Applications of Shell-like Curves Connected with Fibonacci Numbers
Abstract
:1. Introduction
2. Definitions
- (i)
- For , we can obtain the class A function , where and , if satisfying:
- (ii)
- (iii)
- (iv)
- (v)
- (vi)
3. Coefficient Bounds and Fekete–Szegö Inequality
4. Corollaries and Consequences
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parberry, I. Problems on algorithms. ACM Sigact News 1995, 26, 50–56. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Second Order Differential Inequalities in the Complex Plane. J. Math. Anal. Appl. 1978, 65, 289–305. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations and Univalent Functions. Mich. Math. J. 1981, 28, 157–172. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations. Theory and Applications; Marcel Dekker, Inc.: New York, NY, USA, 2000. [Google Scholar]
- Frasin, B.A.; Aouf, M.K. New subclass of bi-univalent functons. Appl. Math. Lett. 2011, 24, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Yousef, F.; Al-Hawary, T.; Murugusundaramoorthy, G. Fekete-Szegö functional problems for some subclasses of bi-univalent functions defined by Frasin differential operator. Afr. Mat. 2019, 30, 495–503. [Google Scholar] [CrossRef]
- Yousef, F.; Alroud, S.; Illafe, M. New subclasses of analytic and bi-univalent functions endowed with coefficient estimate problems. Anal. Math. Phys. 2010, 11, 58. [Google Scholar] [CrossRef]
- Yousef, F.; Frasin, B.A.; Al-Hawary, T. Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials. Filomat 2018, 32, 3229–3236. [Google Scholar] [CrossRef]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Illafe, M.; Yousef, F.; Mohd, M.H.; Supramaniam, S. Initial coefficients estimates and Fekete-Szegö inequality problem for a general subclass of bi-univalent functions defined by subordination. Axioms 2023, 12, 235. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften Series; Springer: New York, NY, USA, 1983; Volume 259. [Google Scholar]
- Sokół, J. On starlike functions connected with Fibonacci numbers. Folia Scient. Univ. Tech. Resoviensis 1999, 175, 111–116. [Google Scholar]
- Dziok, J.; Raina, R.K.; Sokól, J. Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers. Comp. Math. Appl. 2011, 61, 2605–2613. [Google Scholar] [CrossRef] [Green Version]
- Dziok, J.; Raina, R.K.; Sokól, J. On α-convex functions related to a shell-like curve connected with Fibonacci numbers. Appl. Math. Comput. 2011, 218, 996–1002. [Google Scholar]
- Raina, R.K.; Sokól, J. Fekete-Szegö problem for some starlike functions related to shell-like curves. Math. Slovaca 2016, 66, 135–140. [Google Scholar] [CrossRef]
- Filipponi, P.; Horadam, A.F. Derivative sequences of Fibonacci and Lucas polynomials. In Applications of Fibonacci Numbers; Bergum, G.E., Philippou, A.N., Horadam, A.F., Eds.; Springer: Dordrecht, The Netherlands, 1990; Volume 4, pp. 99–108. [Google Scholar]
- Filipponi, P.; Horadam, A.F. Second derivative sequence of Fibonacci and Lucas polynomials. Fibonacci Quart. 1993, 31, 194–204. [Google Scholar]
- Wang, T.-T.; Zhang, W.-P. Some identities involving Fibonacci, Lucas polynomials and their applications. Bull. Math. Soc. Sci. Math. Roum. 2012, 55, 95–103. [Google Scholar]
- Güney, H.Ö. Coefficient bounds for analytic bi-Bazilevič functions related to shell-like curves connected with Fibonacci numbers. Sahand Commun. Math. Anal. 2019, 16, 149–160. [Google Scholar]
- Güney, H.Ö.; Murugusundaramoorthy, G.; Sokól, J. Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers. Acta Univ. Sapientiae Math. 2018, 10, 70–84. [Google Scholar] [CrossRef] [Green Version]
- Güney, H.Ö.; Murugusundaramoorthy, G.; Sokól, J. Certain subclasses of bi-univalent functions related to k- Fibonacci numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019, 68, 1909–1921. [Google Scholar] [CrossRef] [Green Version]
- Sokól, J.; Raina, R.K.; Özgür, N.Y. Applications of k -Fibonacci numbers for the starlike analytic functions. Hacet. J. Math. Stat. 2015, 44, 121–127. [Google Scholar] [CrossRef]
- Aldawish, I.; Al-Hawary, T.; Frasin, B.A. Subclasses of bi-univalent functions defined by Frasin differential operator. Mathematics 2020, 8, 783. [Google Scholar] [CrossRef]
- Amourah, A.; Alsoboh, A.; Ogilat, O.; Gharib, G.M.; Saadeh, R.; Soudi, M.A. A Generalization of Gegenbauer Polynomials and Bi-Univalent Functions. Axioms 2023, 12, 128. [Google Scholar] [CrossRef]
- Alsoboh, A.; Amourah, A.; Darus, M.; Sharefeen, R.I.A. Applications of Neutrosophic q-Poisson distribution Series for Subclass of Analytic Functions and Bi-Univalent Functions. Mathematics 2023, 11, 868. [Google Scholar] [CrossRef]
- Alsoboh, A.; Darus, M. On Fekete–Szegö Problems for Certain Subclasses of Analytic Functions Defined by Differential Operator Involving q-Ruscheweyh Operator. J. Funct. Spaces 2020, 2020, 8459405. [Google Scholar] [CrossRef] [Green Version]
- Amourah, A.; Alomari, M.; Yousef, F.; Alsoboh, A. Consolidation of a certain discrete probability distribution with a subclass of bi-univalent functions involving Gegenbauer polynomials. Math. Probl. Eng. 2022, 2022, 6354994. [Google Scholar] [CrossRef]
- Al-Hawary, T.; Amourah, A.; Alsoboh, A.; Alsalhi, O. A new comprehensive subclass of analytic bi-univalent functions related to gegenbauer polynomials. Symmetry. 2023, 15.3, 576. [Google Scholar] [CrossRef]
- Alsoboh, A.; Darus, M.; Amourah, A.; Atshan, W.G. A Certain Subclass of Harmonic Meromorphic Functions with Respect to k-Symmetric Points. Int. J. Open Problems Complex Analysis. 2023, 15, 1–16. [Google Scholar]
- Alamoush, A.G. On a subclass of bi-univalent functions associated to Horadam polynomials. Int. J. Open Problems Complex Analysis. 2020, 12, 58–65. [Google Scholar]
- Amourah, A.; Frasin, B.A.; Abdeljawad, T. Fekete-Szegö inequality for analytic and biunivalent functions subordinate to Gegenbauer polynomials. J. Funct. Spaces 2021, 2021, 5574673. [Google Scholar] [CrossRef]
- Amourah, A.; Al-Hawary, T.; Frasin, B.A. Application of Chebyshev polynomials to certain class of bi-Bazilevič functions of order α+iβ. Afr. Mat. 2021, 32, 1059–1066. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Murugusundaramoorthy, G.; Al-Hawary, T. Bi-Bazilevič functions of order ϑ+iδ associated with (p;q)- Lucas polynomials. AIMS Math. 2021, 6, 4296–4305. [Google Scholar] [CrossRef]
- Swamy, S.R.; Bulut, S.; Sailaja, Y. Some special families of holomorphic and Sălăgean type bi-univalent functions associated with Horadam polynomials involving modified sigmoid activation function. Hacet. J. Math. Stat. 2021, 50, 710–720. [Google Scholar] [CrossRef]
- Swamy, S.R.; Wanas, A.K.; Sailaja, Y. Some special families of holomorphic and Sălăgean type bi-univalent functions associated with (m,n)-Lucas polynomials. Commun. Math. Appl. 2020, 11, 1–12. [Google Scholar]
- Frasin, B.A.; Swamy, S.R.; Nirmala, J. Some special families of holomorphic and Al-Oboudi type bi-univalent functions related to k-Fibonacci numbers involving modified sigmoid activated function. Affr. Mat. 2021, 32, 631–643. [Google Scholar] [CrossRef]
- Pommerenke, C. Univalent Functions; Vandenhoeck and Rupercht: Göttingen, Germany, 1975. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amourah, A.; Aldawish, I.; Frasin, B.A.; Al-Hawary, T. Applications of Shell-like Curves Connected with Fibonacci Numbers. Axioms 2023, 12, 639. https://doi.org/10.3390/axioms12070639
Amourah A, Aldawish I, Frasin BA, Al-Hawary T. Applications of Shell-like Curves Connected with Fibonacci Numbers. Axioms. 2023; 12(7):639. https://doi.org/10.3390/axioms12070639
Chicago/Turabian StyleAmourah, Ala, Ibtisam Aldawish, Basem Aref Frasin, and Tariq Al-Hawary. 2023. "Applications of Shell-like Curves Connected with Fibonacci Numbers" Axioms 12, no. 7: 639. https://doi.org/10.3390/axioms12070639
APA StyleAmourah, A., Aldawish, I., Frasin, B. A., & Al-Hawary, T. (2023). Applications of Shell-like Curves Connected with Fibonacci Numbers. Axioms, 12(7), 639. https://doi.org/10.3390/axioms12070639