Sharp Coefficient Bounds for a Subclass of Bounded Turning Functions with a Cardioid Domain
Abstract
:1. Introduction and Definitions
2. A Set of Lemmas
3. Coefficient Bounds for the Family
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duren, P. Univalent Functions; Grundlehren der Mathematischen Wissenschaften 259, New York, Berlin, Heidelberg, Tokyo; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; pp. 157–169. [Google Scholar]
- Cho, N.E.; Kwon, O.S.; Lecko, A.; Sim, Y.J. Sharp estimates of generalized zalcman functional of early coefficients for Ma-Minda type functions. Filomat 2018, 32, 6267–6280. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Raina, R.K.; Sokół, J. Certain Ma-Minda type classes of analytic functions associated with the crescent-shaped region. Anal. Math. Phys. 2019, 9, 1887–1903. [Google Scholar] [CrossRef]
- Madaan, V.; Kumar, A.; Ravichandran, V. Starlikeness associated with lemniscate of Bernoulli. Filomat 2019, 33, 1937–1955. [Google Scholar] [CrossRef] [Green Version]
- Ali, R.M.; Ravichandran, V. Uniformly convex and uniformly starlike functions. Ramanujan Math. Newsl. 2011, 355, 16–30. [Google Scholar]
- Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with a cardioid. Afr. Mat. 2016, 27, 923–939. [Google Scholar] [CrossRef]
- Wani, L.A.; Swaminathan, A. Starlike and convex functions associated with a nephroid domain. Bull. Malays. Math. Sci. Soc. 2021, 44, 79–104. [Google Scholar] [CrossRef]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Goel, P.; Sivaprasad Kumar, S. Certain class of starlike functions associated with modified sigmoid function. Bull. Malays. Math. Sci. Soc. 2020, 43, 957–991. [Google Scholar] [CrossRef]
- Gandhi, S. Radius estimates for three leaf function and convex combination of starlike functions. In Mathematical Analysis 1: Approximation Theory ICRAPAM; Deo, N., Gupta, V., Acu, A., Agrawal, P., Eds.; Springer: Singapore, 2018; Volume 306. [Google Scholar]
- Sivaprasad Kumar, S.; Kamaljeet, G. A cardioid domain and starlike functions. Anal. Math. Phys. 2021, 11, 54. [Google Scholar] [CrossRef]
- Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 1, 111–122. [Google Scholar] [CrossRef]
- Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108–112. [Google Scholar] [CrossRef]
- Mateljević, M. Schwarz lemma and Kobayashi metrics for harmonic and holomorphic functions. J. Math. Anal. Appl. 2018, 464, 78–100. [Google Scholar] [CrossRef]
- Mateljević, M.; Mutavdžic, N.; Örnek, B.N. Note on some classes of holomorphic functions related to Jack’s and Schwarz’s lemma. Appl. Anal. Discret. Math. 2022, 16, 111–131. [Google Scholar] [CrossRef]
- Aydinoğlua, S.; Örnek, B.N. Estimates concerned with Hankel determinant for (α) class. Filomat 2022, 36, 3679–3688. [Google Scholar] [CrossRef]
- Janteng, A.; Halim, S.A.; Darus, M. Coefficient inequality for a function whose derivative has a positive real part. J. Inequalities Pure Appl. Math. 2006, 7, 1–5. [Google Scholar]
- Janteng, A.; Halim, S.A.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. 2007, 1, 619–625. [Google Scholar]
- Cho, N.E.; Kowalczyk, B.; Kwon, O.S.; Lecko, A.; Sim, Y.J. The bounds of some determinants for starlike functions of order alpha. Bull. Malays. Math. Sci. Soc. 2018, 41, 523–535. [Google Scholar] [CrossRef]
- Shi, L.; Srivastava, H.M.; Arif, M.; Hussain, S.; Khan, H. An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function. Symmetry 2019, 11, 598. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Khan, B.; Khan, N.; Tahir, M.; Ahmad, S.; Khan, N. Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with the q-exponential function. Bull. Sci. Math. 2021, 167, 102942. [Google Scholar] [CrossRef]
- Babalola, K.O. On H3(1) Hankel determinant for some classes of univalent functions. Inequal. Theory Appl. 2010, 6, 1–7. [Google Scholar]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. The bound of the Hankel determinant of the third kind for starlike functions. Bull. Malays. Math. Sci. Soc. 2019, 42, 767–780. [Google Scholar] [CrossRef] [Green Version]
- Altınkaya, Ş.; Yalçın, S. Third Hankel determinant for Bazilevič functions. Adv. Math. 2016, 5, 91–96. [Google Scholar]
- Zaprawa, P.; Obradović, M.; Tuneski, N. Third Hankel determinant for univalent starlike functions. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Ser. A Mat. 2021, 115, 1–6. [Google Scholar]
- Kowalczyk, B.; Lecko, A.; Sim, Y.J. The sharp bound of the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 2018, 97, 435–445. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A.; Thomas, D.K. The sharp bound of the third Hankel determinant for starlike functions. Forum Math. 2022, 34, 1249–1254. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A. The sharp bound of the third Hankel determinant for functions of bounded turning. Bol. Soc. Mat. Mex. 2021, 27, 69. [Google Scholar] [CrossRef]
- Lecko, A.; Sim, Y.J. Śmiarowska B. The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2. Complex Anal. Oper. Theory 2019, 13, 2231–2238. [Google Scholar] [CrossRef] [Green Version]
- Riaz, A.; Raza, M.; Thomas, D.K. Hankel determinants for starlike and convex functions associated with sigmoid functions. Forum Math. 2022, 34, 137–156. [Google Scholar] [CrossRef]
- Shi, L.; Arif, M.; Ullah, K.; Alreshidi, N.; Shutaywi, M. On sharp estimate of third Hankel determinant for a subclass of starlike functions. Fractal Fract. 2022, 6, 437. [Google Scholar] [CrossRef]
- Wang, Z.G.; Raza, M.; Arif, M.; Ahmad, K. On the third and fourth Hankel determinants for a subclass of analytic functions. Bulletin of the Malaysian Mathematical Sciences Society 2022, 45, 323–359. [Google Scholar] [CrossRef]
- Kumar, V.; Cho, N.E.; Ravichandran, V.; Srivastava, H.M. A sharp coefficient bounds for starlike functions associated with the Bell numbers. Math. Slovaca 2019, 69, 1053–1064. [Google Scholar] [CrossRef]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. On the fourth coefficient of functions in the Carathéodory class. Comput. Methods Funct. Theory 2018, 18, 307–314. [Google Scholar] [CrossRef]
- Pommerenke, C. Univalent Function; Vanderhoeck & Ruprecht: Göttingen, Germany, 1975. [Google Scholar]
- Libera, R.J.; Złotkiewicz, E.J. Coefficient bounds for the inverse of a function with derivative in P, II. Proc. Am. Math. Soc. 1984, 92, 58–60. [Google Scholar]
- Prokhorov, D.V.; Szynal, J. Inverse coefficients for (α,β)-convex functions. Ann. Univ. Mariae Curie-Sklodowska (Sect. A) 1981, 3, 125–143. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Srivastava, H.M.; Cho, N.E.; Arif, M. Sharp Coefficient Bounds for a Subclass of Bounded Turning Functions with a Cardioid Domain. Axioms 2023, 12, 775. https://doi.org/10.3390/axioms12080775
Shi L, Srivastava HM, Cho NE, Arif M. Sharp Coefficient Bounds for a Subclass of Bounded Turning Functions with a Cardioid Domain. Axioms. 2023; 12(8):775. https://doi.org/10.3390/axioms12080775
Chicago/Turabian StyleShi, Lei, Hari Mohan Srivastava, Nak Eun Cho, and Muhammad Arif. 2023. "Sharp Coefficient Bounds for a Subclass of Bounded Turning Functions with a Cardioid Domain" Axioms 12, no. 8: 775. https://doi.org/10.3390/axioms12080775
APA StyleShi, L., Srivastava, H. M., Cho, N. E., & Arif, M. (2023). Sharp Coefficient Bounds for a Subclass of Bounded Turning Functions with a Cardioid Domain. Axioms, 12(8), 775. https://doi.org/10.3390/axioms12080775