
given genuine data sets, these standards are numerically compared.

The remaining sections of this work are arranged as follows: Section 2 covers the
classical estimation to obtain the MLEs and ACIs using the APs for various parameters.
The Bayesian estimation, including prior information, posterior distribution and point
and HPD interval estimations, is studied in Section 3. Section 4 presents the simulation
design and simulation results based on several PSP, n, m and time boundary circumstances.
In Section 5, two real environmental and engineering data sets are examined to demonstrate
the effectiveness of the ULL model and the feasibility of the suggested approaches. Section 6
presents the PSP selection process as well as a comparative analysis of the various criteria
that were considered. A few conclusions are presented in Section 7.

2. Likelihood Methodology

The ML estimation methodology is widely used for parameter estimation for sta-
tistical models. The ML estimation of the ULL parameters, including RF and HRF, is
discussed in this part. The estimation is employed via an IT2-APC sample x and PSP
S =

(
S1, . . . , Sd1 , 0, . . . , 0, S∗). Both point and interval estimates of the specified quantities

are taken into consideration in this section.

2.1. Point Estimation

Considering the observable IT2-APC sample x, the joint LF supplied by (1) with the
PDF provided by (2), as well as the CDF in (3), can be used to write the LF of α as follows,
after omitting the constant term,

L(α|x) = γJ2 [log(σ)]J2 exp

{
(γ − 1)

J2

∑
i=1

log[ω(xi)] + log(σ)
J2

∑
i=1

[ω(xi)]
γ − ϕ(x; γ, σ)

}
, (6)

where

ϕ(x; γ, σ) =
J2

∑
i=1

σ[ω(xi)]
γ
+

J1

∑
i=1

Siσ
[ω(xi)]

γ
+ S∗σ[ω(T∗)]γ .

The log-LF of (6) is

l(α|x) = J2 log(γ) + J2 log[log(σ)]

+ (γ − 1)
J2

∑
i=1

log[ω(xi)] + log(σ)
J2

∑
i=1

[ω(xi)]
γ − ϕ(x; γ, σ). (7)
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The solution of the next two normal equations provides the MLEs of γ and σ, shown
by γ̂ and σ̂, respectively,

∂l(α|y)
∂γ

=
J2

γ
+

J2

∑
i=1

log[ω(xi)] + log(σ)
J2

∑
i=1

[ω(xi)]
γ log[ω(xi)]− ϕ1(x; γ, σ) = 0 (8)

and
∂l(α|y)

∂σ
=

J2

σ log(σ)
+

1
σ

J2

∑
i=1

[ω(xi)]
γ − ϕ2(x; γ, σ) = 0 (9)

where

ϕ1(x; γ, σ) = log(σ)

{
J2

∑
i=1

ϖ1(xi; γ, σ) +
J1

∑
i=1

Siϖ1(xi; γ, σ) + S∗ϖ1(T∗; γ, σ)

}
,

and

ϕ2(x; γ, σ) =
1
σ

{
J2

∑
i=1

ϖ2(xi; γ, σ) +
J1

∑
i=1

Siϖ2(xi; γ, σ) + S∗ϖ2(T∗; γ, σ)

}
,

with ϖ1(xi; γ, σ) = σ[ω(xi)]
γ
[ω(xi)]

γ log[ω(xi)] and ϖ2(xi; γ, σ) = σ[ω(xi)]
γ
[ω(xi)]

γ. Given
the nonlinear functions in (8) and (9), it is evident that the MLEs cannot be determined
explicitly. To find a solution to this challenge, some numerical techniques can be imple-
mented to obtain the necessary estimates γ̂ and σ̂. The invariance trait of the MLEs can
be applied to find the MLEs of RF and HRF, at a given time t, by changing the genuine
parameters in (4) and (5) with their MLEs, respectively, as

R̂(t) = 1 − e1−σ̂[ω(t)]γ̂

and

ĥ(t) =
γ̂ log(σ̂)[ω(t)]γ̂−1σ̂[ω(t)]γ̂

t
{

eσ̂[ω(t)]γ̂−1 − 1
} .

2.2. Interval Estimation of γ and σ

The ACIs of γ and σ can be created using the APs of the MLEs. Obtaining the variance-
covariance matrix, denoted by I−1(α), is the first step towards achieving this. However,
we can approximate the necessary variance-covariance matrix by inverting the observed
Fisher information matrix, as a result of the intricate formulations of the Fisher information
matrix. Therefore, the approximate variance covariance matrix can be expressed as

I−1(α̂) =

 − ∂2l(α)
∂γ2 − ∂2l(α)

∂γ∂σ

− ∂2l(α)
∂σ2

−1

α=α̂

=

[
Ṽ1 C̃12

Ṽ2

]
. (10)

where α̂ = (γ̂, σ̂)⊤ and

∂2l(α|x)
∂γ2 = − J2

γ2 + log(σ)
J2

∑
i=1

[ω(xi)]
γ log2[ω(xi)]− ϕ11(x; γ, σ),

∂l2(α|x)
∂σ2 = − J2[1 + log(σ)]

σ2 log2(σ)
− 1

σ2

J2

∑
i=1

[ω(xi)]
γ − ϕ22(x; γ, σ)

and
∂2l(α|x)

∂γ∂σ
=

1
σ

J2

∑
i=1

[ω(xi)]
γ log[ω(xi)]− ϕ12(x; γ, σ),
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where

ϕ11(x; γ, σ) = log(σ)

{
J2

∑
i=1

ϖ11(xi; γ, σ) +
J1

∑
i=1

Siϖ11(xi; γ, σ) + S∗ϖ11(T∗; γ, σ)

}
,

ϕ22(x; γ, σ) =
1
σ2

{
J2

∑
i=1

ϖ22(xi; γ, σ) +
J1

∑
i=1

Siϖ22(xi; γ, σ) + S∗ϖ22(T∗; γ, σ)

}
and

ϕ12(x; γ, σ) =
1
σ2

{
J2

∑
i=1

ϖ12(xi; γ, σ) +
J1

∑
i=1

Siϖ12(xi; γ, σ) + S∗ϖ12(T∗; γ, σ)

}
,

with ϖ11(xi; γ, σ) = ϖ1(xi; γ, σ) log[ω(xi)]{1 + [ω(xi)]
γ log[ω(xi)]}, ϖ22(xi; γ, σ) = ϖ2

(xi; γ, σ){[ω(xi)]
γ − 1} and ϖ12(xi; γ, σ) = ϖ2(xi; γ, σ){log(σ)[[ω(xi)]

γ − 1] + 1}.
The asymptotic distribution of (α̂ − α) is known to be a bivariate normal distribution

with a mean of zero and an estimated variance-covariance matrix I−1(α̂) as displayed in
(10), as per the APs of the MLEs. Now, at a confidence level 100(1 − τ)%, one can compute
the required ACIs of γ and σ, respectively, as

γ̂ ± zτ/2

√
V̂1 and σ̂ ± zτ/2

√
V̂2,

where the standard normal distribution is used to determine zτ/2.

2.3. Interval Estimation of RF and HRF

One of the problems statisticians face when developing an estimator of any function of
unknown parameters is figuring out the variance of the estimator. This variance is necessary
for confidence interval estimation and/or hypothesis testing. To obtain the variance of an
estimator, statisticians use a procedure called the delta method, which essentially involves
approximating the more complex function with a linear function that can be obtained using
calculus techniques; see, for more detail, Greene [18] and Alevizakos and Koukouvinos [19].
In our case, we employ the delta method to approximate the variances of the MLEs of
RF and HRF in order to obtain the ACIs of R(t) and h(t). Let D1 and D2 be two vectors
defined as

D1 =

[
∂R(t)

∂γ

∂R(t)
∂σ

]
α=α̂

and D2 =

[
∂h(t)

∂γ

∂h(t)
∂σ

]
α=α̂

,

where

∂R(t)
∂γ

= F(t; α)σ[ω(t)]γ [ω(t)]γ log(σ) log[ω(t)] ,
∂R(t)

∂σ
= F(t; α)σ[ω(t)]γ−1[ω(t)]γ,

∂h(t)
∂γ

= h(t; α)

{
1
γ
+ log[ω(t)] + [ω(t)]γ log(σ) log[ω(t)]− tω(t) log[ω(t)]h(t; α)

γF(t; α)

}
and

∂h(t)
∂σ

=
h(t; α)

σ

{
1

log(σ)
+ [ω(t)]γ − [ω(t)]γσ[ω(t)]γ

R(t; α)

}
.

Therefore, one can calculate the approximate estimates of the variances of the estima-
tors of R(t) and h(t), respectively, as given below

V̂3 =
[

D1 I−1(α̂)D́1

]
and V̂4 =

[
D2 I−1(α̂)D́2

]
.
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Then, the 100(1 − τ)% ACIs for R(t) and h(t) are, as follows(
R̂(t)± zτ/2

√
V̂3

)
, and

(
ĥ(t)± zτ/2

√
V̂4

)
.

3. Bayesian Methodology

This section of the paper focuses on finding Bayes estimations for the unknown pa-
rameters, RF and HRF, providing point and HPD credible interval estimates. The Bayesian
method not only offers an alternative analysis but also uses informed priori densities to
incorporate historical data on the parameters. Uncertainty about this knowledge is taken
into account when considering noninformative priori. The Bayesian methodology uses the
posterior marginal distributions to gain knowledge about the model parameters. Notably,
the squared error loss function serves as the foundation for the Bayes estimations in this
paper, while any other loss function can be used with ease.

3.1. Prior and Posterior Distributions

The prior distribution is a crucial component in Bayesian estimation, as it represents
what is currently known about the unknown parameters. It is evident that the unknown
parameters γ and σ do not have any conjugate priors. In addition, it is not easy to compute
the Jeffreys prior due to the complex form of the variance-covariance matrix. We therefore
presume that γ and σ have gamma prior distributions and are independent. The gamma
(G) prior is chosen because of its adaptability, particularly in computational tasks. The pa-
rameter γ > 0 is assumed to follow G(θ1, β1). On the other hand, for σ > 1, we use the
three-parameter G distribution with a location parameter equal to one using the same way
by Nassar et al. [20], i.e., σ ∼ G(θ2, β2, 1). It should be noted that all hype-parameter values
are nonnegative. Using these assumptions, the joint prior can be written as

p(α) ∝ γθ1−1(σ − 1)θ2−1e−[β1γ+β2(σ−1)], γ, σ > 0, (11)

where θj, β j > 0, j = 1, 2. The joint posterior distribution of the unknown parameters can be
determined by merging the data from observations produced by the LF, as provided by (6),
with the prior information that is already known, as supplied by the joint prior distribution
in (11), as follows

Q(α|x) =
1
A

γJ2+θ1−1(σ − 1)θ2−1[log(σ)]J2 e−β2(σ−1)

× exp

{
(γ − 1)

J2

∑
i=1

log[ω(xi)] + β1γ + log(σ)
J2

∑
i=1

[ω(xi)]
γ − ϕ(x; γ, σ)

}
, (12)

where

A =
∫ ∞

0

∫ ∞

1
γJ2+θ1−1(σ − 1)θ2−1[log(σ)]J2 e−β2(σ−1)

× exp

{
(γ − 1)

J2

∑
i=1

log[ω(xi)] + β1γ + log(σ)
J2

∑
i=1

[ω(xi)]
γ − ϕ(x; γ, σ)

}
dσdγ.

The posterior mean of any parametric function, say ξ(α), can be used to obtain the
Bayes estimator by using the squared error loss function. Let ξ̃(α) denote the Bayes
estimator of ξ(α). Then, from (12), ξ̃(α) can be derived as

ξ̃(α) =
∫ ∞

0

∫ ∞

1
ξ(α)Q(α|x)dσdγ

=

∫ ∞
0

∫ ∞
1 ξ(α)p(α)L(α|x)dσdγ∫ ∞

0

∫ ∞
1 p(α)L(α|x)dσdγ

(13)
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The ratio of integrals in (13) results in the inability to obtain the Bayes estimator ξ̃(α)
in a closed form, as anticipated. We suggest using the MCMC technique to overcome this
issue to obtain the required Bayes estimates as well as the HPD credible intervals. The next
section discusses this topic. It is worth mentioning that another method to calculate the ratio
of the integrals in Equation (13) is through a numerical integration. In Bayesian estimation,
MCMC methods are commonly preferred over numerical integration for various reasons.
This preference is particularly strong when dealing with models that involve two or more
parameters and a complex censoring plan.

3.2. MCMC, Bayes Estimates and HPD Intervals

Employing the MCMC technique allows sampling from the posterior distribution to
compute relevant posterior values. As with other Monte Carlo techniques, the MCMC
makes use of repeated random sampling to make use of the law of large numbers. Parti-
tioning the joint posterior distribution into full conditional distributions for each model
parameter is required when using this technique; colorredsee the work of Noii et al. [21]
for more detail about the MCMC methods. To gain the necessary estimates, a sample must
be taken from each of these conditional distributions. For the parameters γ and σ, the full
conditional distributions are provided, respectively, by

Q1(γ|σ, x) ∝ γJ2+θ1−1

× exp

{
γ

[
J2

∑
i=1

log[ω(xi)] + β1

]
+ log(σ)

J2

∑
i=1

[ω(xi)]
γ − ϕ(x; γ, σ)

}
, (14)

and

Q2(σ|γ, x) ∝ (σ − 1)θ2−1[log(σ)]J2 e−β2σ exp

{
log(σ)

J2

∑
i=1

[ω(xi)]
γ − ϕ(x; γ, σ)

}
. (15)

It is important to determine whether or not the full conditional distributions fit into any
well-known distributions before applying the MCMC approach. Choosing which MCMC
algorithm to utilize is a crucial stage in this process. As we can observe, there is no well-
known distribution that can be used to describe the distributions in (14) and (15). In this
circumstance, the Metropolis–Hastings (M-H) method is appropriate for obtaining the
required samples from Q1(γ|σ, x) and Q2(γ|σ, x). Following the next steps, we can use the
M-H process with a normal proposal distribution (NPD) to collect the necessary samples.

Step 1. Set (γ(0), σ(0)) = (γ̂, σ̂).

Step 2. Put j = 1.

Step 3. Use NPD N
(

γ̂, V̂1

)
and the M-H steps to simulate γ(j) from (14).

Step 4. Based on NPD N
(

σ̂, V̂2

)
and the M-H steps, generate σ(j) from (15).

Step 5. Use (γ(j), σ(j)) to estimate pute the RF and HRF as R(j)(t) and h(j)(t).

Step 6. Put j = j + 1.

Step 7. Redo steps 3 to 6 and M replications to obtain(
γ(j), σ(j), R(j), h(j)

)
, j = 1, . . . , M.

It is crucial to eliminate the impact of the initial guesses while applying the MCMC
technique. Removing the initial B replications as a burn-in phase will accomplish this.
The Bayes estimate for any of the four parameters in this instance, let us say λ, can be
acquired, as shown below

λ̃ =
1

M − B

M

∑
j=B+1

λ(j).
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By sorting the acquired λ(j) as λ(j), j = B + 1, . . . , M, the HPD credible interval of λ
can be computed accordingly {

λ(j∗), λ(j∗+(1−τ)(M−B))

}
,

with j∗ = B + 1, . . . , M, such that

λ(j∗+[(1−τ)(M−B)]) − λ(j∗) = min
1⩽j⩽τ(M−B)

{
λ(j+[(1−τ)(M−B)]) − λ(j)

}
,

where the greatest integer that is either smaller than or equal to ι is found to be [ι].

4. Numerical Evaluations

This part establishes Monte-Carlo simulations to observe how well our estimates of γ,
σ, R(t), and h(t) from earlier sections work.

4.1. Simulation Scenarios

We constructed one thousand samples from ULL(0.75, 1.5) in order to assess the
relative performance of several obtained estimators for γ, σ, R(t), and h(t). At t = 0.25,
the true value of (R(t), h(t)) is taken as (0.49272, 1.93743). To evaluate the effectiveness of
the proposed estimators under different conditions, Table 2 displays various combinations
of Ti, i = 1, 2, (threshold times), n(full sample size), m(full failure size), and S (progressive
pattern). Additionally, to show the effects of the removal patterns, five designs of S are
utilized, namely: L (left), M (middle), R (right), D (doubly), and U (uniformly) censoring
fashions. For example, censoring (120) means 1 repeats 20 times. To show how the chosen
times Ti, i = 1, 2, affect the estimates, for n(= 40, 80), we also consider two different
options for T1(= 0.2, 0.4) and T2(= 0.4, 0.6). Different options of m are also determined as
failure percentages (FPs) out of each n, such as m

n (= 50, 75)%.

Table 2. Testing scenarios performed in the Monte Carlo study.

n[FP%] Test Censoring S

40[50%] 1 L (210, 010)
2 M (05, 210, 05)
3 R (010, 210)
4 D (25, 010, 25)
5 U (120)

40[75%] 6 L (25, 025)
7 M (013, 25, 012)
8 R (025, 25)
9 D (23, 025, 22)

10 U (110, 020)

80[50%] 1 L (410, 030)
2 M (015, 410, 015)
3 R (030, 410)
4 D (45, 030, 45)
5 U (140)

80[75%] 6 L (45, 055)
7 M (027, 45, 028)
8 R (055, 45)
9 D (43, 055, 42)

10 U (120, 040)

To draw an IT2-APC sample, after assigning the values of (n, m), Ti, i = 1, 2, and Si,
i = 1, 2, . . . , m, perform the next steps:
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Step 1. Fix the actual values of γ and σ.

Step 2. Obtain a T2-PC sample as:

a. Simulate an uniform sample denoted as (ϱ1, ϱ2, . . . , ϱm).

b. Set δi = ϱ

(
i+∑m

j=m−i+1 Sj

)−1

i , i = 1, 2, . . . , m.
c. Set Ui = 1 − δmδm−1 · · · δm−i+1 for i = 1, 2, . . . , m.

d. Obtain a T2-PC sample from ULL(γ, σ) as Xi = exp
{
−
[

log(1−log(ui))
log(σ)

] 1
γ

}
,

i = 1, 2, . . . , m.

Step 3. Find d1 at T1, and ignore Xi, i = d1 + d1 + 2, . . . , m.

Step 4. Find the first m − d1 − 1 order statistics (say Xd1+2, . . . , Xm) from a truncated
distribution f (x)/

[
R
(
xd1+1

)]
with sample size n − d1 − 1 − ∑d1

i=1 Si.

Step 5. Obtain an IT2-APC sample case as follows:

a. Case-1: If Xm < T1 < T2; stop the test at Xm.
b. Case-2: If T1 < Xm < T2; stop the test at Xm.
c. Case-3: If T1 < T2 < Xm; stop the test at T2.

Upon gathering the desired 1000 IT2-APC samples, we install two suggested packages
using the R 4.2.2 programming software:

• The ‘maxLik’ tool to perform the classical estimates developed by Henningsen and
Toomet [22].

• The ‘coda’ tool, developed by Plummer et al. [23], to perform the Bayes estimates.

We decline the first 2000 iterations (out of 12,000) as a “burn-in” period, under the M–H
steps. The Bayes–MCMC estimates and 95% HPD intervals are then computed. The Bayes
inferences are performed using two informative sets of (θ1, θ2, β1, β2), referred to as Pr.A:
(7.5, 5, 10, 10) and Pr.B: (15, 10, 20, 20), which are compatible with both prior-mean and
prior-variance criteria. The suggested values of (θi, βi) for i = 1, 2, are allocated so that the
sample mean of σ or γ is achieved by the prior mean. In order to obtain an appropriate
sample from the objective posterior distribution in MCMC assessments, we must ensure the
convergence of the generated chains. Four convergence operators, (i) the auto-correlation
function (ACF), (ii) Trace, (iii) Brooks–Gelman–Rubin (BGR) diagnostic, and (iv) Trace
thinning-based are utilized to achieve this goal (here, we used every fifth point). When
(γ, σ) = (0.75, 1.5), (T1, T2) = (0.2, 0.3), n[FP%] = 40[20%], S = (120), and Pr.A. are
applied, these measures are carried out. Figure 2a demonstrates that there is a strong
correlation between the lag in each chain and the autocorrelation of each parameter. This
suggests that the simulated chains are highly mixed together. Figure 2b shows that the
variance within the Markovian chains and the variance between them are not significantly
different. This also shows that the size of the burn-in sample is a good way to get rid of the
effects of the starting points. Figure 2c displays that the simulated chains are substantially
mixed. All Markovian chains, shown in Figure 3, seem to explore the same region of the
actual parameter values of γ or σ, which is a good sign. These chains support the same
facts displayed in Figure 2c, which states that the simulated chains are substantially mixed.
As a result, the computed point (or interval) estimates of γ, σ, R(t), and h(t) are reliable
and good. The same findings are observed when using Pr.B.
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Figure 2. The MCMC visuals of γ, σ, R(t), and h(t) with (a) ACF, (b) BGR and (c) Trace, for Monte
Carlo simulation.
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Figure 3. Trace (left panel) and density (right panel) plots γ and σ in Monte Carlo simulation.

From the acquired estimates, say for the parameter σ as an example, we obtain
some statistical measures, namely the average estimates (AEs), root mean squared-errors
(RMSEs), mean absolute biases (MABs), average confidence widths (ACWs) and coverage
percentages (CPs). The expressions of these measures are, respectively, given by

AE(σ̀) =
1

1000

1000

∑
i=1

σ̀(i),

RMSE(σ̀) =

√
1

1000 ∑1000
i=1

(
σ̀(i) − σ

)2,
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MAB(σ̀) =
1

1000 ∑1000
i=1

∣∣∣σ̀(i) − σ
∣∣∣,

ACW(1−θ)%(σ) =
1

1000 ∑1000
i=1

(
Uσ̀(i) −Lσ̀(i)

)
,

and
CP(1−θ)%(σ) =

1
1000 ∑1000

i=1 Ψ(
L

σ̀(i)
;U

σ̌(i)

)(σ),
where where σ̀(i) is the estimate of σ at ith sample, Ψ(·) denotes the indicator operator and
(L(·),U (·)) denote the (lower,upper) limits of (1 − τ)% ACI (or HPD) interval of σ.

4.2. Simulation Results

All outcomes of the simulation of γ, σ, R(t), and h(t) are displayed in the supple-
mentary file. In Tables 3 and 4, for brevity, the point and interval estimations of γ, σ, R(t),
and h(t) when n[FP%] = 40[50%] are presented. Considering the lowest values of RMSE,
MAB, and ACW along with the greatest values of CP, we list the following observations:

• The most significant finding is that the provided γ, σ, R(t), or h(t) estimates are accurate.
• As n(or m) grows, all estimates of γ, σ, R(t), or h(t) behave better. When ∑m

i=1 Si
decreases, a similar conclusion is offered.

• As Ti for i = 1, 2, increase, all offered estimates of γ, σ, R(t), or h(t) perform satisfactorily.
• Due to the additional information we already have about γ and σ, the Bayes estimates

of all parameters are more accurate than other estimates, as expected. The same thing
is noticed when comparing the HPD credible intervals with the ACIs.

• By changing the hyperparameters from Pr.A to Pr.B, we can observe the same con-
clusion that the Bayes point estimates and HPD credible intervals outperform those
based on the ML method.

• Because the variance of Pr.B is smaller than the variance of Pr.A, all the Bayes estima-
tions based on Pr.B are more accurate than others.

• Comparing the proposed schemes L, M, R, D, and U, it is observed that all results of γ,
σ, R(t), or h(t) behave superiorly based on censoring-U ‘uniformly’ (next, censoring-D
‘doubly’) than others.

• So, in order to obtain accurate results for any parameter of life, the practitioner doing
the experiment needs to make the experiment last for as long as possible if and only if
the experiment cost is enough.

• In summary, when dealing with data gathered using an IT2-APC process, it is rec-
ommended to use the Bayes’ framework with M-H sampling to estimate the ULL
parameters (γ and σ) or reliability features (R(t) and h(t)).

Table 3. Av.Es (1st column), RMSEs (2nd column) and MABs (3rd column) of γ, σ, R(t), and h(t)
when n[FP%] = 40[50%].

Par.
(T1, T2) Test MLE

MCMC

Prior → Pr.A Pr.B

γ (0.2, 0.3) 1 0.790 0.215 0.197 0.587 0.184 0.174 0.772 0.141 0.142
2 0.803 0.192 0.187 0.656 0.160 0.166 0.815 0.135 0.132
3 0.825 0.175 0.175 0.836 0.157 0.146 0.690 0.122 0.124
4 0.762 0.163 0.157 0.638 0.146 0.139 0.773 0.114 0.090
5 0.772 0.153 0.147 0.749 0.135 0.127 0.784 0.109 0.085

(0.4, 0.6) 1 0.777 0.224 0.185 0.749 0.180 0.165 0.859 0.125 0.112
2 0.787 0.207 0.174 0.823 0.154 0.151 0.839 0.117 0.108
3 0.820 0.187 0.163 0.723 0.146 0.142 0.774 0.101 0.082
4 0.945 0.154 0.147 0.892 0.137 0.126 0.751 0.092 0.076
5 0.780 0.145 0.131 0.840 0.132 0.121 0.807 0.082 0.072
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Table 3. Cont.

Par.
(T1, T2) Test MLE

MCMC

Prior → Pr.A Pr.B

σ (0.2, 0.3) 1 1.496 0.214 0.192 1.736 0.153 0.164 1.472 0.136 0.112
2 1.487 0.193 0.186 1.798 0.141 0.152 1.559 0.130 0.101
3 1.472 0.174 0.174 1.444 0.135 0.143 1.564 0.124 0.096
4 1.525 0.164 0.170 1.626 0.129 0.140 1.415 0.112 0.085
5 1.509 0.157 0.167 1.574 0.124 0.135 1.573 0.107 0.078

(0.4, 0.6) 1 1.508 0.204 0.188 1.584 0.146 0.158 1.447 0.100 0.093
2 1.498 0.187 0.181 1.478 0.135 0.148 1.461 0.098 0.086
3 1.459 0.169 0.164 1.596 0.129 0.138 1.516 0.093 0.078
4 1.381 0.157 0.155 1.304 0.118 0.124 1.465 0.084 0.077
5 1.506 0.151 0.142 1.389 0.113 0.116 1.467 0.078 0.068

R(t) (0.2, 0.3) 1 0.484 0.152 0.128 0.603 0.115 0.113 0.475 0.074 0.087
2 0.481 0.148 0.121 0.648 0.109 0.110 0.544 0.072 0.081
3 0.463 0.133 0.114 0.452 0.096 0.092 0.527 0.068 0.079
4 0.503 0.124 0.098 0.547 0.081 0.085 0.430 0.066 0.074
5 0.494 0.115 0.095 0.539 0.077 0.082 0.549 0.061 0.070

(0.4, 0.6) 1 0.492 0.147 0.124 0.537 0.113 0.103 0.467 0.070 0.084
2 0.489 0.136 0.119 0.481 0.083 0.096 0.476 0.069 0.075
3 0.466 0.127 0.108 0.547 0.080 0.087 0.508 0.066 0.073
4 0.401 0.119 0.088 0.351 0.077 0.081 0.465 0.063 0.071
5 0.490 0.109 0.085 0.425 0.074 0.076 0.475 0.061 0.067

h(t) (0.2, 0.3) 1 1.958 0.178 0.182 1.826 0.170 0.162 1.955 0.135 0.096
2 1.973 0.170 0.173 1.958 0.166 0.157 2.108 0.128 0.088
3 1.939 0.166 0.165 1.964 0.162 0.154 1.918 0.124 0.084
4 1.955 0.162 0.160 1.841 0.157 0.149 1.884 0.115 0.079
5 1.960 0.156 0.152 2.001 0.147 0.141 2.073 0.107 0.076

(0.4, 0.6) 1 1.960 0.153 0.172 1.972 0.133 0.143 2.048 0.124 0.083
2 1.971 0.147 0.153 2.012 0.125 0.132 2.039 0.118 0.080
3 1.980 0.141 0.142 1.971 0.119 0.126 2.006 0.109 0.079
4 1.947 0.135 0.134 1.929 0.110 0.119 1.912 0.104 0.077
5 1.956 0.129 0.122 2.045 0.101 0.108 1.998 0.097 0.074

Table 4. The ACWs (1st column) and CPs (2nd column) of 95% ACI/HPD intervals of γ, σ, R(t),
and h(t) when n[FP%] = 40[50%].

Par.
(T1, T2) Test ACI

HPD

Prior → Pr.A Pr.B

γ (0.2, 0.3) 1 0.566 0.942 0.507 0.950 0.365 0.955
2 0.558 0.945 0.482 0.954 0.348 0.958
3 0.530 0.949 0.456 0.958 0.334 0.961
4 0.521 0.951 0.442 0.960 0.323 0.963
5 0.512 0.952 0.424 0.961 0.313 0.964

(0.4, 0.6) 1 0.549 0.947 0.487 0.955 0.356 0.959
2 0.533 0.950 0.467 0.958 0.339 0.962
3 0.484 0.952 0.445 0.961 0.328 0.964
4 0.464 0.955 0.436 0.963 0.316 0.966
5 0.459 0.957 0.427 0.965 0.294 0.968

σ (0.2, 0.3) 1 0.554 0.937 0.519 0.940 0.358 0.949
2 0.538 0.939 0.507 0.942 0.325 0.951
3 0.522 0.941 0.490 0.944 0.317 0.953
4 0.515 0.942 0.476 0.945 0.310 0.954
5 0.504 0.943 0.464 0.946 0.284 0.956

(0.4,0.6) 1 0.547 0.941 0.494 0.944 0.352 0.952
2 0.532 0.943 0.478 0.946 0.323 0.955
3 0.518 0.944 0.469 0.947 0.315 0.956
4 0.507 0.945 0.454 0.948 0.304 0.957
5 0.490 0.947 0.439 0.951 0.288 0.960

R(t) (0.2, 0.3) 1 0.368 0.953 0.338 0.957 0.305 0.962
2 0.336 0.956 0.313 0.960 0.291 0.964
3 0.313 0.958 0.282 0.962 0.272 0.965
4 0.294 0.960 0.272 0.964 0.257 0.967
5 0.284 0.961 0.266 0.965 0.248 0.969

(0.4, 0.6) 1 0.319 0.956 0.306 0.960 0.297 0.965
2 0.289 0.959 0.283 0.963 0.276 0.968
3 0.278 0.961 0.270 0.965 0.266 0.969
4 0.274 0.962 0.264 0.966 0.254 0.971
5 0.266 0.963 0.255 0.967 0.243 0.973
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Table 4. Cont.

Par.
(T1, T2) Test ACI

HPD

Prior → Pr.A Pr.B

h(t) (0.2,0.3) 1 0.465 0.946 0.416 0.950 0.369 0.954
2 0.434 0.947 0.407 0.951 0.356 0.955
3 0.413 0.949 0.388 0.953 0.338 0.957
4 0.399 0.951 0.365 0.955 0.324 0.959
5 0.385 0.953 0.359 0.956 0.316 0.960

(0.4,0.6) 1 0.436 0.948 0.399 0.953 0.357 0.956
2 0.427 0.949 0.385 0.954 0.349 0.957
3 0.404 0.951 0.367 0.956 0.326 0.960
4 0.384 0.953 0.356 0.958 0.318 0.962
5 0.376 0.955 0.342 0.959 0.311 0.963

5. Real-Life Applications

This part illustrates two examples that show how to use the suggested methods in
real-life situations. These examples use real data from the fields of environmental science
and engineering.

5.1. Environmental Data Analysis

In this application, we will study a set of data that shows the maximum (highest) flood
level (MFL) of the Susquehanna River in Harrisburg, Pennsylvania. The data are measured
in millions of cubic feet per second; see Table 5. Dumonceaux and Antle [24] presented this
information, which was later assessed by Dey et al. [25].

Table 5. The MFL data of Susquehanna River.

0.654 0.613 0.315 0.449 0.297 0.402 0.379 0.423 0.379 0.324
0.269 0.740 0.418 0.412 0.494 0.416 0.338 0.392 0.484 0.265

To highlight the superiority of the ULL lifetime model based on the full MFL data, we
will compare it with seven other models in the literature, named:

(1) unit-Birnbaum-Saunders (UBS(γ, σ)) by Mazucheli et al. [26];
(2) unit-Gompertz (UGom(γ, σ)) by Mazucheli et al. [27];
(3) unit-Weibull (UW(γ, σ)) by Mazucheli et al. [28];
(4) unit-gamma (UG(γ, σ)) by Mazucheli et al. [29];
(5) Topp-Leone (TL(γ)) by Topp and Leone [30];
(6) Kumaraswamy (Kum(γ, σ)) by Mitnik and Baek [31];
(7) Beta(γ, σ) by Gupta and Nadarajah [32].

To specify the best model among the ULL and its competitors, we consider the follow-
ing metrics:

(1) Estimated log-likelihood (say L⋆), where L⋆ = log L;
(2) Akaike information (AI), where AI = 2(k −L⋆);
(3) Bayesian information (BI), where BI = k log(n)− 2L⋆;
(4) Consistent Akaike information (CAI), where CAI = k(1 + log(n))− 2L⋆;
(5) Hannan-Quinn information (HQI), where HQI = 2k log(log(n))− 2L⋆;
(6) The Kolmogorov–Smirnov (KS) statistic is defined as

Z = sup
x
{Gn(x)− GX(x)}

= max
{

D+, D−},
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where D+ = max
i=1,...,n

{(
i
n

)
− GX(xi)

}
and D− = max

i=1,...,n

{
GX(xi)−

(
i−1

n

)}
, such as its

P-value being given by

P − value = Pr(Z ⩽ x) = 1 − 2
∞

∑
i=1

(−1)i−1 exp
(
−2(ix)2

)
.

(7) Anderson–Darling (AD) statistic is defined as

A = −n − n−1
n

∑
i=1

(2i − 1)
[
log

(
Φ⋆

(i)

)
+ log

(
1 − Φ⋆

(n−i+1)

)]
,

where Φ⋆
(i) = Φ

[
1
s

(
x(i) − x̄

)]
, Φ(·) is the cumulative of the standard normal distribu-

tion, s and x̄ denote the standard deviation and mean data points. The P-value of AD
statistic is provided by

P − value = Pr(A⋆ ⩽ x),

where A⋆ = A
(
1 + 3

4 n + 9
4 n2) is a modified statistic; see Table 4.9 in Stephens [33].

(8) Cramér-von Mises (CvM) statistic is defined as

W =
1

12n
+

n

∑
i=1

(
Φ∗

(i) −
(2i − 1)

2n

)2
,

such as its P-value is given by

P − value = Pr(W⋆ ⩽ x),

where W⋆ = W
(

1 + 1
2n

)
is a modified statistic; see Table 4.9 in Stephens [33].

Except for the highest P-values, the best model is the one that yields the lowest values
for all goodness of fit statistics. Table 6 shows the MLEs (with standard errors (St.Ers)) of γ
and σ for the ULL or its rivals based on the full MFL data, together with the fitted values of
all the criteria that were previously mentioned. Because the ULL lifetime model yields the
greatest P-values from the AD, CvM, or KS test and the lowest values for all other metrics,
it is the best option among the fitted models, as presented in Table 6.

Table 6. Fitting outputs of the ULL and its competitive models from MFL data.

Model
MLE(St.Er)

L⋆ AI BI CAI HQI AD(p-Value) CvM(p-Value) KS(p-Value)
γ σ

ULL 2.9191(0.5538) 1.9338(0.2183) −16.581 −29.163 −27.171 −28.457 −28.774 0.312(0.449) 0.054(0.450) 0.136(0.850)
UBS 0.3782(0.0598) 0.8373(0.0695) −12.681 −21.362 −19.371 −20.656 −20.973 1.087(0.008) 0.184(0.009) 0.229(0.247)

UGom 0.0150(0.0132) 4.1252(0.7504) −16.362 −28.724 −26.732 −28.018 −28.335 0.314(0.448) 0.056(0.424) 0.146(0.786)
UW 1.0287(0.2393) 3.8928(0.7087) −16.081 −28.163 −26.171 −27.457 −27.774 0.358(0.442) 0.058(0.401) 0.138(0.848)
UG 8.7372(2.7118) 9.7335(3.1095) −14.191 −24.383 −22.391 −23.677 −23.994 0.531(0.174) 0.085(0.180) 0.150(0.761)
TL 2.2450(0.5020) − −7.3682 −12.736 −11.741 −12.514 −12.542 0.743(0.053) 0.122(0.057) 0.335(0.022)

Kum 3.3634(0.6033) 11.788(5.3583) −12.869 −21.737 −19.746 −21.031 −21.348 1.014(0.011) 0.170(0.013) 0.211(0.336)
Beta 6.7594(2.0954) 9.1141(2.8525) −14.065 −24.130 −22.139 −23.424 −23.742 0.785(0.042) 0.129(0.045) 0.199(0.408)

We also presented five graphical demonstrations of our fitting, namely:

(1) Probability–probability (PP); see Figure 4a;
(2) Data histograms with fitted density lines; see Figure 4b;
(3) Fitted reliability lines; see Figure 4c;
(4) Scaled–TTT transform; see Figure 4d;
(5) Contour; see Figure 4e.

Figure 4a shows that the probability dots closely match the theoretical probability
line. The fitted ULL density line in Figure 4b accurately captures the MFL data histograms.
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The fitted reliability line of the ULL model in Figure 4c is a better match for the empirical
reliability line compared to other models. Figure 4d also illustrates that the MFL data set
has an increasing failure rate, which confirms the same information shown in Figure 1.
Additionally, Figure 4e displays that the estimated values of γ̂ and σ̂ exist and are unique.
Henceforth, we suggest using γ ≡ 2.9192 and σ ≡ 1.9339 as starting points to run any
additional computations.
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Figure 4. Fitting visualizations, including (a) PP, (b) Histogram, (c) Reliability, (d) TTT, and (e) Con-
tour, from MFL data.

To examine the proposed inference methodologies, from Table 5, for a fixed FP = 50%
and several choices of S and Ti, i = 1, 2, different IT2-APC samples of size d2 are created; see
Table 7. For each data set in Table 7, the MLE and Bayes’ MCMC estimate (along with their
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St.Ers) as well as the 95% ACI/HPD interval estimates (along with their interval widths
(IWs)) of γ, σ, R(t), or h(t) (at t = 0.35) are obtained; see Table 8. After repeating the MCMC
sampler 50,000 times and removing the first 10,000 times (burn-in), the acquired Bayes and
HPD interval estimators are evaluated using improper gamma priors. For computational
logic, we set (θi, βi) for i = 1, 2, equal to 0.001. The results reported in Table 8 indicate that
the offered point and HPD interval estimates using the Bayesian approach outperform the
classical ones in terms of minimum St.Ers and IWs.

Table 7. Artificial IT2-APC samples from MFL data.

Sample S T1(d1) T2(d2) S∗ T∗ Data

A (25, 05) 0.28(1) 0.38(6) 12 0.38 0.265, 0.297, 0.315, 0.324, 0.338, 0.379
B (03, 25, 02) 0.35(5) 0.40(7) 9 0.40 0.265, 0.269, 0.297, 0.315, 0.324, 0.379, 0.392
C (05, 25) 0.38(7) 0.41(9) 7 0.41 0.265, 0.269, 0.297, 0.315, 0.324, 0.338, 0.379, 0.392, 0.402
D (23, 05, 22) 0.30(2) 0.42(8) 8 0.42 0.265, 0.297, 0.315, 0.324, 0.338, 0.379, 0.402, 0.412
E (110) 0.40(6) 0.45(9) 5 0.45 0.265, 0.297, 0.315, 0.338, 0.379, 0.392, 0.402, 0.418, 0.449

Table 8. Estimates of γ, σ, R(t), and h(t) from MFL data.

Sample Par.
MLE Bayes 95% ACI 95% HPD

Est. St.Er Est. St.Er Lower Upper IW Lower Upper IW

A γ 2.4579 0.7964 2.3583 0.1394 0.8969 4.0189 3.1220 2.1549 2.5446 0.3896
σ 2.1845 0.3376 2.0836 0.1411 1.5227 2.8462 1.3235 1.9019 2.2834 0.3815

R(0.35) 0.7564 0.0896 0.7195 0.0502 0.5808 0.9320 0.3511 0.6516 0.7817 0.1301
h(0.35) 4.5760 1.9959 4.6472 0.3034 0.6640 8.4879 7.8239 4.0739 5.2101 1.1362

B γ 2.3422 0.7217 2.2417 0.1394 0.9276 3.7568 2.8292 2.0564 2.4362 0.3798
σ 2.1207 0.3123 2.0148 0.1457 1.5087 2.7327 1.2240 1.8208 2.2102 0.3895

R(0.35) 0.7334 0.0900 0.6918 0.0560 0.5569 0.9099 0.3530 0.6186 0.7631 0.1445
h(0.35) 4.5327 1.8593 4.5880 0.2904 0.8887 8.1768 7.2882 4.0626 5.1461 1.0834

C γ 2.6412 0.7105 2.5412 0.1392 1.2487 4.0338 2.7850 2.3555 2.7355 0.3800
σ 2.0153 0.2721 1.9090 0.1459 1.4820 2.5485 1.0665 1.7154 2.1047 0.3893

R(0.35) 0.7043 0.0889 0.6574 0.0632 0.5301 0.8785 0.3484 0.5749 0.7381 0.1632
h(0.35) 5.3347 1.8934 5.4167 0.3249 1.6238 9.0456 7.4218 4.8409 6.0460 1.2051

D γ 2.6103 0.7286 2.5099 0.1395 1.1822 4.0384 2.8561 2.3246 2.7047 0.3801
σ 2.1247 0.3060 2.0190 0.1454 1.5248 2.7245 1.1997 1.8248 2.2145 0.3898

R(0.35) 0.7415 0.0881 0.7002 0.0557 0.5688 0.9141 0.3453 0.6270 0.7711 0.1441
h(0.35) 4.9861 1.8918 5.0804 0.3223 1.2781 8.6940 7.4159 4.5321 5.7340 1.2019

E γ 2.5401 0.6582 2.4398 0.1393 1.2500 3.8303 2.5803 2.2546 2.6346 0.3800
σ 2.2081 0.3109 2.1022 0.1456 1.5987 2.8174 1.2187 1.9081 2.2979 0.3898

R(0.35) 0.7655 0.0823 0.7278 0.0507 0.6043 0.9268 0.3225 0.6613 0.7920 0.1307
h(0.35) 4.6503 1.6834 4.7470 0.3131 1.3510 7.9497 6.5987 4.2212 5.3891 1.1679

To show that the acquired MLEs of γ and σ exist and are unique, we look at their
profile log-likelihood functions. Please refer to the supplementary file. They demonstrate,
based on all samples produced from MFL, that the estimated values of γ or σ exist and
are unique.

Both density and trace plots of γ, σ, R(t), and h(t) for each data set mentioned in
Table 7 are shown in the supplementary file to demonstrate the convergence of MCMC
iterations. These plots indicate that the MCMC approach yields satisfactory results. The rec-
ommended number of samples to be discarded is sufficient to mitigate the impact of the
recommended beginning values. In these plots, the dotted line represents the 95% HPD
interval boundaries, and the solid line represents the Bayes estimate. Additionally, the find-
ings show that while the estimated values of R(t) are negatively skewed, the values of γ, σ,
and h(t) are almost symmetrical. We extracted several characteristics from the remaining
40,000 MCMC variates of γ, σ, R(t), and h(t), including mean, first quartile, median, third
quartile, mode, standard deviation (St.Dv.), and skewness (Skew.), which are also provided
in the supplementary file.

5.2. Engineering Data Analysis

This application examines a collection of data indicating the duration of twenty
mechanical components (MCs) until they cease functioning. This data set was first provided
by Murthy et al. [34]. In Table 9, the MCs data are provided.
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Table 9. Failure times of 20 mechanical components.

0.067 0.068 0.076 0.081 0.084 0.085 0.085 0.086 0.089 0.098
0.098 0.114 0.114 0.115 0.121 0.125 0.131 0.149 0.160 0.485

Before considering the estimations, we have two concerns: (i) what is the validity
of ULL for MCs data, and (ii) what is the superiority of the ULL model compared to the
other models discussed in Section 5.1? Table 10 presents the MLEs (with their St.Ers) of γ
and σ in addition to all fitted criteria (including: L⋆, AI, BI, CAI, HQI, AD(p-value), CvM(p-
value), and KS(p-value)). The findings reported in Table 10 show that the ULL distribution
provides a good fit for the MCs data set compared to others.

Table 10. Fitting outputs of the ULL and its competitive models from MCs’ data.

Model
MLE(St.Er)

L⋆ AI BI CAI HQI AD(p-Value) CvM(p-Value) KS(p-Value)
γ σ

ULL 6.0225(0.8731) 1.0038(0.0029) −37.808 −71.617 −69.625 −70.911 −71.228 0.540(0.167) 0.067(0.303) 0.124(0.919)
UBS 0.2841(0.0449) 2.1427(0.1347) −26.103 −48.205 −46.214 −47.499 −47.817 2.787(0.001) 0.452(0.001) 0.276(0.094)

UGom 0.0022(0.0005) 2.6088(0.1255) −36.867 −69.734 −67.742 −69.028 −69.345 0.544(0.163) 0.070(0.278) 0.211(0.335)
UW 0.0031(0.0013) 6.7294(0.4996) −35.819 −67.639 −65.647 −66.933 −67.250 0.866(0.026) 0.112(0.078) 0.160(0.683)
UG 17.648(5.5289) 7.9145(2.5150) −29.272 −54.544 −52.553 −53.839 −54.156 1.647(0.008) 0.238(0.009) 0.215(0.314)
TL 0.6248(0.1397) − −13.743 −25.486 −24.490 −25.264 −25.291 2.249(0.005) 0.348(0.002) 0.484(0.005)

Kum 1.5865(0.2442) 21.809(10.172) −25.648 −47.297 −45.305 −46.591 −46.908 2.764(0.001) 0.448(0.001) 0.263(0.126)
Beta 3.1129(0.9369) 21.826(7.0425) −27.881 −51.763 −49.771 −51.057 −51.374 2.415(0.004) 0.379(0.002) 0.254(0.152)

Following the same graphical tools depicted in Figure 4, Figure 5a shows that the
dots representing probability closely match the line representing the theoretical probability
more than others. The estimated ULL density line in Figure 5b shows that the ULL
distribution matches better with the histograms of the MCs data than others. The ULL
model’s reliability line in Figure 5c matches the real-life reliability line better than other
models. The information depicted in Figure 5d is reinforced by the observation that the
MCs’ data set exhibits an increasing failure rate. Additionally, it can be observed from
Figure 5e that the estimated values exist and are unique for both γ̂ and σ̂. We thus consider
the estimates γ ≡ 6.0224 and σ ≡ 1.0038 as initial guess points to perform any additional
computations based on MCs’ data.

Just like our scenarios discussed in Section 5.1, from the complete MCs data, we shall
evaluate all offered estimators of γ, σ, R(t), and h(t) (at t = 0.1). From Table 11, by taking
m = 10, based on some choices of Ti, i = 1, 2, and S, five various IT2-APC samples
are generated; see Table 9. Frequentist and Bayes’ MCMC estimates (with their St.Ers)
of γ, σ, R(t), and h(t) are calculated; see Table 12. Additionally, in Table 12, two-sided
95% ACI/HPD interval estimates (with their IWs) of the same unknown parameters are
reported. From Table 12, one can observe that the Bayesian-based point and HPD interval
estimates are superior to the conventional estimates in terms of minimum St.Ers and IWs.

Table 11. Artificial IT2-APC samples from MCs data.

Sample S T1(d1) T2(d2) S∗ T∗ Data

A (25, 05) 0.069(1) 0.087(6) 12 0.087 0.067, 0.076, 0.081, 0.084, 0.085, 0.085
B (03, 25, 02) 0.085(5) 0.090(7) 9 0.090 0.067, 0.068, 0.076, 0.081, 0.084, 0.086, 0.089
C (05, 25) 0.087(7) 0.099(9) 7 0.099 0.067, 0.068, 0.076, 0.081, 0.084, 0.085, 0.085, 0.089, 0.098
D (23, 05, 22) 0.070(1) 0.098(9) 10 0.098 0.067, 0.076, 0.081, 0.084, 0.085, 0.086, 0.089, 0.098
E (110) 0.118(8) 0.122(9) 3 0.122 0.067, 0.081, 0.084, 0.086, 0.089, 0.098, 0.114, 0.115, 0.121
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Figure 5. Fitting visualizations, including (a) PP, (b) Histogram, (c) Reliability, (d) TTT, and (e) Con-
tour, from MCs data.
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Table 12. Estimates of γ, σ, R(t), and h(t) from MCs’ data.

Sample Par.
MLE Bayes ACI HPD

Est. St.Er Est. St.Er Lower Upper IW Lower Upper IW

A γ 7.7872 3.9505 0.0444 15.530 15.486 7.7872 0.0001 7.7870 7.7874 0.0004
σ 1.0007 0.0028 0.9953 1.0062 0.0110 1.0007 0.0001 1.0005 1.0009 0.0004

R(0.1) 0.4685 0.2138 0.0495 0.8876 0.8381 0.4666 0.0571 0.3545 0.5770 0.2225
h(0.1) 30.672 18.793 0.0000 67.506 67.506 30.617 0.8980 28.841 32.285 3.4442

B γ 7.0692 2.4827 2.2031 11.935 9.7322 7.0692 0.0001 7.0690 7.0694 0.0004
σ 1.0014 0.0033 0.9950 1.0078 0.0128 1.0014 0.0001 1.0012 1.0016 0.0004

R(0.1) 0.4744 0.1467 0.1869 0.7620 0.5751 0.4738 0.0315 0.4122 0.5355 0.1233
h(0.1) 27.759 11.727 4.7745 50.743 45.969 27.744 0.4575 26.840 28.620 1.7800

C γ 7.0653 2.1581 2.8354 11.295 8.4597 7.0653 0.0001 7.0651 7.0654 0.0004
σ 1.0014 0.0028 0.9958 1.0069 0.0111 1.0014 0.0001 1.0012 1.0016 0.0004

R(0.1) 0.4725 0.1279 0.2217 0.7233 0.5015 0.4719 0.0315 0.4104 0.5334 0.1230
h(0.1) 27.772 10.155 7.8678 47.675 39.807 27.756 0.4535 26.861 28.625 1.7643

D γ 6.7975 2.0105 2.8570 10.738 7.8811 6.7975 0.0001 6.7974 6.7977 0.0004
σ 1.0019 0.0037 0.9947 1.0092 0.0144 1.0019 0.0001 1.0017 1.0021 0.0004

R(0.1) 0.5266 0.1234 0.2847 0.7685 0.4838 0.5261 0.0241 0.4791 0.5733 0.0942
h(0.1) 25.900 9.4594 7.3602 44.440 37.080 25.892 0.3983 25.112 26.667 1.5548

E γ 5.4851 1.4151 2.7116 8.2587 5.5471 5.4851 0.0001 5.4849 5.4853 0.0004
σ 1.0073 0.0097 0.9882 1.0264 0.0382 1.0073 0.0001 1.0071 1.0075 0.0004

R(0.1) 0.6403 0.1023 0.4397 0.8409 0.4011 0.6402 0.0070 0.6265 0.6541 0.0276
h(0.1) 19.063 6.4921 6.3385 31.787 25.448 19.063 0.1364 18.795 19.329 0.5340

The profile log-likelihood functions of γ and σ (shown in the Supplementary File)
indicate the existence and uniqueness of the estimates of γ̂ and σ̂. We examine the trace plots
of the variables γ, σ, R(t), and h(t) to observe whether the MCMC algorithm is operating
efficiently. All trace plots illustrate that applying the final 40,000 MCMC iterations is
effective and produces good results for all the unknown values. Additionally, the vital
statistics of γ, σ, R(t), and h(t) (presented in the supplementary file) demonstrate that
although the computed estimates for h(t) are negatively skewed, those for γ, σ, or R(t) are
fairly symmetrical.

6. Optimum Progressive Scenario

The goal during reliability trials is to assess and decide upon the optimal (best) pro-
gressive censoring from a group of available options. So, choosing the best progressive
design has been a topic of interest in statistics. For more information, one can refer to
Ng et al. [35], Pradhan and Kundu [36], and other researchers have also studied this topic.
To determine the best fashion of progressive censoring among others to gather information
about unknown parameters under consideration, Table 1 lists different criteria to help us
choose the best progressive plan.

Our objective for Crit[1] is to maximize the values of the numbers found on the main
diagonal of the estimated Fisher I(·) information. In the same way, considering both Crit[i]
for i = 1, 2, we aim to reduce both trace and determinant of the approximated OVC matrix,
respectively. Furthermore, criterion Crit[4] helps to decrease the variance of log-MLE of the
qth quantile, denoted by V̂(log(P̂q)), such as

log(P̂q) = −
[

log(1 − log(q))
log(σ)

]γ−1

, 0 < q < 1,

where the delta method is reconsidered here to evaluate V̂(log(Q̂q)). Subsequently,
to choose the best progressive design, one needs to find the progressive pattern that
has the smallest values for Crit[i] for i = 2, 3, 4, and the largest value for Crit[1].

6.1. Optimum Progressive Using Environmental Data

To pick the optimum progressive scenario from the given MFL data, all optimum
criteria reported in Table 13 are evaluated through the acquired MLEs γ̂ and σ̂ (which
are provided in Table 8). In order to ascertain the optimal progressive design among the
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suggested schemes utilized in samples A, B, C, D, and E, Table 14 presents the optimum
Crit[i] for i = 1, 2, 3, 4 derived from the MFL data.

Table 13. Criteria of the best progressive censoring.

Criterion Subject

Crit[1] Maximize trace(I(α̂))
Crit[2] Minimize trace(V(α̂))
Crit[3] Minimize det(V(α̂))

Crit[4] Minimize V̂(log(P̂q)), 0 < q < 1

Table 14. Optimum progressive plans from MFL data.

Sample
Crit[1] Crit[2] Crit[3]

Crit[4]

q → 0.3 0.6 0.9

A 20.062 0.7483 0.03730 0.00085 0.00292 0.00870
B 24.673 0.6184 0.02506 0.00085 0.00288 0.00836
C 30.878 0.5788 0.01874 0.00057 0.00180 0.00549
D 23.073 0.6246 0.02707 0.00066 0.00205 0.00620
E 20.706 0.5299 0.02559 0.00067 0.00193 0.00572

Results in Table 14 indicate that:

• Via Crit[i] for i = 1, 3, 4; the R-censoring S = (05, 25) (in Sample C) is the optimum
than others.

• Via Crit[2]; the U-censoring S = (110) (in Sample E) is optimal one vs. others.

6.2. Optimum Progressive Using Engineering Data

Using the MCs’ data, to find the optimum progressive pattern, all optimum criteria
reported in Table 13 are evaluated through the acquired MLEs γ̂ and σ̂ (which are provided
in Table 12). In Table 15, the fitted optimum Crit[i] for i = 1, 2, 3, 4, from the MCs’ data,
are provided.

Table 15. Optimum progressive plans from MCs’ data.

Sample
Crit[1] Crit[2] Crit[3]

Crit[4]

q → 0.3 0.6 0.9

A 92,435,021.523 15.607 1.688×10−7 5.729×10−5 3.189×10−4 2.284×10−3

B 28,664,462.023 6.1640 2.150×10−7 3.654×10−5 1.838×10−4 1.348×10−3

C 28,897,096.810 4.6575 1.612×10−7 2.981×10−5 1.383×10−4 1.007×10−3

D 13,740,904.859 4.0422 2.942×10−7 3.508×10−5 1.540×10−4 1.086×10−3

E 974,049.19863 2.0026 2.056×10−6 5.371×10−5 2.193×10−4 1.503×10−3

Results in Table 15 indicated that:

• Via Crit[1]; the L-censoring S = (25, 05) (in Sample A) is the optimal one vs. others.
• Via Crit[2]; the U-censoring S = (110) (in Sample E) is the optimal one vs. others.
• Via Crit[i] for i = 3, 4; the R-censoring S = (05, 25) (in Sample C) is the optimal one

vs. others.

The best progressive designs, based on the highest flood level and data on mechanical
parts, support the same conclusions mentioned in Section 2. In simpler terms, based on
the analysis conducted in the environment and engineering fields, we can say that the
suggested methods work well on real-world data and provide a good understanding of the
lifetime model. These findings are limited by the use of the ULL model and the IT2-APC
plan, and they cannot be generalised to other lifetime models or censorship techniques.
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7. Concluding Remarks

This study provided a range of statistical inference methodologies covering the es-
timation of the unit log-log model, including the model parameters and some reliability
benchmarks in the context of improved adaptive progressively Type-II censored data.
The work in this paper is divided into three parts. The first part derives the point and
interval estimations using classical and Bayesian approaches. The maximum likelihood and
Bayesian estimation via squared error loss functions are employed for this purpose. The sec-
ond part includes the numerical comparison between the various estimates. A simulation
study under several situations is considered to compare the various point and interval
estimations using some statistical standards, including the mean square error and coverage
probability. Two genuine data sets from various domains are analyzed from a practical
perspective to demonstrate the applicability of the proposed methodologies. The primary
deduction drawn from the second part is that the Bayesian method outperforms the con-
ventional method. Furthermore, the two applications demonstrated how adaptable the unit
log-log model is as well as how it can yield better results than certain well-known models.
The final part explored the selection of the appropriate progressive censoring approach.
For this, four precision criteria are considered. We applied the given criteria to the real data
sets examined in the real data section to demonstrate their significance. In future work, it is
important to compare the proposed analytical methods with some other methods, such as
the product of spacings and E-Bayesian methods.
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