A New Reverse Extended Hardy–Hilbert’s Inequality with Two Partial Sums and Parameters
Abstract
1. Introduction
2. Some Lemmas
3. Main Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardy, G.H.; Littlewood, J.E.; Polya, G. Inequalities; Cambridge University Press: Cambridge, UK, 1934. [Google Scholar]
- Krnić, M.; Pečarić, J. Extension of Hilbert’s inequality. J. Math. Anal. Appl. 2006, 324, 150–160. [Google Scholar] [CrossRef]
- Yang, B.C. On a generalization of Hilbert double series theorem. J. Nanjing Univ. Math. Biquarterly 2001, 18, 145–152. [Google Scholar]
- Adiyasuren, V.; Batbold, T.; Azar, L.E. A new discrete Hilbert-type inequality involving partial sums. J. Inequalities Appl. 2019, 127, 2019. [Google Scholar] [CrossRef]
- Yang, B.C. The Norm of Operator and Hilbert-Type Inequalities; Science Press: Beijing, China, 2009. [Google Scholar]
- Yang, B.C.; Debnath, L. On the extended Hardy–Hilbert’s inequality. J. Math. Anal. Appl. 2002, 272, 187–199. [Google Scholar] [CrossRef]
- Krnić, M.; Pečarić, J. General Hilbert’s and Hardy’s inequalities. Math. Inequalities Appl. 2005, 8, 29–51. [Google Scholar] [CrossRef]
- Perić, I.; Vuković, P. Multiple Hilbert’s type inequalities with a homogeneous kernel. Banach J. Math. Anal. 2011, 5, 33–43. [Google Scholar] [CrossRef]
- Huang, Q.L. A new extension of Hardy-Hilbert-type inequality. J. Inequalities Appl. 2015, 2015, 397. [Google Scholar] [CrossRef]
- He, B. A multiple Hilbert-type discrete inequality with a new kernel and best possible constant factor. J. Math. Anal. Appl. 2013, 431, 889–902. [Google Scholar] [CrossRef]
- Xu, J.S. Hardy-Hilbert’s inequalities with two parameters. Adv. Math. 2007, 36, 63–76. [Google Scholar]
- Xie, Z.T.; Zeng, Z.; Sun, Y.F. A new Hilbert-type inequality with the homogeneous kernel of degree-2. Adv. Appl. Math. Sci. 2013, 12, 391–401. [Google Scholar]
- Zeng, Z.; Raja Rama Gandhi, K.; Xie, Z.T. A new Hilbert-type inequality with the homogeneous kernel of degree-2 and with the integral. Bull. Math. Sci. Appl. 2014, 3, 11–20. [Google Scholar]
- Xin, D.M. A Hilbert-type integral inequality with the homogeneous kernel of zero degree. Math. Theory Appl. 2010, 30, 70–74. [Google Scholar]
- Azar, L.E. The connection between Hilbert and Hardy inequalities. J. Inequalities Appl. 2013, 452, 2013. [Google Scholar] [CrossRef]
- Adiyasuren, V.; Batbold, T.; Krnić, M. Hilbert–type inequalities involving differential operators, the best constants and applications. Math. Inequal. Appl. 2015, 18, 111–124. [Google Scholar] [CrossRef]
- Gu, Z.H.; Yang, B.C. An extended Hardy-Hilbert’s inequality with parameters and applications. J. Math. Inequalities 2021, 15, 1375–1389. [Google Scholar] [CrossRef]
- Hong, Y.; Wen, Y. A necessary and sufficient condition of that Hilbert type series inequality with homogeneous kernel has the best constant factor. Ann. Math. 2016, 37A, 329–336. [Google Scholar]
- Hong, Y. On the structure character of Hilbert’s type integral inequality with homogeneous kernel and application. J. Jilin Univ. (Sci. Ed.) 2017, 55, 189–194. [Google Scholar]
- Hong, Y.; Huang, Q.L.; Yang, B.C.; Liao, J.Q. The necessary and sufficient conditions for the existence of a kind of Hilbert-type multiple integral inequality with the non-homogeneous kernel and its applications. J. Inequalities Appl. 2017, 2017, 316. [Google Scholar] [CrossRef]
- Chen, Q.; He, B.; Hong, Y.; Li, Z. Equivalent parameter conditions for the validity of half-discrete Hilbert-type multiple integral inequality with generalized homogeneous kernel. J. Funct. Spaces 2020, 2020, 7414861. [Google Scholar] [CrossRef]
- He, B.; Hong, Y.; Chen, Q. The equivalent parameter conditions for constructing multiple integral half-discrete Hilbert-type inequalities with a class of non-homogeneous kernels and their applications. Open Math. 2021, 19, 400–411. [Google Scholar] [CrossRef]
- Hong, Y.; Huang, Q.L.; Chen, Q. The parameter conditions for the existence of the Hilbert-type multiple integral inequality and its best constant factor. Ann. Funct. Anal. 2020, 12, 7. [Google Scholar] [CrossRef]
- Hong, Y.; Chen, Q. Equivalent parameter conditions for the construction of Hilbert-type integral inequalities with a class of non-homogeneous kernels. J. S. China Norm. Univ. (Nat. Sci. Ed.) 2020, 52, 124–128. [Google Scholar]
- Hong, Y.; Chen, Q. Research Progress and Applications of Hilbert-Type Series Inequalitie. J. Jilin Univ. (Sci. Ed.) 2021, 59, 1131–1140. [Google Scholar]
- Hong, H.; Chen, Q.; Wu, C.Y. The best matching parameters for semi-discrete Hilbert-type inequality with quasi-homogeneous kernel. Math. Appl. 2021, 34, 779–785. [Google Scholar]
- Hong, Y.; He, B. The optimal matching parameter of half-discrete Hilbert-type multiple integral inequalities with non-homogeneous kernels and applications. Chin. Quart. J. Math. 2021, 36, 252–262. [Google Scholar]
- Luo, R.; Yang, B.C.; Huang, X.S. A reverse extended Hardy–Hilbert’s inequality with parameters. J. Inequalities Appl. 2023, 2023, 58, Springer Science and Business Media LLC. [Google Scholar] [CrossRef]
- Nave, O. Modification of Semi-Analytical Method Applied System of ODE. Mod. Appl. Sci. 2020, 14, 75, Canadian Center of Science and Education. [Google Scholar] [CrossRef]
- Yang, B.C.; Debnath, L. Discrete Hilbert-Type Inequalities; Bentham Science Publishers Ltd.: Dubai, United Arab Emirate, 2011. [Google Scholar]
- Kuang, J.C. Applied Inequalities; Shangdong Science and Technology Press: Jinan, China, 2004. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, J.; Yang, B. A New Reverse Extended Hardy–Hilbert’s Inequality with Two Partial Sums and Parameters. Axioms 2023, 12, 678. https://doi.org/10.3390/axioms12070678
Liao J, Yang B. A New Reverse Extended Hardy–Hilbert’s Inequality with Two Partial Sums and Parameters. Axioms. 2023; 12(7):678. https://doi.org/10.3390/axioms12070678
Chicago/Turabian StyleLiao, Jianquan, and Bicheng Yang. 2023. "A New Reverse Extended Hardy–Hilbert’s Inequality with Two Partial Sums and Parameters" Axioms 12, no. 7: 678. https://doi.org/10.3390/axioms12070678
APA StyleLiao, J., & Yang, B. (2023). A New Reverse Extended Hardy–Hilbert’s Inequality with Two Partial Sums and Parameters. Axioms, 12(7), 678. https://doi.org/10.3390/axioms12070678