Solutions for Some Mathematical Physics Problems Issued from Modeling Real Phenomena: Part 1
Abstract
:1. Introduction
2. Surjectivity for the Operators λJφ − S: Applications to Partial Differential Equations
2.1. Surjectivity of the Operators of the Form λT − S
d(I − A, σ, 0) = d(I − A − z0, σ, 0),
2.2. Surjectivity for Operators of the Form λJφ − S, Jφ Duality Map
2.2.1. Preliminaries—Duality Map
2.2.2. Main Results
2.3. Existence of the Solutions of the Problems
2.3.1. Preliminaries for Sobolev Spaces
2.3.2. The Operators −∆p, − and Nf
−∆p, p ∈ (1, +∞), the p-Laplacian
−, p ∈ (1, +∞), the p-Pseudo-Laplacian
Nemytskii Operator Nf
where c ≥ 0, r > 0, β ∈ Lp(Ω), 1 ≤ p ≥ +∞,
2.3.3. The Problem
2.3.4. The Problem
3. Results of the Fredholm Alternative Type for Operators λJφ − S
3.1. Important Results
3.2. Applications
3.2.1. Application for the p-Laplacian and p-Pseudo-Laplacian
3.2.2. Another Application for p-Laplacian
4. Surjectivity to Different Homogeneity Degrees
4.1. Theoretical Results
4.2. Applications
4.2.1. First Application
4.2.2. Second Application
5. Weak Solutions Starting from Ekeland Variational Principle
5.1. Critical Points and Weak Solutions for Elliptic Type Equations
5.1.1. Theoretical Support
5.1.2. Weak Solutions
5.2. Critical Points for Nondifferentiable Functionals
5.2.1. Theoretical Results
5.3. Other Solutions
5.3.1. Basic Results
5.3.2. Some Palais-Smale Type Conditions
φ(un) ≤ φ(u) + εn d(un, u) ∀u ∈ X.
6. Weak Solutions Using a Perturbed Variational Principle
An Application of Ghoussoub-Maurey Linear Principle to p-Laplacian and to p-Pseudo-Laplacian
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Diaz, J.I.; Hernandez, J.; Tello, L. On the multiplicity of equilibrium solutions to a nonlinear diffusion equation on a manifold arising in climatology. J. Math. Anal. Appl. 1997, 216, 593–613. [Google Scholar] [CrossRef]
- Diaz, J.I.; Thelin, F. On a nonlinear parabolic problem arising in some models related to turbulent flows. SIAM J. Math. Anal. 1994, 25, 1085–1111. [Google Scholar] [CrossRef]
- Glowinski, R.; Rappaz, J. Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid model in glaciology. Modél. Math. Anal. Numér. 2003, 37, 175–186. [Google Scholar] [CrossRef]
- King, J.R.; McCue, S.W. Quadrature domains and p-Laplacian growth. Complex Anal. Oper. Theory 2009, 3, 453–469. [Google Scholar] [CrossRef]
- Aronsson, G.; Janfalk, U. On Helle-Shaw flow of power-law fluids. Eur. J. Appl. Math. 1992, 3, 343–366. [Google Scholar] [CrossRef]
- Schowalter, R.E.; Walkington, N.J. Diffusion of fluid in a fissured medium with microstructure. SIAM J. Math. Anal. 1991, 22, 1702–1722. [Google Scholar] [CrossRef]
- Péllissier, M.C.; Reynaud, M.L. Étude d’un modèle mathématique d’écoulement de glacier, R.C. Acad. Sci. Paris Sér. I Math. 1974, 279, 531–534. [Google Scholar]
- Bhattacharya, T.; Dibenedetto, E.; Manfredi, J. Limits as p → ∞ of Δp up = f and related extremal problems. Rend. Sem. Math. Univ. Pol. Torino Fasc. Spec. 1989, 47, 15–68. [Google Scholar]
- Kawohl, B. A family of torsional creep problems. J. Reine Angew. Math. 1990, 410, 1–22. [Google Scholar]
- Benci, V.; Fortunato, D.; Pisani, L. Solitons like solutions of a Lorenz invariant equation in dimension 3. Rev. Math. Phys. 1998, 10, 315–344. [Google Scholar] [CrossRef]
- Meghea, I. Minimax theorems in β-differentiability and theorems of surjectivity and of Fredholm alternative type for operators of the form Jφ − λS. Ph.D. Thesis, University of Bucharest, Bucharest, Romania, 1999. [Google Scholar]
- Meghea, I. Two solutions for a problem of partial differential equations. UPB Sci. Bull. Ser. A 2010, 72, 41–58. [Google Scholar]
- Meghea, I. Some results of Fredholm alternative type for operators of the form λJφ − S with applications. UPB Sci. Bull. Ser. A 2010, 72, 21–32. [Google Scholar]
- Meghea, I. Weak solutions for p-pseudo-Laplacian using a perturbed variational principle and via surjectivity results. BSG Proc. 2010, 17, 140–150. [Google Scholar]
- Meghea, I. Weak solutions for p-Laplacian and for p-pseudo-Laplacian using surjectivity theorems. BSG Proc. 2011, 18, 67–76. [Google Scholar]
- Meghea, I. On some perturbed variational principles: Connexions and applications. Rev. Roum. Math. Pure Appl. 2009, 54, 493–511. [Google Scholar]
- Meghea, I. Variational approaches to characterize weak solutions for some problems of mathematical physics equations. Abstr. Appl. Anal. 2016, 2016, 2071926. [Google Scholar] [CrossRef]
- Meghea, I.; Stamin, C.S. On a problem of mathematical physics equations. Bull. Transilv. Univ. Bras. Ser. III Math. Inform. Phys. 2018, 11, 169–180. [Google Scholar]
- Meghea, I. Application of a Variant of Mountain Pass Theorem in Modeling Real Phenomena. Mathematics 2022, 10, 3476. [Google Scholar] [CrossRef]
- Meghea, I. Applications of a perturbed linear variational principle via p-Laplacian. UPB Sci. Bull. Ser. A 2022, 84, 141–152. [Google Scholar]
- Meghea, I. Applications for a generalization of two fundamental variational principles. UPB Sci. Bull. Ser. A 2020, 82, 57–68. [Google Scholar]
- Meghea, I. Ekeland Variational Principles with Generalizations and Variants; Old City Publishing: Philadelphia, PA, USA; Éditions des Archives Contemporaines: Paris, France, 2009. [Google Scholar]
- Burrage, K.; Hale, N.; Kay, D. An efficient FEM scheme for fractional-in-space reaction-diffusion equations. SIAM J. Sci. Comput. 2012, 34, A2145–A2172. [Google Scholar] [CrossRef]
- Dang, J.; Hu, Q.; Xia, S.; Zhang, H. Exponential growth of solution for a reaction-diffusion equation with memory and multiple nonlinearities. Res. Appl. Math. 2017, 1, 101258. [Google Scholar] [CrossRef] [PubMed]
- Fayolle, P.A.; Belyaev, A.G. p-Laplace diffusion for distance function estimation, optimal transport approximation, and image enhancement. Comput. Aided Geom. Des. 2018, 67, 1–20. [Google Scholar] [CrossRef]
- Mukherjee, T.; Sreenadh, K. On Dirichlet problem for fractional p-Laplacian wirh singular non-linearity. Adv. Nonlinear Anal. 2019, 8, 52–72. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, F.; Ru, Y. Existence of nontrivial solutions for fractional differential equations with p-Laplacian. J. Funct. Spaces 2019, 2019, 3486410. [Google Scholar] [CrossRef]
- Benedikt, J.; Girg, P.; Kotrla, L.; Takáč, P. Origin of the p-Laplacian and A. Missbach. Electron. J. Differ. Equ. 2018, 2018, 16. [Google Scholar]
- Lafleche, L.; Salem, S. p-Laplacian Keller-Segel Equation: Fair Competition and Diffusion Dominated Cases. 2018. Available online: https://hal.archives-ouvertes.fr/hal-01883785 (accessed on 1 February 2022).
- Cellina, A. The regularity of solutions of some variational problems, including the p-Laplace equation for 3 ≤ p < 4. AIMS 2018, 38, 4071–4085. [Google Scholar]
- Khan, H.; Li, Y.; Sun, H.; Khan, A. Esistence of solution and Hyers-Ulam stability for a coupled system of fractional differential equations with p-Laplacian operator. J. Nonlinear Sci. Appl. 2017, 10, 5219–5229. [Google Scholar] [CrossRef]
- Xu, X. Existence theorems for a crystal surface model involving the p-Laplace operator. SIAM J. Math. Anal. 2017, 50, 1–21. [Google Scholar] [CrossRef]
- Akagi, G.; Matsuura, K. Nonlinear diffusion equations driven by the p( · )-Laplacian. Nonlinear Differ. Equ. Appl. 2013, 20, 37–64. [Google Scholar] [CrossRef]
- Gulsen, T.; Yilmaz, E. Inverse nodal problem for p-Laplacian diffusion equation with polynomoally dependent spectral parameter. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 2016, 65, 23–36. [Google Scholar]
- Lee, Y.S.; Chung, S.Y. Extiction and positivity of solutions of the p-Laplacian evolution equation on networks. J. Math. Anal. Appl. 2012, 386, 581–592. [Google Scholar] [CrossRef]
- Rasouli, S.H. An ecological model with the p-Laplacian and diffusion. Int. J. Biomath. 2016, 9, 1650008. [Google Scholar] [CrossRef]
- Yang, Y.; Deng, J. Qualitative properties of a p-Laplacian population model with delay. Adv. Differ. Equ. 2017, 2017, 13. [Google Scholar] [CrossRef]
- Elmoataz, A.; Toutain, M.; Tenbrinck, D. On the p-Laplacian and ∞-Laplacian on graphs with applications in image and data processing. SIAM J. Imaging Sci. 2015, 8, 2412–2451. [Google Scholar] [CrossRef]
- Gupta, S.; Kumar, D.; Singh, J. Analytical solutions of convection-diffusion problems by combining Laplace transform method and homotopy perturbation method. Alex. Eng. J. 2015, 54, 645–651. [Google Scholar] [CrossRef]
- Liero, M.; Koprucki, T.; Fischer, A.; Scholz, R.; Glitzki, A. p-Laplace thermistor modeling of electrothermal feedback in organic semiconductors devices. Z. Angew. Math. Phys. 2015, 66, 2957–2977. [Google Scholar] [CrossRef]
- Silva, M.A.J. On a viscoelastic plate equation with history setting and perturbation of p-Laplacian type. IMA J. Appl. Math. Adv. Access 2012, 78, 1130–1146. [Google Scholar]
- Fučik, S.; Nečas, J.; Souček, J. Spectral Analysis of Nonlinear Operators; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1973. [Google Scholar]
- Meghea, C.; Meghea, I. Treatise on Differential Calculus and Integral Calculus for Mathematicians, Physicists, Chemists and Engineers in Ten Volumes; Old City Publishing: Philadelphia, PA, USA; Éditions des Archives Contemporaines: Paris, France, 2015. [Google Scholar]
- Dinca, G.; Jebelean, P. Some existence results for a class of nonlinear equations involving a duality mapping. Nonlinear Anal. 2001, 46, 347–363. [Google Scholar] [CrossRef]
- Lions, J.L. Quelques Méthodes des Résolution des Problèmes Aux Limites Non Linéaires; Dunod, Gauthier-Villard: Paris, France, 1969. [Google Scholar]
- Vainberg, M.M. Variational Methods for the Study of Nonlinear Operators; Holden Day Inc.: San Francisco, CA, USA, 1964. [Google Scholar]
- Glowinski, R.; Marocco, A. Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation—Dualité, d’une classe de problèmes de Dirichlet non linéaires. Rev. Française D’autom. Inform. Rech. Opérationnelle 1975, 9, 41–76. [Google Scholar] [CrossRef]
- Mazur, S. Über schwache Konvergenz in den Räumen (Lp). Stud. Math. 1933, 4, 128–133. [Google Scholar] [CrossRef]
- Stein, E. Singular Integrals and Differentiability Properties of Functions; Princeton University Press: Princeton, NJ, USA, 1970. [Google Scholar]
- Dinca, G.; Jebelean, P.; Mawhin, J. Variational and Topological Methods for Dirichlet Problems with p-Laplacian; Catholic University of Louvain: Louvain-la-Neuve, Belgium, 1999. [Google Scholar]
- Adams, R.A. Sobolev Spaces; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Jebelean, P. Classical and Generalized Solutions for p-Laplacian; Ph.D. Thesis, University of Bucharest, Bucharest, Romania, 1994. [Google Scholar]
- Figueiredo, G. Topics in Nonlinear Functional Analysis; The University of Maryland: College Park, MD, USA, 1967. [Google Scholar]
- Ambrosetti, A.; Prodi, G. Analisi Nonlineare; Editrice Tecnico Scientifica: Pisa, Italy, 1973. [Google Scholar]
- Lliboutry, L. Traité de Glaciologie; Masson & Cie: Paris, France, 1965; Book II. [Google Scholar]
- Pélissier, M.C. Sur Quelques Problèmes non Linéaires en Glaciologie; Publications Mathèmatiques d’Orsay, no. 110, U.E.R. Mathèmatique; Université Paris IX: Paris, France, 1975. [Google Scholar]
- Lindquist, P. Stability for the solutions of div (|∇u|p−2∇u) = f with varying p. J. Math. Anal. Appl. 1987, 127, 93–102. [Google Scholar] [CrossRef]
- Cuccu, F.; Emamizadeh, B.; Porru, G. Nonlinear elastic membranes involving the p-Laplacian operator. Electron. J. Differ. Equ. 2006, 2006, 1–10. [Google Scholar]
- Cuccu, F.; Emamizadeh, B.; Porru, G. Optimization or the best eigenvalue in problems involving the p-Laplacian. Proc. Am. Math. Soc. 2009, 137, 1677–1687. [Google Scholar] [CrossRef]
- Belloni, M.; Kawohl, B. The pseudo-p-Laplace eigenvalue problem and viscosity solutions as p → ∞. ESAIM Control Optim. Calc. Var. 2004, 10, 28–52. [Google Scholar] [CrossRef]
- Nečas, J. Sur l’alternative de Fredholm pour les opérateurs nonlinéaires avec applications aux problèmes aux limites. Ann. Sc. Norm. Sup. Pisa 1969, 23, 331–345. [Google Scholar]
- Brezis, H. Analyse Fonctionnelle. Théorie et Applications; Masson: Paris, France; Milan, Italy; Barcelone, Spain; Bonn, Germany, 1992. [Google Scholar]
- Ekeland, I. On the variational principle. Cahiers de Mathematique de la Décision; Université Paris: Paris, France, 1972. [Google Scholar]
- Ekeland, I. On the variational principle. J. Math. Anal. Appl. 1974, 47, 324–353. [Google Scholar] [CrossRef]
- Ghoussoub, N. Duality and Perturbation Methods in Critical Point Theory; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Costa, D.G.; Gonçalves, J.V. Critical point theory for nondifferentiable functionals and applications. J. Math. Anal. Appl. 1990, 153, 470–485. [Google Scholar] [CrossRef]
- Chang, K.C. Variational methods for non-differentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 1981, 80, 102–129. [Google Scholar] [CrossRef]
- Lanchon-Ducauquois, H.; Tulita, C.; Meuris, C. Modélisation du Transfert Thermique Dans l’He II; Congrès Français du Thermique: Lyon, France, 2000. [Google Scholar]
- Clarke, F.H. Optimization and Non-Smooth Analysis; Canadian Mathematical Society: Otawa, ON, Canada, 1983. [Google Scholar]
- Aronsson, G. On p-hrmonic functions, convex duality and an asymptotic formula for injection mould filing. Eur. J. Appl. Math. 1996, 7, 417–437. [Google Scholar] [CrossRef]
- Brezis, H.; Nirenberg, L. A minimization problem with critical exponent and non-zero data. Symmetry Nat. Sc. Norm. Sup. Pisa 1989, 1, 129–140. [Google Scholar]
- Lee, C.; Folgar, F.; Tucker, C.L. Simulation of compression molding for fiber-reinforced thermosetting polymers. Trans. ASME 1984, 106, 114–125. [Google Scholar] [CrossRef]
- Bergwall, A. A geometric evolution problem. Q. Appl. Math. 2002, 60, 37–73. [Google Scholar] [CrossRef]
- Janfalk, U. On a minimization problem for vector fields in L1. Bull. Lond. Math. Soc. 1996, 28, 165–176. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meghea, I. Solutions for Some Mathematical Physics Problems Issued from Modeling Real Phenomena: Part 1. Axioms 2023, 12, 532. https://doi.org/10.3390/axioms12060532
Meghea I. Solutions for Some Mathematical Physics Problems Issued from Modeling Real Phenomena: Part 1. Axioms. 2023; 12(6):532. https://doi.org/10.3390/axioms12060532
Chicago/Turabian StyleMeghea, Irina. 2023. "Solutions for Some Mathematical Physics Problems Issued from Modeling Real Phenomena: Part 1" Axioms 12, no. 6: 532. https://doi.org/10.3390/axioms12060532
APA StyleMeghea, I. (2023). Solutions for Some Mathematical Physics Problems Issued from Modeling Real Phenomena: Part 1. Axioms, 12(6), 532. https://doi.org/10.3390/axioms12060532