Zalcman Functional and Majorization Results for Certain Subfamilies of Holomorphic Functions
Abstract
:1. Introduction
- Choose we receive the family defined and investigated by Sokol et al. [12].
- For the function
- If then the class becomes , which is defined and studied by Mendiratta [14].
- For the class reduces to the class . The family was introduced by Cho et al. [15] as:
- If we pick we receive the family initiated by Bano and Raza [16].
- If we select we obtain a family introduced by Al-Shbeil et al. [17].
2. Set of Lemma’s
3. Coefficient Bounds and Zalcman Functional for the Family
4. Majorization Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bieberbach, L. Uber die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. Sitzungsberichte Preuss. Akad. Wiss. 1916, 138, 940–955. [Google Scholar]
- De Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Roberston, M.S. Quasi-subordination and coefficient conjectures. Bull. Am. Math. Soc. 1970, 76, 1–9. [Google Scholar]
- MacGregor, T.H. Majorization by univalent functions. Duke Math. J. 1967, 34, 95–102. [Google Scholar] [CrossRef]
- Tang, H.; Li, S.H.; Deng, G.T. Majorization properties for a new subclass of θ-spiral functions of order γ. Math. Slovaca 2014, 64, 39–50. [Google Scholar] [CrossRef]
- Tang, H.; Deng, G.T. Majorization problems for certain classes of multivalent analytic functions related with the Srivastava-Khairnar-More operator and exponential function. Filomat 2018, 32, 5319–5328. [Google Scholar] [CrossRef]
- Tang, H.; Deng, G.T.; Li, S.H. Majorization properties for certain classes of analytic functions involving a generalized differential operator. J. Math. Res. Appl. 2013, 33, 578–586. [Google Scholar]
- Tang, H.; Deng, G.T. Majorization problems for two subclasses of analytic functions connected with the Liu-Owa integral operator and exponential function. J. Inequal. Appl. 2018, 2018, 1–11. [Google Scholar] [CrossRef]
- Tang, H.; Deng, G.T. Majorization problems for some subclasses of starlike functions. J. Math. Res. Appl. 2019, 39, 153–159. [Google Scholar]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis; Conference Processing Lecture Notes Anal I; International Press Inc.: Somerville, MA, USA, 1992; p. 157169. [Google Scholar]
- Janowski, W. Extremal problems for a family of functions with positive real part and for some related families. Ann. Pol. Math. 1971, 23, 159–177. [Google Scholar] [CrossRef]
- Sokól, J.; Kanas, S. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech. Rzeszowskiej Mat. 1996, 19, 101–105. [Google Scholar]
- Arora, K.; Kumar, S.S. Starlike functions associated with a petal shaped domain. Bull. Korean Math. Soc. 2022, 59, 993–1010. [Google Scholar]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, V.; Kumar, S.S.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Bano, K.; Raza, M. Starlike Functions Associated with Cosine Functions. Bull. Iran. Math. Soc. 2021, 47, 1513–1532. [Google Scholar] [CrossRef]
- Al-Shbeil, I.; Saliu, A.; C ataş, A.; Malik, S.N.; Oladejo, S.O. Some Geometrical Results Associated with Secant Hyperbolic Functions. Mathematics 2022, 10, 2697. [Google Scholar] [CrossRef]
- Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
- Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with a cardioid. Afr. Math. 2016, 27, 923–939. [Google Scholar] [CrossRef]
- Arif, M.; Raza, M.; Tang, H.; Hussain, S.; Khan, H. Hankel determinant of order three for familiar subsets of analytic functions related with sine function. Open Math. 2019, 17, 1615–1630. [Google Scholar] [CrossRef]
- Ravichandran, V.; Verma, S. Bound for the fifth coefficient of certain starlike functions. Comptes Rendus Math. 2015, 353, 505–510. [Google Scholar] [CrossRef]
- Krushkal, S.L. Proof of the Zalcman conjecture for initial coefficients. Georgian Math. J. 2010, 17, 663–681, Corrigendum Georgian Math. J. 2012, 19, 777. [Google Scholar] [CrossRef]
- Tomas, D.K.; Tuneski, N.; Vasudevarao, A. Univalent Functions. A Primer; Walter de Gruyter GmbH & Co KG: Berlin, Germany; Boston, MA, USA, 2018. [Google Scholar]
- Hayman, W.K.; Lingham, E.F. Research Problems in Function Theory—Fiftieth Aniversary Edition, Problems Books in Mathematics; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Bansal, D.; Sokól, J. Zalcman conjecture for some subclass of analytic functions. J. Fract. Calc. Appl. 2017, 8, 1–5. [Google Scholar]
- Brown, J.E.; Tsao, A. On the Zalcman conjecture for starlike and typically real functions. Math. Z. 1986, 191, 467–474. [Google Scholar] [CrossRef]
- Ma, W.C. The Zalcman conjecture for close-to-convex functions. Proc. Am. Math. Soc. 1988, 104, 741–744. [Google Scholar] [CrossRef]
- Allu, V.; Pandey, A. Proof of the generalized Zalcman conjecture for initial coefficients of univalent functions. arXiv 2022, arXiv:2209.11231. [Google Scholar]
- Eframidis, I.; Vukotić, D. Application of Livingston-type inequalities to the generalized Zalcman functional. Math. Nachr. 2018, 291, 1502–1513. [Google Scholar] [CrossRef]
- Obradović, M.; Tuneski, N. Certain provided a proof of this conjecture for univalent functions with real coefficients in. arXiv 2021, arXiv:2112.15449v1. [Google Scholar]
- Lyu, W.; Wang, Z. Global classical solutions for a class of reaction-diffusion system with density-suppressed motility. Electron. Res. Arch. 2022, 30, 995–1015. [Google Scholar] [CrossRef]
- Lyu, W.; Wang, Z. Logistic damping effect in chemotaxis models with density-suppressed motility. Adv. Nonlinear Anal. 2023, 12, 1–12. [Google Scholar] [CrossRef]
- Guo, C.; Hu, J. Fixed-Time Stabilization of High-Order Uncertain Nonlinear Systems: Output Feedback Control Design and Settling Time Analysis. J. Syst. Sci. Complex. 2023, 2023, 12–26. [Google Scholar] [CrossRef]
- Chen, D.; Wang, Q.; Li, Y.; Li, Y.; Zhou, H.; Fan, Y. A general linear free energy relationship for predicting partition. Chemosphere 2020, 247, 125869. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Zhou, H.; Arjika, S. Generalized q-difference equations for (q, c)-hypergeometric polynomials and some applications. Ramanujan J. 2023, 60, 1033–1067. [Google Scholar] [CrossRef]
- Cao, J.; Huang, J. Mohammed Fadel and Sama Arjika, A Review of q-Difference Equations for Al-Salam-Carlitz Polynomials and Applications to U(n+1) Type Generating Functions and Ramanujan’s Integrals. Mathematics 2023, 11, 1655. [Google Scholar] [CrossRef]
- Cao, J.; Qi, F.; Du, W. Closed-Form Formulas for the nth Derivative of the Power-Exponential Function xx. Symmetry 2023, 15, 323. [Google Scholar] [CrossRef]
- Khan, B.; Liu, Z.-G.; Shaba, T.G.; Araci, S.; Khan, N.; Khan, M.G. Applications of-Derivative Operator to the Subclass of Bi-Univalent Functions Involving q-Chebyshev Polynomials. J. Math. 2022, 2022, 8162182. [Google Scholar] [CrossRef]
- Khan, B.; Aldawish, I.; Araci, S.; Khan, M.G. Third Hankel determinant for the logarithmic coefficients of starlike functions associated with sine function. Fractal Fract. 2022, 6, 261. [Google Scholar] [CrossRef]
- Hu, Q.-X.; Srivastava, H.M.; Ahmad, B.; Khan, N.; Khan, M.G.; Mashwani, W.K.; Khan, B. A subclass of multivalent Janowski type q-starlike functions and its consequences. Symmetry 2021, 13, 1275. [Google Scholar] [CrossRef]
- Mateljevic, M.; Mutavdžić, N.; Örnek, B.N. Note on some classes of holomorphic functions related to Jack’s and Schwarz’s lemma. Appl. Anal. Discret. Math. 2022, 16, 111–131. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.G.; Khan, B.; Tawfiq, F.M.O.; Ro, J.-S. Zalcman Functional and Majorization Results for Certain Subfamilies of Holomorphic Functions. Axioms 2023, 12, 868. https://doi.org/10.3390/axioms12090868
Khan MG, Khan B, Tawfiq FMO, Ro J-S. Zalcman Functional and Majorization Results for Certain Subfamilies of Holomorphic Functions. Axioms. 2023; 12(9):868. https://doi.org/10.3390/axioms12090868
Chicago/Turabian StyleKhan, Muhammad Ghafar, Bilal Khan, Ferdous M. O. Tawfiq, and Jong-Suk Ro. 2023. "Zalcman Functional and Majorization Results for Certain Subfamilies of Holomorphic Functions" Axioms 12, no. 9: 868. https://doi.org/10.3390/axioms12090868
APA StyleKhan, M. G., Khan, B., Tawfiq, F. M. O., & Ro, J. -S. (2023). Zalcman Functional and Majorization Results for Certain Subfamilies of Holomorphic Functions. Axioms, 12(9), 868. https://doi.org/10.3390/axioms12090868