Next Article in Journal
A New Reverse Extended Hardy–Hilbert’s Inequality with Two Partial Sums and Parameters
Next Article in Special Issue
Existence and General Energy Decay of Solutions to a Coupled System of Quasi-Linear Viscoelastic Variable Coefficient Wave Equations with Nonlinear Source Terms
Previous Article in Journal
Review of Nonlocal-in-Time Damping Models in the Dynamics of Structures
Previous Article in Special Issue
Families of Orbits Produced by Three-Dimensional Central and Polynomial Potentials: An Application to the 3D Harmonic Oscillator
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

An Equivalent Form Related to a Hilbert-Type Integral Inequality

by
Michael Th. Rassias
1,2,*,
Bicheng Yang
3 and
Andrei Raigorodskii
4,5,6
1
Department of Mathematics and Engineering Sciences, Hellenic Military Academy, 16673 Vari Attikis, Greece
2
Program in Interdisciplinary Studies, Institute for Advanced Study, 1 Einstein Dr, Princeton, NJ 08540, USA
3
Department of Mathematics, Guangdong University of Education, Guangzhou 510303, China
4
Moscow Institute of Physics and Technology, Institutskiy per, d. 9, 141700 Dolgoprudny, Russia
5
Department of Mechanics and Mathematics, Moscow State University, 119991 Moscow, Russia
6
Caucasus Mathematical Center, Adyghe State University, 385000 Maykop, Russia
*
Author to whom correspondence should be addressed.
Axioms 2023, 12(7), 677; https://doi.org/10.3390/axioms12070677
Submission received: 31 May 2023 / Revised: 24 June 2023 / Accepted: 6 July 2023 / Published: 10 July 2023

Abstract

:
In the present paper, we establish an equivalent form related to a Hilbert-type integral inequality with a non-homogeneous kernel and a best possible constant factor. We also consider the case of homogeneous kernel as well as certain operator expressions.

1. Introduction

As is well-known, in 1925, Hardy [1] proved the following famous integral inequality:
If p > 1 ,   1 p + 1 q = 1 ,   f ( x ) , g ( y ) 0 ,
0 < 0 f p ( x ) d x < and 0 < 0 g q ( y ) d y < ,
then it holds
0 0 f ( x ) g ( y ) x + y d x d y < π sin ( π / p ) 0 f p ( x ) d x 1 p 0 g q ( y ) d y 1 q ,
where the constant factor π sin ( π / p ) is the best possible.
For p = q = 2 , (1) reduces to the well-known Hilbert integral inequality. Hilbert’s integral inequality and (1) are two very important inequalities, which are well-known for their applicability in various domains of analysis (cf. [2,3]).
In 1934, Hardy et al. presented the following extension of (1):
If k 1 ( x , y ) is a non-negative homogeneous function of degree 1 ,
k p = 0 k 1 ( u , 1 ) u 1 p d u R + = ( 0 , ) ,
then we have
0 0 k 1 ( x , y ) f ( x ) g ( y ) d x d y < k p 0 f p ( x ) d x 1 p 0 g q ( y ) d y 1 q ,
where the constant factor k p is the best possible (cf. [2], Theorem 319). Furthermore, the following Hilbert-type integral inequality with non-homogeneous kernel holds true:
If h ( u ) > 0 , ϕ ( σ ) = 0 h ( u ) u σ 1 d u R + , then
0 0 h ( x y ) f ( x ) g ( y ) d x d y < ϕ 1 p 0 x p 2 f p ( x ) d x 1 p 0 g q ( y ) d y 1 q ,
where the constant factor ϕ ( 1 p ) is the best possible (cf. [2], Theorem 350).
In 1998, by introducing an independent parameter λ > 0 , Yang established an extension of Hilbert’s integral inequality with the kernel 1 ( x + y ) λ (cf. [4,5] ). In 2004, by introducing two pairs of conjugate exponents ( p , q ) and ( r , s ) with an independent parameter λ > 0 , Yang [6] proved the following extension of (1):
If p , r > 1 , 1 p + 1 q = 1 r + 1 s = 1 ,   f ( x ) , g ( y ) 0 , such that
0 < 0 x p ( 1 λ r ) 1 f p ( x ) d x < and 0 < 0 y q ( 1 λ s ) 1 g q ( y ) d y < ,
then
0 0 f ( x ) g ( y ) x λ + y λ d x d y < π λ sin ( π / r ) 0 x p ( 1 λ r ) 1 f p ( x ) d x 1 p 0 y q ( 1 λ s ) 1 g q ( y ) d y 1 q ,
where the constant factor π λ sin ( π / r ) is the best possible.
For λ = 1 , r = q , s = p , (4) reduces to (1). In 2005, the work [7] also provided an extension of (1) with the kernel 1 ( x + y ) λ and two pairs of conjugate exponents. In papers [8,9,10,11,12], the authors proved some interesting extensions and particular cases of (1)–(3) with parameters.
In 2009, Yang presented the following extension of (2) and (5) (cf. [13,14]):
If λ 1 + λ 2 = λ R = ( , ) , k λ ( x , y ) is a non-negative homogeneous function of degree λ , satisfying
k λ ( u x , u y ) = u λ k λ ( x , y ) ( u , x , y > 0 ) ,
k ( λ 1 ) = 0 k λ ( u , 1 ) u λ 1 1 d u R + ,
then we have
0 0 k λ ( x , y ) f ( x ) g ( y ) d x d y < k ( λ 1 ) 0 x p ( 1 λ 1 ) 1 f p ( x ) d x 1 p 0 y q ( 1 λ 2 ) 1 g q ( y ) d y 1 q ,
where the constant factor k ( λ 1 ) is the best possible.
For λ = 1 , λ 1 = 1 q , λ 2 = 1 p , (5) reduces to (2), whereas for λ > 0 ,   λ 1 = λ r ,   λ 2 = λ s ,   k λ ( x , y ) = 1 x λ + y λ , (5) reduces to (4).
Additionally, the extension below of (3) has been established:
0 0 h ( x y ) f ( x ) g ( y ) d x d y < ϕ ( σ ) 0 x p ( 1 σ ) 1 f p ( x ) d x 1 p 0 y q ( 1 σ ) 1 g q ( y ) d y 1 q ,
where the constant factor ϕ ( σ ) is the best possible (cf. [15]).
Some equivalent inequalities of (5) and (6) were constructed in [14]. In 2013, Yang [15] also studied the equivalency of (5) and (6). In 2017, Hong [16] investigated an equivalent condition between (5) and a few parameters. Since 2018, in the papers [17,18,19,20,21,22,23,24,25,26], the authors proved some novel extensions of the above Hilbert-type inequalities.
In the present paper, we establish an equivalent form related to a Hilbert-type integral inequality with the non-homogeneous kernel
| ln x y | k = 1 s ( min { x y , c k } ) α s ( max { x y , c k } ) λ + α s
and a best possible constant factor. We also consider the case of homogeneous kernel and operator expressions.

2. An Example and a Lemma

In the following, we assume that s , s 0 N = { 1 , 2 , } ,   0 < c 1 c s < ,   s 0 s ,   0 = c 0 c s 0 1 < c s 0 + 1 c s + 1 = ,   λ 1 , λ 2 > α , λ 1 + λ 2 = λ .
Example 1.
We consider the following function:
h ( u ) : = | ln u | k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s ( u R + ) ,
and define
k ( λ 1 ) : = 0 h ( u ) u λ 1 1 d u = 0 | ln u | k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u λ 1 1 d u .
Note. For 0 < a b 1 , η 0 , we have
a b x η 1 | ln x | d x = 1 η a b ( ln x ) d x η = 1 η [ ( ln x ) x η | a b + a b x η 1 d x ] = 1 η 2 [ η ( ln x ) x η | a b + ( b η a η ) ] .
Since we have
a b x 1 | ln x | d x = a b ( ln x ) d ln x = 1 2 ln 2 x | a b = lim η 0 + 1 η 2 [ η ( ln x ) x η | a b + ( b η a η ) ] ,
we still denote this as (9) for η = 0 .
For 0 < a b , we also use the above viewpoint in the following.
By the above Note, indicating
k = 1 0 c k α s = k = s + 1 s c k λ + α s = 1
we obtain
k ( λ 1 ) = c 0 1 ( ln u ) k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u λ 1 1 d u + 1 c s + 1 ln u k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u λ 1 1 d u = i = 0 s 0 1 c i c i + 1 ( ln u ) k = 1 i c k α s u λ + α s k = i + 1 s u α s c k λ + α s u λ 1 1 d u + c s 0 1 ( ln u ) k = 1 s 0 c k α s u λ + α s k = s 0 + 1 s u α s c k λ + α s u λ 1 1 d u + 1 c s 0 + 1 ln u k = 1 s 0 c k α s u λ + α s k = s 0 + 1 s u α s c k λ + α s u λ 1 1 d u + i = s 0 + 1 s c i c i + 1 ln u k = 1 i c k α s u λ + α s k = i + 1 s u α s c k λ + α s u λ 1 1 d u = i = 0 s 0 1 c i c i + 1 ( ln u ) u λ 1 + α λ + 2 α s i 1 d u k = 1 i c k α s k = i + 1 s c k λ + α s + c s 0 1 ( ln u ) u λ 1 + α λ + 2 α s s 0 1 d u k = 1 s 0 c k α s k = s 0 + 1 s c k λ + α s + 1 c s 0 + 1 ( ln u ) u λ 1 + α λ + 2 α s s 0 1 d u k = 1 s 0 c k α s k = s 0 + 1 s c k λ + α s + i = s 0 + 1 s c i c i + 1 ( ln u ) u λ 1 + α λ + 2 α s i 1 d u k = 1 i c k α s k = i + 1 s c k λ + α s .
Hence, we find that
k ( λ 1 ) = i = 0 s 0 1 1 ( λ 1 + α λ + 2 α s i ) 2 [ 1 ( λ 1 + α λ + 2 α s i ) ln c i + 1 ] c i + 1 ( λ 1 + α λ + 2 α s i ) [ 1 ( λ 1 + α λ + 2 α s i ) ln c i ] c i ( λ 1 + α λ + 2 α s i ) k = 1 i c k α s k = i + 1 s c k λ + α s + 1 [ 1 ( λ 1 + α λ + 2 α s s 0 ) ln c s 0 ] c s 0 ( λ 1 + α λ + 2 α s s 0 ) ( λ 1 + α λ + 2 α s s 0 ) 2 k = 1 s 0 c k α s k = s 0 + 1 s c k λ + α s + [ ( λ 1 + α λ + 2 α s s 0 ) ln c s 0 + 1 1 ] c s 0 + 1 ( λ 1 + α λ + 2 α s s 0 ) + 1 ( λ 1 + α λ + 2 α s s 0 ) 2 k = 1 s 0 c k α s k = s 0 + 1 s c k λ + α s
+ i = s 0 + 1 s 1 ( λ 1 + α λ + 2 α s i ) 2 [ ( λ 1 + α λ + 2 α s i ) ln c i + 1 1 ] c i + 1 ( λ 1 + α λ + 2 α s i ) [ ( λ 1 + α λ + 2 α s i ) ln c i 1 ] c i ( λ 1 + α λ + 2 α s i ) k = 1 i c k α s k = i + 1 s c k λ + α s .
In particular:
(1)
For s 0 = s , 0 < c 1 c s 1 , we have
k ( λ 1 ) = i = 0 s 1 1 ( λ 1 + α λ + 2 α s i ) 2 × [ 1 ( λ 1 + α λ + 2 α s i ) ln c i + 1 ] c i + 1 ( λ 1 + α λ + 2 α s i ) [ 1 ( λ 1 + α λ + 2 α s i ) ln c i ] c i ( λ 1 + α λ + 2 α s i ) k = 1 i c k α s k = i + 1 s c k λ + α s + 2 [ 1 + ( λ 2 + α ) ln c s ] c s ( λ 2 + α ) ( λ 2 + α ) 2 k = 1 s c k α s ;
(2)
For s 0 = 0 , 1 < c 1 c s , we have
k ( λ 1 ) = [ ( λ 1 + α ) ln c 1 1 ] c 1 ( λ 1 + α ) + 2 ( λ 1 + α ) 2 1 k = 1 s c k λ + α s + i = 1 s 1 ( λ 1 + α λ + 2 α s i ) 2 [ ( λ 1 + α λ + 2 α s i ) ln c i + 1 1 ] c i + 1 ( λ 1 + α λ + 2 α s i ) [ ( λ 1 + α λ + 2 α s i ) ln c i 1 ] c i ( λ 1 + α λ + 2 α s i ) k = 1 i c k α s k = i + 1 s c k λ + α s ;
(3)
For  s = 1  (or c s = = c 1 ) ,
h ( u ) = | ln u | ( min { u , c 1 } ) α ( max { u , c 1 } ) λ + α ,
in view of (1) and (2), we deduce that
k ( λ 1 ) = 0 | ln u | ( min { u , c 1 } ) α u λ 1 1 ( max { u , c 1 } ) λ + α d u = 1 ( λ 1 + α ) ln c 1 ( λ 1 + α ) 2 + 2 c 1 ( λ 2 + α ) 1 ( λ 2 + α ) ln c 1 ( λ 2 + α ) 2 1 c 1 λ 2 , c 1 1 ( λ 1 + α ) ln c 1 1 + 2 ( λ 1 + α ) ( λ 1 + α ) 2 + 1 + ( λ 2 + α ) ln c 1 ( λ 2 + α ) 2 1 c 1 λ 2 , c 1 > 1 ;
(4)
For α = 0 ,
h ( u ) = | ln u | k = 1 s ( max { u , c k } ) λ s , λ 1 , λ 2 > 0 ,
we get that
k ( λ 1 ) = i = 0 s 0 1 1 ( λ 1 λ i s ) 2 [ 1 ( λ 1 λ i s ) ln c i + 1 ] c i + 1 ( λ 1 λ i s ) [ 1 ( λ 1 λ i s ) ln c i ] c i ( λ 1 λ i s ) 1 k = i + 1 s c k λ s + 1 [ 1 ( λ 1 λ s s 0 ) ln c s 0 ] c s 0 ( λ 1 λ s s 0 ) ( λ 1 λ s s 0 ) 2 1 k = s 0 + 1 s c k λ s + [ ( λ 1 λ s s 0 ) ln c s 0 + 1 1 ] c s 0 + 1 ( λ 1 λ s s 0 ) + 1 ( λ 1 λ s s 0 ) 2 1 k = s 0 + 1 s c k λ s + i = s 0 + 1 s 1 ( λ 1 λ i s ) 2 [ ( λ 1 λ i s ) ln c i + 1 1 ] c i + 1 ( λ 1 λ i s ) [ ( λ 1 λ i s ) ln c i 1 ] c i ( λ 1 λ i s ) 1 k = i + 1 s c k λ s ;
(5)
For λ = 0 ,
h ( u ) = | ln u | k = 1 s min { u , c k } max { u , c k } α s , | λ 1 | < α ( α > 0 ) ,
we have
k ( λ 1 ) = i = 0 s 0 1 1 ( λ 1 + α 2 α s i ) 2 [ 1 ( λ 1 + α 2 α s i ) ln c i + 1 ] c i + 1 ( λ 1 + α 2 α s i ) [ 1 ( λ 1 + α 2 α s i ) ln c i ] c i ( λ 1 + α 2 α s i ) k = 1 i c k α s k = i + 1 s c k α s + 1 [ 1 ( λ 1 + α 2 α s s 0 ) ln c s 0 ] c s 0 ( λ 1 + α 2 α s s 0 ) ( λ 1 + α 2 α s s 0 ) 2 k = 1 s 0 c k α s k = s 0 + 1 s c k α s + [ ( λ 1 + α 2 α s s 0 ) ln c s 0 + 1 1 ] c s 0 + 1 ( λ 1 + α 2 α s s 0 ) + 1 ( λ 1 + α 2 α s s 0 ) 2 k = 1 s 0 c k α s k = s 0 + 1 s c k α s + i = s 0 + 1 s 1 ( λ 1 + α 2 α s i ) 2 [ ( λ 1 + α 2 α s i ) ln c i + 1 1 ] c i + 1 ( λ 1 + α 2 α s i ) [ ( λ 1 + α 2 α s i ) ln c i 1 ] c i ( λ 1 + α 2 α s i ) k = 1 i c k α s k = i + 1 s c k α s ;
(6)
For λ = α ( α > 0 ) ,
h ( u ) = | ln u | k = 1 s ( min { u , c k } ) α s ,
we derive that
k ( λ 1 ) = i = 0 s 0 1 1 ( λ 1 + α α i s ) 2 [ 1 ( λ 1 + α α i s ) ln c i + 1 ] c i + 1 ( λ 1 + α α i s ) [ 1 ( λ 1 + α α i s ) ln c i ] c i ( λ 1 + α α i s ) k = 1 i c k α s + 1 [ 1 ( λ 1 + α α s s 0 ) ln c s 0 ] c s 0 ( λ 1 + α α s s 0 ) ( λ 1 + α α s s 0 ) 2 k = 1 s 0 c k α s + [ ( λ 1 + α α s s 0 ) ln c s 0 + 1 1 ] c s 0 + 1 ( λ 1 + α α s s 0 ) + 1 ( λ 1 + α α s s 0 ) 2 k = 1 s 0 c k α s + i = s 0 + 1 s 1 ( λ 1 + α α i s ) 2 [ ( λ 1 + α α i s ) ln c i + 1 1 ] c i + 1 ( λ 1 + α α i s ) [ ( λ 1 + α α i s ) ln c i 1 ] c i ( λ 1 + α α i s ) k = 1 i c k α s .
For n N , we consider the following two expressions:
I 1 : = 1 0 1 | ln x y | k = 1 s ( min { x y , c k } ) α s ( max { x y , c k } ) λ + α s x λ 1 + 1 p n 1 d x y σ 1 1 q n 1 d y ,
I 2 : = 0 1 1 | ln x y | k = 1 s ( min { x y , c k } ) α s ( max { x y , c k } ) λ + α s x λ 1 1 p n 1 d x y σ 1 + 1 q n 1 d y .
Setting u = x y in (11) and (12), by Fubini’s theorem (cf. [27]), we obtain
I 1 = 1 0 y | ln u | k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u y λ 1 + 1 p n 1 d u y y σ 1 1 q n 1 d y = 1 y ( σ 1 λ 1 ) 1 n 1 0 y | ln u | k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u λ 1 + 1 p n 1 d u d y = 1 y ( σ 1 λ 1 ) 1 n 1 d y 0 1 ( ln u ) k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u λ 1 + 1 p n 1 d u + 1 y ( σ 1 λ 1 ) 1 n 1 1 y ln u k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u λ 1 + 1 p n 1 d u d y = 1 y ( σ 1 λ 1 ) 1 n 1 d y 0 1 ( ln u ) k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u λ 1 + 1 p n 1 d u + 1 [ u y ( σ 1 λ 1 ) 1 n 1 d y ] ln u k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u λ 1 + 1 p n 1 d u ,
I 2 = 0 1 y | ln u | k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u y λ 1 1 p n 1 d u y y σ 1 + 1 q n 1 d y = 0 1 y ( σ 1 λ 1 ) + 1 n 1 y | ln u | k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u λ 1 1 p n 1 d u d y = 0 1 y ( σ 1 λ 1 ) + 1 n 1 d y y 1 ( ln u ) k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u λ 1 1 p n 1 d u + 0 1 y ( σ 1 λ 1 ) + 1 n 1 1 ln u k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u λ 1 1 p n 1 d u d y = 0 1 0 u y ( σ 1 λ 1 ) + 1 n 1 d y ( ln u ) k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u λ 1 1 p n 1 d u + 0 1 y ( σ 1 λ 1 ) + 1 n 1 d y 1 ln u k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u λ 1 1 p n 1 d u .
Lemma 1.
Suppose that p > 1 , 1 p + 1 q = 1 , σ 1 R . If there exists a constant M, such that for any non-negative measurable functions f ( x ) and g ( y ) in ( 0 , ) , the following inequality
I : = 0 0 | ln x y | k = 1 s ( min { x y , c k } ) α s ( max { x y , c k } ) λ + α s f ( x ) g ( y ) d x d y M 0 x p ( 1 λ 1 ) 1 f p ( x ) d x 1 p 0 y q ( 1 σ 1 ) 1 g q ( y ) d y 1 q
holds, then we have σ 1 = λ 1 . When σ 1 = λ 1 , we have M k ( λ 1 ) .
Proof. 
If σ 1 < λ 1 , then for
n > 1 λ 1 σ 1 ( n N ) ,
we set the following two functions
f n ( x ) : = 0 , 0 < x < 1 x λ 1 1 p n 1 , x 1 , g n ( y ) : = y σ 1 + 1 q n 1 , 0 < y 1 0 , y > 1 .
Hence, we derive that
J 2 : = 0 x p ( 1 λ 1 ) 1 f n p ( x ) d x 1 p 0 y q ( 1 σ 1 ) 1 g n q ( y ) d y 1 q = 1 x 1 n 1 d x 1 p 0 1 y 1 n 1 d y 1 q = n .
By (14) and (15), we have
0 1 0 u y ( σ 1 σ ) + 1 n 1 d y ( ln u ) k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u λ 1 1 p n 1 d u I 2 = 0 0 | ln x y | k = 1 s ( min { x y , c k } ) α s ( max { x y , c k } ) λ + α s f n ( x ) g n ( y ) d x d y M J 2 = M n .
Since
( σ 1 λ 1 ) + 1 n < 0 ,
it follows that for any u ( 0 , 1 ) ,
0 u y ( σ 1 λ 1 ) + 1 n 1 d y = .
By (16), in view of
( ln u ) k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u λ 1 1 p n 1 > 0 , u ( 0 , 1 ) ,
we obtain that M n < , which is a contradiction.
If σ 1 > λ 1 , then for
n > 1 σ 1 λ 1 ( n N ) ,
we set
f ˜ n ( x ) : = x λ 1 + 1 p n 1 , 0 < x 1 0 , x > 1 , g ˜ n ( y ) : = 0 , 0 < y < 1 y σ 1 1 q n 1 , y 1 ,
and find that
J ˜ 2 : = 0 x p ( 1 λ 1 ) 1 f ˜ n p ( x ) d x 1 p 0 y q ( 1 σ 1 ) 1 g ˜ n q ( y ) d y 1 q = 0 1 x 1 n 1 d x 1 p 1 y 1 n 1 d y 1 q = n .
By (13) and (15), we have
1 y ( σ 1 λ 1 ) 1 n 1 d y 0 1 ( ln u ) k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u λ 1 + 1 p n 1 d u I 1 = 0 0 | ln x y | k = 1 s ( min { x y , c k } ) α s ( max { x y , c k } ) λ + α s f ˜ n ( x ) g ˜ n ( y ) d x d y M J ˜ 2 = M n .
Since ( σ 1 λ 1 ) 1 n > 0 , it follows that
1 y ( σ 1 λ 1 ) 1 n 1 d y = .
By (17), in view of
0 1 ( ln u ) k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u λ 1 + 1 p n 1 d u > 0 ,
we have M n < , which is a contradiction.
Hence, we conclude that σ 1 = λ 1 .
For σ 1 = λ 1 , we reduce (13) and then use (17) as follows:
1 n I 1 = 1 n 1 y 1 n 1 d y 0 1 ( ln u ) k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u λ 1 + 1 p n 1 d u + 1 u y 1 n 1 d y ln u k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u λ 1 + 1 p n 1 d u = 0 1 ( ln u ) k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u λ 1 + 1 p n 1 d u + 1 ln u k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u λ 1 1 q n 1 d u 1 n M J ˜ 2 = M .
Since
( ln u ) k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u λ 1 + 1 p n 1
( ln u k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u λ 1 1 q n 1 ) is nonnegative and increasing in ( 0 , 1 ) ( ( 1 , ) ), by Levi’s theorem (cf. [27]), we derive that
k ( λ 1 ) = 0 1 lim n ( ln u ) k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u λ 1 + 1 p n 1 d u + 1 lim n ln u k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u λ 1 1 q n 1 d u = lim n 0 1 ( ln u ) k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u λ 1 + 1 p n 1 d u + 1 ln u k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u λ 1 1 q n 1 d u M < .
This completes the proof of the lemma. □

3. Main Results and Operator Expressions

Theorem 1.
Suppose that p > 1 , 1 p + 1 q = 1 , σ 1 R . The following statements are equivalent:
(i) 
There exists a constant M such that for any f ( x ) 0 , with
0 < 0 x p ( 1 λ 1 ) 1 f p ( x ) d x < ,
the following inequality holds true:
J : = 0 y p σ 1 1 0 | ln x y | k = 1 s ( min { x y , c k } ) α s ( max { x y , c k } ) λ + α s f ( x ) d x p d y 1 p < M 0 x p ( 1 λ 1 ) 1 f p ( x ) d x 1 p ;
(ii) 
There exists a constant M , such that for any f ( x ) , g ( y ) 0 , with
0 < 0 x p ( 1 λ 1 ) 1 f p ( x ) d x <
and
0 < 0 y q ( 1 σ 1 ) 1 g q ( y ) d y < ,
the following inequality holds true:
I = 0 0 | ln x y | k = 1 s ( min { x y , c k } ) α s ( max { x y , c k } ) λ + α s f ( x ) g ( y ) d x d y < M 0 x p ( 1 λ 1 ) 1 f p ( x ) d x 1 p 0 y q ( 1 σ 1 ) 1 g q ( y ) d y 1 q ;
(iii) 
σ 1 = λ 1 .
If Condition (iii) is satisfied, then M k ( λ 1 ) and the constant factor M = k ( λ 1 ) in (20) and (21) is the best possible.
Proof. 
( i ) ( i i ) ”. By Hölder’s inequality (cf. [28]), we have
I = 0 y σ 1 1 p 0 | ln x y | k = 1 s ( min { x y , c k } ) α s ( max { x y , c k } ) λ + α s f ( x ) d x y 1 p σ 1 g ( y ) d y J 0 y q ( 1 σ 1 ) 1 g q ( y ) d y 1 q .
Then by (20), we deduce (21).
( i i ) ( i i i ) ”. By Lemma 1, we have σ 1 = λ 1 .
( i i i ) ( i ) ”. Setting u = x y , we obtain the following weight function:
For y > 0 ,
ω ( λ 1 , y ) : = y λ 1 0 | ln x y | k = 1 s ( min { x y , c k } ) α s ( max { x y , c k } ) λ + α s x λ 1 1 d x = 0 | ln u | k = 1 s ( min { u , c k } ) α s ( max { u , c k } ) λ + α s u λ 1 1 d u = k ( λ 1 ) .
By Hölder’s inequality with weight and (23), we obtain that
0 | ln x y | k = 1 s ( min { x y , c k } ) α s ( max { x y , c k } ) λ + α s f ( x ) d x p = 0 | ln x y | k = 1 s ( min { x y , c k } ) α s ( max { x y , c k } ) λ + α s y ( λ 1 1 ) / p f ( x ) x ( λ 1 1 ) / q x ( λ 1 1 ) / q y ( λ 1 1 ) / p d x p 0 | ln x y | k = 1 s ( min { x y , c k } ) α s ( max { x y , c k } ) λ + α s y λ 1 1 x ( λ 1 1 ) p / q f p ( x ) d x × 0 | ln x y | k = 1 s ( min { x y , c k } ) α s ( max { x y , c k } ) λ + α s x λ 1 1 y ( λ 1 1 ) q / p d x p / q = ω ( λ 1 , y ) y q ( λ 1 1 ) + 1 p 1 0 | ln x y | k = 1 s ( min { x y , c k } ) α s ( max { x y , c k } ) λ + α s y λ 1 1 f p ( x ) x ( λ 1 1 ) p / q d x = ( k ( λ 1 ) ) p 1 y p λ 1 1 0 | ln x y | k = 1 s ( min { x y , c k } ) α s ( max { x y , c k } ) λ + α s y λ 1 1 f p ( x ) x ( λ 1 1 ) p / q d x .
If (24) assumes the form of equality for some y ( 0 , ) , then (cf. [28]) there exist constants A and B, such that they are not all zero and
A y λ 1 1 x ( λ 1 1 ) p / q f p ( x ) = B x λ 1 1 y ( λ 1 1 ) q / p a . e . in R + .
We suppose that A 0 (otherwise, B = A = 0 ). Then, it follows that
x p ( 1 λ 1 ) 1 f p ( x ) = y q ( 1 λ 1 ) B A x a . e . i n R + ,
which contradicts the fact that
0 < 0 x p ( 1 λ 1 ) 1 f p ( x ) d x < .
Hence, (24) assumes the form of strict inequality.
Therefore, for σ 1 = λ 1 , by Fubini’s theorem, we derive that
J < ( k ( λ 1 ) ) 1 q 0 0 | ln x y | k = 1 s ( min { x y , c k } ) α s ( max { x y , c k } ) λ + α s y λ 1 1 x ( λ 1 1 ) p / q f p ( x ) d x d y 1 p = ( k ( λ 1 ) ) 1 q 0 0 | ln x y | k = 1 s ( min { x y , c k } ) α s ( max { x y , c k } ) λ + α s y λ 1 1 d y x ( λ 1 1 ) p / q f p ( x ) d x 1 p = ( k ( λ 1 ) ) 1 q 0 ω ( λ 1 , x ) x p ( 1 λ 1 ) 1 f p ( x ) d x 1 p = k ( λ 1 ) 0 x p ( 1 λ 1 ) 1 f p ( x ) d x 1 p .
Setting M k ( λ 1 ) , (20) follows.
Thus, the conditions (i), (ii) and (iii) are equivalent.
When Condition (iii) is satisfied, if there exists a constant M k ( λ 1 ) , such that (21) holds true, then by Lemma 1 we have that M k ( λ 1 ) . Then the constant factor M = k ( λ 1 ) in (21) is the best possible. The constant factor M = k ( λ 1 ) in (20) is still the best possible. Otherwise, by (22) (for σ 1 = λ 1 ), we would conclude that the constant factor M = k ( λ 1 ) in (21) is not the best possible.
This completes the proof of the theorem. □
Setting y = 1 Y , G ( Y ) = Y λ 2 g ( 1 Y ) , σ 2 = λ σ 1 in Theorem 1, then replacing Y ( G ( Y ) ) by y ( g ( y ) ), we derive the following corollary.
Corollary 1.
Suppose that p > 1 , 1 p + 1 q = 1 , σ 2 R . The following conditions are equivalent:
(i) 
There exists a constant M , such that for any f ( x ) 0 satisfying
0 < 0 x p ( 1 λ 1 ) 1 f p ( x ) d x < ,
we have the following Hilbert-type inequality with the homogeneous kernel:
0 y p σ 2 1 0 | ln x y | k = 1 s ( min { x , c k y } ) α s ( max { x , c k y } ) λ + α s f ( x ) d x p d y 1 p < M 0 x p ( 1 λ 1 ) 1 f p ( x ) d x 1 p ;
(ii) 
There exists a constant M , such that for any f ( x ) , g ( y ) 0 , satisfying
0 < 0 x p ( 1 λ 1 ) 1 f p ( x ) d x < ,
and
0 < 0 y q ( 1 σ 2 ) 1 g q ( y ) d y < ,
we have the following inequality:
0 0 | ln x y | k = 1 s ( min { x , c k y } ) α s ( max { x , c k y } ) λ + α s f ( x ) g ( y ) d x d y < M 0 x p ( 1 λ 1 ) 1 f p ( x ) d x 1 p 0 y q ( 1 σ 2 ) 1 g q ( y ) d y 1 q ;
(iii) 
σ 2 = λ 2 .
If Condition (iii) is satisfied, then we have M k ( λ 2 ) , and the constant M = k ( λ 2 ) in (25) and (26) is the best possible.
Remark 1.
On the other hand, setting y = 1 Y , G ( Y ) = Y λ 2 g ( 1 Y ) , σ 1 = λ σ 2 , in Corollary 1, then replacing Y ( G ( Y ) ) by y ( g ( y ) ) , we deduce Theorem 1. Hence, Theorem 1 and Corollary 1 are equivalent.
For p > 1 , 1 p + 1 q = 1 , we set the following functions:
φ ( x ) : = x p ( 1 λ 1 ) 1 , ψ ( y ) : = y q ( 1 λ 1 ) 1 , ϕ ( y ) : = y q ( 1 λ 2 ) 1 ,
wherefrom,
ψ 1 p ( y ) = y p λ 1 1 , ϕ 1 p ( y ) = y p λ 2 1 ( x , y R + ) .
Define the following real normed linear spaces:
L p , φ ( R + ) = f : | | f | | p , φ : = 0 φ ( x ) | f ( x ) | p d x 1 p < , L q , ψ ( R + ) = g : | | g | | q , ψ : = 0 ψ ( y ) | g ( y ) | q d y 1 q < , L q , ϕ ( R + ) = g : | | g | | q , ϕ : = 0 ϕ ( y ) | g ( y ) | q d y 1 q < , L p , ψ 1 p ( R + ) = h : | | h | | p , ψ 1 p = 0 ψ 1 p ( y ) | h ( y ) | p d y 1 p < , L q , ϕ 1 p ( R + ) = h : | | h | | p , ϕ 1 p = 0 ϕ 1 p ( y ) | h ( y ) | p d y 1 p < .
(a) In view of Theorem 1 (with σ 1 = λ 1 ) , for f L p , φ ( R + ) , setting
h 1 ( y ) : = 0 | ln x y | k = 1 s ( min { x y , c k } ) α s ( max { x y , c k } ) λ + α s f ( x ) d x ( y R + ) ,
by (20), we obtain that
| | h 1 | | p , ψ 1 p = 0 ψ 1 p ( y ) h 1 p ( y ) d y 1 p < M | | f | | p , φ < .
Definition 1.
Define a Hilbert-type integral operator with the non-homogeneous kernel  T ( 1 ) : L p , φ ( R + ) L p , ψ 1 p ( R + ) as follows:
For any f L p , φ ( R + ) , there exists a unique representation T ( 1 ) f = h 1 L p , ψ 1 p ( R + ) , satisfying T ( 1 ) f ( y ) = h 1 ( y ) , for any y R + .
In view of (27), it follows that
| | T ( 1 ) f | | p , ψ 1 p = | | h 1 | | p , ψ 1 p M | | f | | p , φ ,
and then the operator T ( 1 ) is bounded satisfying
| | T ( 1 ) | | = sup f ( θ ) L p , φ ( R + ) | | T ( 1 ) f | | p , ψ 1 p | | f | | p , φ M .
If we define the formal inner product of T ( 1 ) f and g as follows:
( T ( 1 ) f , g ) : = 0 0 | ln x y | k = 1 s ( min { x y , c k } ) α s ( max { x y , c k } ) λ + α s f ( x ) d x g ( y ) d y ,
then we can rewrite Theorem 1 (for σ 1 = λ 1 ) as follows:
Theorem 2.
Suppose that p > 1 , 1 p + 1 q = 1 . The following conditions are equivalent:
(i)
There exists a constant M , such that for any f ( x ) 0 , f L p , φ ( R + ) ,   | | f | | p , φ > 0 , we have the following inequality:
| | T ( 1 ) f | | p , ψ 1 p < M | | f | | p , φ ;
(ii)
There exists a constant M , such that for any f ( x ) , g ( y ) 0 , f L p , φ ( R + ) , g L q , ψ ( R + ) ,   | | f | | p , φ , | | g | | q , ψ > 0 , we have the following inequality:
( T ( 1 ) f , g ) < M | | f | | p , φ | | g | | q , ψ .
We still have | | T ( 1 ) | | = k ( λ 1 ) M .
(b) In view of Corollary 1 (with σ 2 = λ 2 ), for f L p , φ ( R + ) , setting
h 2 ( y ) : = 0 | ln x y | k = 1 s ( min { x , c k y } ) α s ( max { x , c k y } ) λ + α s   f ( x ) d x ( y R + ) ,
by (27), we have
| | h 2 | | p , ϕ 1 p = 0 ϕ 1 p ( y ) h 2 p ( y ) d y 1 p < M | | f | | p , φ < .
Definition 2.
Define a Hilbert-type integral operator with the homogeneous kernel  T ( 2 ) : L p , φ ( R + ) L p , ϕ 1 p ( R + ) as follows:
For any f L p , φ ( R ) , there exists a unique representation T ( 2 ) f = h 2 L p , ϕ 1 p ( R + ) , satisfying T ( 2 ) f ( y ) = h 2 ( y ) , for any y R + .
In view of (30), it follows that
| | T ( 2 ) f | | p , ϕ 1 p = | | h 2 | | p , ϕ 1 p M | | f | | p , φ ,
and then the operator T ( 2 ) is bounded satisfying
| | T ( 2 ) | | = sup f ( θ ) L p , φ ( R + ) | | T ( 2 ) f | | p , ϕ 1 p | | f | | p , φ M .
If we define the formal inner product of T ( 2 ) f and g as follows:
( T ( 2 ) f , g ) : = 0 0 | ln x y | k = 1 s ( min { x , c k y } ) α s ( max { x , c k y } ) λ + α s f ( x ) d x g ( y ) d y ,
then we can rewrite Corollary 1 (for σ 2 = λ 2 ) as follows:
Corollary 2.
Suppose that p > 1 , 1 p + 1 q = 1 . The following conditions are equivalent:
(i) 
There exists a constant M , such that for any f ( x ) 0 , f L p , φ ( R + ) ,   | | f | | p , φ > 0 , we have the following inequality:
| | T ( 2 ) f | | p , ϕ 1 p < M | | f | | p , φ ;
(ii) 
There exists a constant M , such that for any f ( x ) , g ( y ) 0 , f L p , φ ( R + ) , g L q , ϕ ( R + ) ,   | | f | | p , φ ,   | | g | | q , ϕ > 0 , we have the following inequality:
( T ( 2 ) f , g ) < M | | f | | p , φ | | g | | q , ϕ .
We still have | | T ( 2 ) | | = k ( λ 1 ) M .
Remark 2.
Theorem 2 and Corollary 2 are equivalent.

4. Conclusions

In this paper, by means of real analysis, an equivalent form related to a Hilbert-type integral inequality with the non-homogeneous kernel
| ln x y | k = 1 s ( min { x y , c k } ) α s ( max { x y , c k } ) λ + α s
and a best possible constant factor is given in Theorem 1. We also consider the case of the homogeneous kernel and the operator expressions in Corollary 1, Corollary 2 and Theorem 2. The lemmas and theorems provide an extensive account of this type of inequalities.

Author Contributions

The authors contributed equally in all stages of preparation of this paper. All authors have read and agreed to the published version of the manuscript.

Funding

B. C. Yang: This work is supported by the National Natural Science Foundation (No. 61772140). We are grateful for this help. A. Raigorodskii: I would like to acknowledge the support from the grant NSh-775.2022.1.1.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Hardy, G.H. Note on a theorem of Hilbert concerning series of positive terms. Proc. Lond. Math. Soc. 1925, 23, 45–46. [Google Scholar]
  2. Hardy, G.H.; Littlewood, J.E.; Pólya, G. Inequalities; Cambridge University Press: Cambridge, MA, USA, 1934. [Google Scholar]
  3. Mitrinović, D.S.; Pečarić, J.E.; Fink, A.M. Inequalities Involving Functions and Their Integrals and Deivatives; Kluwer Academic: Boston, MA, USA, 1991. [Google Scholar]
  4. Yang, B.C. On Hilbert’s integral inequality. J. Math. Anal. Appl. 1998, 220, 778–785. [Google Scholar]
  5. Yang, B.C. A note on Hilbert’s integral inequality. Chin. Q. J. Math. 1998, 13, 83–86. [Google Scholar]
  6. Yang, B.C. On an extension of Hilbert’s integral inequality with some parameters. Aust. J. Math. Anal. Appl. 2004, 1, 1–8. [Google Scholar]
  7. Yang, B.C.; Brnetić, I.; Krnić, M.; Pečarić, J.E. Generalization of Hilbert and Hardy-Hilbert integral inequalities. Math. Ineq. Appl. 2005, 8, 259–272. [Google Scholar]
  8. Krnić, M.; Pečarić, J.E. Hilbert’s inequalities and their reverses. Publ. Math. Debr. 2005, 67, 315–331. [Google Scholar] [CrossRef]
  9. Hong, Y. On Hardy-Hilbert integral inequalities with some parameters. Ineq. Pure Appl. Math. 2005, 6, 92. [Google Scholar]
  10. Arpad, B.; Choonghong, O. Best constant for certain multi linear integral operator. J. Inequalities Appl. 2006, 2006, 28582. [Google Scholar]
  11. Li, Y.J.; He, B. On inequalities of Hilbert’s type. Bull. Aust. Math. Soc. 2007, 76, 1–13. [Google Scholar] [CrossRef] [Green Version]
  12. Xu, J.S. Hardy-Hilbert’s Inequalities with two parameters. Adv. Math. 2007, 36, 63–76. [Google Scholar]
  13. Yang, B.C. The Norm of Operator and Hilbert-Type Inequalities; Science Press: Beijing, China, 2009. [Google Scholar]
  14. Yang, B.C. Hilbert-Type Integral Inequalities; Bentham Science Publishers Ltd.: Sharjah, United Arab Emirates, 2009. [Google Scholar]
  15. Yang, B.C. On Hilbert-type integral inequalities and their operator expressions. J. Guangaong Univ. Educ. 2013, 33, 1–17. [Google Scholar]
  16. Hong, Y. On the structure character of Hilbert’s type integral inequality with homogeneous kernal and applications. J. Jilin Univ. Sci. Ed. 2017, 55, 189–194. [Google Scholar]
  17. He, B.; Hong, Y.; Li, Z. Conditions for the validity of a class of optimal Hilbert type multiple integral inequalities with non-homogeneous. J. Inequal. Appl. 2021, 2021, 64. [Google Scholar] [CrossRef]
  18. Chen, Q.; He, B.; Hong, Y.; Li, Z. Equivalent parameter conditions for the validity of half-discrete Hilbert-type multiple integral inequality with generalized homogeneous kernel. J. Funct. Spaces 2020, 2020, 7414861. [Google Scholar] [CrossRef]
  19. He, B.; Hong, Y.; Chen, Q. The equivalent parameter conditions for constructing multiple integral half-discrete Hilbert-type inequalities with a class of non-homogeneous kernels and their applications. Open Math. 2021, 19, 400–411. [Google Scholar] [CrossRef]
  20. Hong, Y.; Huang, Q.L.; Chen, Q. The parameter conditions for the existence of the Hilbert type multiple integral inequality and its best constant factor. Ann. Funct. Anal. 2021, 12, 7. [Google Scholar] [CrossRef]
  21. Hong, Y.; Chen, Q. Equivalent parameter conditions for the construction of Hilbert-type integral inequalities with a class of non- homogeneous kernels. J. South China Norm. Univ. Nat. Sci. Ed. 2020, 52, 124–128. [Google Scholar]
  22. Hong, Y.; Chen, Q. Research Progress and Applications of Hilbert-Type Series Inequalities. J. Jilin Univ. Sci. Ed. 2021, 59. to appear. [Google Scholar]
  23. Hong, Y.; Chen, Q.; Wu, C.Y. The best matching parameters for semi-discrete Hilbert-type inequality with quasi-homogeneous kernel. Math. Appl. 2021, 34, 779–785. [Google Scholar]
  24. Hong, Y.; He, B. The optimal matching parameter of half-discrete Hilbert-type multiple integral inequalities with non-homogeneous kernels and applications. Chin. Quart. Math. 2021, 36, 252–262. [Google Scholar]
  25. Rassias, M.T.; Yang, B.C.; Raigorodskii, A. Equivalent conditions of a multiple Hilbert -Type integral inequality with the non homogeneous kernel. Rev. Real Acad. Cienc. Exact Fis. Nat. Ser. A Mat. 2022, 116, 107. [Google Scholar] [CrossRef]
  26. Yang, B.C.; Andrica, D.; Bagdasar, O.; Rassias, M.T. An equivalent property of a Hilbert-type integral inequality and its applications. Appl. Anal. Discret. Math. 2022, 16, 548–563. [Google Scholar] [CrossRef]
  27. Kuang, J. C Real and Functional Analysis (Continuation) (Second Volume); Higher Education Press: Beijing, China, 2015. [Google Scholar]
  28. Kuang, J.C. Applied Inequalities; Shangdong Science and Technology Press: Jinan, China, 2004. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Rassias, M.T.; Yang, B.; Raigorodskii, A. An Equivalent Form Related to a Hilbert-Type Integral Inequality. Axioms 2023, 12, 677. https://doi.org/10.3390/axioms12070677

AMA Style

Rassias MT, Yang B, Raigorodskii A. An Equivalent Form Related to a Hilbert-Type Integral Inequality. Axioms. 2023; 12(7):677. https://doi.org/10.3390/axioms12070677

Chicago/Turabian Style

Rassias, Michael Th., Bicheng Yang, and Andrei Raigorodskii. 2023. "An Equivalent Form Related to a Hilbert-Type Integral Inequality" Axioms 12, no. 7: 677. https://doi.org/10.3390/axioms12070677

APA Style

Rassias, M. T., Yang, B., & Raigorodskii, A. (2023). An Equivalent Form Related to a Hilbert-Type Integral Inequality. Axioms, 12(7), 677. https://doi.org/10.3390/axioms12070677

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop