@ axioms

Review

Solutions for Some Mathematical Physics Problems Issued
from Modeling Real Phenomena: Part 1

Irina Meghea

check for
updates

Citation: Meghea, 1. Solutions for
Some Mathematical Physics
Problems Issued from Modeling Real
Phenomena: Part 1. Axioms 2023, 12,
532. https://doi.org/10.3390/
axioms12060532

Academic Editor: Feliz

Manuel Minhés

Received: 8 April 2023
Revised: 9 May 2023
Accepted: 18 May 2023
Published: 29 May 2023

Copyright: © 2023 by the author.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Mathematical Methods and Models, Faculty of Applied Sciences, University POLITEHNICA of
Bucharest, 060042 Bucharest, Romania; irina.meghea@upb.ro or i_meghea@yahoo.com; Tel.: +40-756575418

Abstract: This paper brings together methods to solve and/or characterize solutions of some prob-
lems of mathematical physics equations involving p-Laplacian and p-pseudo-Laplacian. Using
surjectivity or variational approaches, one may obtain or characterize weak solutions for Dirichlet or
Newmann problems for these important operators. This article details three ways to use surjectivity
results for a special type of operator involving the duality mapping and a Nemytskii operator, three
methods starting from Ekeland’s variational principle and, lastly, one with a generalized variational
principle to solve or describe the above-mentioned solutions. The relevance of these operators and
the possibility of their involvement in the modeling of an important class of real phenomena deter-
mined the author to group these seven procedures together, presented in detail, followed by many
applications, accompanied by a general overview of specialty domains. The use of certain variational
methods facilitates the complete solution of the problem via appropriate numerical methods and
computational algorithms. The exposure of the sequence of theoretical results, together with their
demonstration in as much detail as possible has been fulfilled as an opportunity for the complete
development of these topics.

Keywords: modeling real phenomena; mathematical physics problems; p-Laplacian; p-pseudo-
Laplacian; surjectivity methods; variational methods; Dirichlet problem; Neumann problem
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1. Introduction

Problems for partial differential equations involving the p-Laplacian and p-pseudo-
Laplacian are mathematical models that often occur in studies on the p-Laplace or p-pseudo-
Laplace equation, generalized reaction—diffusion theory, non-Newtonian fluid theory, non-
Newtonian filtration, the turbulent flow of a gas in a porous medium, glaciology, non-
Newtonian rheology, etc. These fractional order operators are very important mathematical
models describing a multitude of anomalous dynamic behaviors in applied sciences. In the
non-Newtonian fluid theory, the quantity p is a medium characteristic. Media with p > 2 are
called dilatant fluids and those with p < 2 are pseudoplastics. If p = 2, they are Newtonian
fluids. The p-Laplacian appears in the study of flow through porous media in turbulent
regime at Diaz et al. [1,2] or glacier ice when treated as a non-Newtonian fluid with a
nonlinear relationship between the rate deformation tensor and the deviatoric stress tensor,
as described by Glowinski et al. [3]. It is also used in the Helle-Shaw approximation for a
moving boundary problem by King et al. [4] and also for “power-law fluids” at Aronson
et al. [5]. The p-Laplacian also appears in the study of flow in porous media (p = 3/2, at
Schowalter et al. [6]) or glacial sliding (p € (1, 4/3], at Péllissier [7]). Quasilinear problems
with a variable coefficient appear in the mathematical model of the torsional creep (elastic
for p = 2, plastic for p — oo; see in Bhattacharya et al. [8] and at Kawohl [9]). A nonlinear
field equation in Quantum Mechanics involving the p-Laplacian for p = 6 was proposed by
Benci et al. [10].

Axioms 2023, 12, 532. https:/ /doi.org/10.3390/axioms12060532

https:/ /www.mdpi.com/journal/axioms


https://doi.org/10.3390/axioms12060532
https://doi.org/10.3390/axioms12060532
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0001-8471-1122
https://doi.org/10.3390/axioms12060532
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12060532?type=check_update&version=2

Axioms 2023, 12, 532

2 of 66

Surjectivity methods to solve and/or characterize the solutions for Dirichlet problems
involving the p-Laplacian and the p-pseudo-Laplacian have been previously used by the
author in [11], together with other variational results, in [12] where two solving methods
are displayed, in [13] which discusses some Fredholm alternative types, in [14] with solu-
tions for the p-pseudo-Laplacian treated following two approaches, and in [15] involving
surjectivity methods. Solving such problems via results obtained with Ekeland variational
principle and other generalized variational principles has been the goal of other works of
the author where some Dirichlet or Newmann problems have been studied as in [12,14,16]
with the use of a perturbed variational principle, in [17] with variational procedures, as
also in [18]. Mountain pass theorem variants and applications involved in modeling real
phenomena are performed by the author in [19], while other applied variational methods
are capitalized on by the author in [20,21], and several variational principles, together with
generalizations and variants, have been compared and analyzed in the monograph [22].

The fractional differential equations are frequently used as modeling tools for pro-
cesses implied in anomalous diffusion or spatial heterogeneity [23]. Also, in water resources,
fractional models have been used to design chemical or contaminant transport in heteroge-
neous aquifers. In the field of magnetic resonance, fractional models of the Bloch-Torrey
equation for drawing anomalous diffusion have been considered. Concerning the domain
of cell biology, anomalous diffusion has been measured in fluorescence photo-bleaching
recovery and fractional-in-time models have been created for simple types of chemical
reaction—diffusion equations and for the simulation of microscale diffusion in the cell wall
lining of plants. Similar problems appear in models of chemical reactions, heat transfer,
population dynamics and so on [24]. Power law diffusion equations with p-Laplacian
having constant and/or variable p are significantly related to researches on non-Newtonian
fluids, turbulence modeling phase transitions, data clustering, machine learning and image
processing. Many studies devoted to power-law diffusions call for the development of effi-
cient numerical methods for solving elliptic partial differential equations with nonlinearities
of p-type gradient [25].

The interest in these kinds of operators is topical both for mathematical approaches
and results, as at Mukherjee et al. [26], Zhang et al. [27], Benedikt et al. [28], Lafleche
et al. [29], Cellina [30], Khan [31], Xu [32], Akagi et al. [33], Gulsen et al. [34] and Lee
et al. [35], and also for applications in many models in various fields, as in Rasouli [36],
Yang et al. [37], Elmoataz et al. [38], Gupta et al. [39], Liero et al. [40] and Silva [41].

In this paper, several sequences of results are proposed, starting from the most gen-
eral and abstract theory, passing step by step through many concrete stages until their
applications in models issued from design of real phenomena. The focus falls on a very
extended justification, containing all the necessary details and displaying all the theoretical
arguments. Some of the results presented in this paper are introduced with an integer
justification background and they are used to obtain and/or characterize the solutions
of equations of mathematical physics proposed by other authors for similar problems
for which they gave solutions via different methods. For such problems resulting from
mathematical modeling, we came up with original solving methods following the in-
volved abstract frame. From these original approaches stems the novelty of this work.
Our interest is now focused on such kinds of problems and their solutions, and this is
one of the initial studies for future developments to find a mathematical model (there is
none available) that can be applied for describing diffusion phenomena involved in the
micro-emulsification of disperse systems in tight connection with surface properties at the
interface in self-organized systems.

This article is the first part of review type of the work under this title containing
whole theoretical support detailed in a complete exposition of the arguments, while many
applications of the results presented here represent the aim of another original paper under
the same title, Part two.
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2. Surjectivity for the Operators A\J, — S: Applications to Partial
Differential Equations

2.1. Surjectivity of the Operators of the Form AT — S

In this section, a generalization of a theorem from [42] (Theorem 1.1) is presented
and in this result the author used: normed space instead of Banach space, bijection with
continuous inverse instead of homeomorphism. Two corollaries of this statement, obtained
in [12,14], have also been presented.

Firstly, to have a short expression, we introduce the following.

Definition 2.1. T: X — Y, where X and Y are normed spaces, is (K, L, a), where K> 0,L >0,
a>0,if
K ]| < |IT]| < L ||| Vax from X.

Proposition 2.1. Let X and Y be real normed spaces, T: X — Y (K, L, a) odd bijection with
continuous inverse and S: X — Y odd compact operator. For any A # 0, if

lim ||ATx — Sx|| = +oo,

[|x|| =00

then AT — S is surjective.

Proof. Let zy be from Y; we state that:

dxgin Xe.g.,, ATxy — Sxy = zp. (2.1)
Take R > 0 with the property (see the hypothesis)

[¥[] = R = [[ATx — Sx[| > |zo]| (22)

and the open ball from Y 0: =B(0,7), r: = IAl LR”. If y € 90 and y = ATx, then ||x|| > R,
and hence,

(22)
[ ATx = Sx || > |[zol| (23)
Let be the operator A: Y — Y,

=32

A is compact, odd and Ay # y when y € 9o (ad absurdum, put y in the form ATx and
take into account (2.3), i.e., 0 ¢ (I — A)(d0)). Applying Borsuk theorem, the Leray-Schauder
degree d(I — A, o, 0) is odd. However,

H:[0,1 x & — Y, H(t, y) = Ay + tzg
being a homotopy of compact transformations on o, we have

d(I — H(0, -), 0,0)=d(I — H(1, -), 0, 0), i.e.,
d(I—A,0,00=d(I — A — z9, 5,0),

consequently, d(I — A, o, 0) is an odd number, particularly different from zero, therefore
Jypin 0, e.g.,, I — A — zp)(yo) = 0 and it remains only to take xy in X with yy = ATx to
obtain (2.1). O
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Corollary 2.1. Let X, Y be real normed spaces, T: X — Y odd (K, L, a) bijection with continuous
[[Sx]

inverse, S: X — Y odd compact operator and « : =  lim #< +00. If
[x]|—+eo 2]
«
A —,AeR
‘ | > K/ 6 4

then AT — S is surjective.

Explanations [43], Volume 5, V, §5,11.91, p. 372: f : X — Y, X and Y normed spaces,

JR— def . .
im || f(x) [=inf sup || f(x)[[= lim sup | f(x)].
[[x|[—+e0 p>0 xeg p=rteo xeg
|Ix[] Zp [1x[| =
Ifoo= lim | f(x) ||, thenx, € X Vnfrom N, and ||x,|| — +co implies im || f (xy) ||
[|x||—+00 n—oo

<

If x= lim || f (x,) ||, for any (x,) with x,, from X and ||x,| — +oo, then x = lim ||f
n—00 |[x[[—=+e0
@]-

Proof. It remains to prove:

lim ||]ATx — Sx|| = +oo, (2.4)

[|x||—4c0

Assuming, ad absurdum, the contrary, obtain p > 0 and a sequence (x,,),>1, Xn € X, ||xn| —
+00,e.8.,

ATx, — Sxu|| < pVn>1. (2.5)
From (2.5),
. ATx, Sxy,
Iim || —— — =0,
n=ool| ||xp[|® |[xn]|®
hence, lim [WHTX"” - ”S(x”)”} =0, and as Iim B3 < & it results
" oo L lxnl” [EAR ¢ n=soo [xul® =77

]ﬂﬁhﬂﬂz@ﬂ<<a. (2.6)

noolxy|* T
But the condition (K, L, a) imposes:

K < Tim 1T

BEaGd B

2.7)

From (2.6) and (2.7), we obtain K < |“T| If « #0, then IAl < %, which contradicts

the hypothesis, and if & = 0, then K = 0, also in contradiction with the hypothesis, and
consequently, (2.4). O

Corollary 2.2. Under the conditions of Corollary 2.1, if « = 0, then AT — S is surjective for A any
in R\{0}.

2.2. Surjectivity for Operators of the Form AJ, — S, |, Duality Map
2.2.1. Preliminaries—Duality Map

Let X be a real Banach space, X* its dual (), x* an element any in X*, 2M the set of
subsets of M.

Definition 2.2. ¢: Ry — Ry continuous and strictly increasing with @(0) = 0 and 1ir+n
r—r+00
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@ (see, for instance [43], Volume 2, p. 27r) = +oo is, by definition, weight or normalization function.
The multiple-valued map J, : X — 2X* ¢ weight,

{ ]chX:{OX*}/
x#0=Jox = @(||x|[){x* € X*: |[x*|[ = 1,x"(x) = [|x]|},

equivalently,
xeX=Jox={xme X x| = o(|x[l), x*x) = ([},

is, by definition, the duality map (on X) relative to @. (Beurling-Livingstone).
Its name becomes normalized duality map when @(t) = t (in this case, x* € |, x <= x*(x)
=[xl = [l*]%).

Definition 2.3. Let X be a real normed space. A nonempty set 5 of bounded subsets of X, having
the properties:

1°JA=X,22AcBp=>—-A€cB,AAcB(A>0)and
Aef

3° B is filtered to the right related to the inclusion “C”, i.e.,
forany A,Binp3Cinfp,eg, ACCand B CC,
is called bornology on X.

Let B be a bornology on X. The function f : X — R, which is locally finite in the point a
(i-e., there exists a neighborhood of 2 on which f is finite), is, by definition, -differentiable in
a if there exists ¢ in the topological dual X* such that for every S in 3, we have:
limuw = @(h) (uniform limit on S for t — 0).

t—0 t
hes

@ is the B-derivative of f in a, and it is denoted by

Vg f(a).

If  is the set g of the finite symmetrical parts of X or the set 3 of the bounded
symmetrical parts of X, the 3-derivative coincides with the Gateaux derivative and Fréchet
derivative, respectively.

Proposition 2.2. 1° [, x # @ Vx in X;
2° Forany x in X, | o x is a convex, closed, bounded part of X* (it is contained in the sphere of

the equation [|y||x- = @(|[xI)));
3° Jo x = o (x), the subdifferential in x, where

[[ull

(apply Asplund theorem; since \ is continuous and convex, \ is Giteaux differentiable in x iff
oY (x) has a single element, and then ' (x) = d(x); consequently, ] o is uni-valued iff \ is Giteaux
differentiable, and in this case, [ o x = ' (x));

4°Jpisodd (Jo (—x) = — Jo x Vxin X);

5° o (Ax) = %m) Jx, Vx in X\ {0}, VA > 0;
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6° [ is monotonous; more precisely: Vx, y in X and Vx*, y* from J o x, J ¢ ¥,

(@ =y —y) = Le(llx[)) = ey DIl = llyl) = 0;

7° The normalized duality map is linear iff X is a Hilbert space;
8° If x* € | x, then x € ] ,1(x*) (duality map on X*);
9° Jo, J o, being duality maps on X, there exists p: [0, +co] — [0, +0c0) such that

Jo x = (]l x )], Vxin X;

10° Let x, y be in X. Then, ||x|| < ||x + Ay|| VA > 0 iff there exists x* in Jx, ] the normalized
duality map on X, with the property x*(y) > 0 (Kato).

Furthermore, retain that if |, is uni-valued, then it is coercive since:

X, X .
Uo %) _ yin o x|]) = +oo.
Ixli=teo T2l fll=teo
The Banach space X is, by definition, smooth (Krein) if
Vx # 0 there exists x, unique in X*, e.g., || x5||=1, x5 (x) = || x || .

Thus, any duality map on a smooth space is uni-valued and reciprocal.
Since x, from X* is sub-gradient in xo # 0 for x — ||x]], iff | xy|| = 1 and x5(x) = ||x||
and x — ||x|| is convex and continuous.

Proposition 2.3. X is smooth space iff the norm of X is Gateaux differentiable on X\ {0}.
From this, combined with Proposition 2.2, 3°, we obtain:
X smooth = [, x = @(||x[])||x]/", x # 0. (x)
To validate this formula, we prove the following:

Proposition 2.4. Let X and Y be real normed spaces and f: X — Y be Gateaux differentiable, F: Y
— R of Giteaux C' class. Then, g : = F o f is Gateaux differentiable, and g'(x) = F'(f (x)) o f (x) [43].

Proof. We use the formula of finite increases [43], Volume 9, p. 93:
Let 3 be a bornology on X and f: X — R [3-differentiable on the segment [4, b] from X.
There exists 0 in (0,1) such that:

f®)=f@=Vgfa+60b—a)b—a).
Standard justification. Take F: [0,1] — R, F(t) =f (a + t(b — a)). With § being small,

w _ %[f(a—i—t(b—a)—O—(S(b—ﬂ))—f(ﬂ+t(b_a))]r

let Abe in 3 with b — a € A (property 1° from the definition of the bornology), and take the
limit for & — 0, F'(t) = Vg f (a + t(b — a))(b — a), F(1) — F(0) = F/(), with 6 in (0,1), etc. (]
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We continue the proof of this proposition. Let xy and / be in X.

Sl + ) = gGe)] = 3 [F( G + th) = F(f(xp)] =

f(xo +th) — f(xo)>
. ,

F'(f (xo) + 8()[f (xo + th) — f(x0)]) (

tim LT IO oy, bl ey + ¢ = £Gx0)) = 0,

t—-0 t
mO(O)[f Cxo + th) — f(x)] = 0

and hence the conclusion, since:
X, > aand y,—> b = F'(y,)(x,) = F'(b)(a):
F'(ya)(x) — F'(D)(@) = [F' () () — F' ) (@] + [F' () (@) — F'(b)(a)],

I F ) (xn) = F' )@ =1 F )G —a) TSN F o) g —all<lx, —all

(the sequence (|| F'(y,) ||) is bounded, being convergent),

I F'(yn)(a) = F'(b)(a) | = || {F'(yn) =F'(b), a) | < [ a || || F'(ya)—F'(b)]I. O

Finally, we introduce the following:

Definition 2.4. F: X — 2X" is upper semicontinuous in xq if, for any neighborhood V of F(xg) in
the x-weak topology on X*, there exists U neighborhood of x¢, e.g., F(U) C V.

Proposition 2.5. Any duality map |, on X is upper semicontinuous on X (Browder).

Definition 2.5. A Banach space X is called strictly convex (Clarkson) if one of the following
equivalent properties is fulfilled:

1°x#y, |xl|l=lyll=1=[Ax+Q—=Ay| <1VAin(0,1);

22 x £y, [l = [yl =1 = x+v] <2

3° x+ g = llxl| +llyll, y # 0= IA > Owith x = Ay;

4° 2]l = Iyl = Land]lx + yl| = 2]l + Iy || = x =y;

5° The sphere {x € X: ||x|| = 1} does not contain any segment;

6° Any x* from X* attains its inferior upper bound on the unity ball of X in at least one point;

7° The function x — ||X||? is strictly convex.

Proposition 2.6. If X* is smooth (respectively strictly convex), then X is strictly convex (respec-
tively smooth). The reciprocal assertions are true when X is reflexive.

Proposition 2.7. If the Banach space X is reflexive, there exists a norm on X equivalent strictly
convex such that the dual norm is also strictly convex. (Lindenstrauss, Asplund).

Definition 2.6. A Banach space is uniformly convex (Clarkson) if
Ve>035>0suchthat x| =|ly[| =1and |[x —y| > e =[x +y| <21 —9),
equivalently

|xo |=ynll=1VninNand || x,+y, | — 2 = nli_r}rt}o(xn—yn):o.
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A Banach space is local uniformly convex (Lovaglia) if
Ve >0and Vx with ||x||=138>0e.g, |yl =1and |[x —y|| > e = |x +y| <21 - 3),
equivalently,

| x||=llxs|[[=1VninNand || x,+x]| — 2 = limx, =x.
n—oo

Proposition 2.8. X uniformly convex = locally uniformly convex = X is strictly convex.
Proposition 2.9. X uniformly convex = x is reflexive. (Milman).
Proposition 2.10. If X is local uniformly convex, then, for any sequence (Xz)y>1, Xn € X,

w
Xp — xand || x, || = || x| = 2 — x.

Here is a characterization of the uniform convexity.

Proposition 2.11. X and X* are uniformly convex iff the norm on X* and X, respectively, is
uniformly Fréchet differentiable.

Clarification. f is uniformly Fréchet differentiable Lg Ve >0 36 > 0 with the property
Il <& = | f (c+h) = £ () = f )| < e[l vx with [[x]] <1;

x — ||x|| is uniformly Fréchet differentiable iff it is Fréchet differentiable and the Fréchet
derivative is uniformly continuous on the unity ball.

Proposition 2.12. If X is local uniformly convex and reflexive, then the norm on X* is Fréchet
differentiable.

Proposition 2.13. For any reflexive Banach space, there exists on this an equivalent norm for which
it becomes local uniformly convex. (Troianski).

Proposition 2.14. For any reflexive Banach space X, there exists an equivalent norm on X for
which X and X* are locally uniformly convex. (Asplund).
Thus, the equivalent norm and its dual norm are Fréchet differentiable (Proposi-

tion 2.12).

Proposition 2.15. If X is smooth, for any weight ¢, ] o is uni-valued and continuous from X, with
the strong topology on X* endowed with the x-weak topology.

Proof. Take Proposition 2.5 into account. [J
Corollary 2.3. If X is smooth and reflexive, any duality map | on X is semicontinuous.

Proof. Let x, — x. Setting x;;: = x,,, x* : = Jx, we have x;;(u) — x*(u) Vu from X, i.e., denoting
uw** : = ®u, P is the canonical embedding in bidual, u**(x};) — u**(x*), hence Jx; A Jx. O

The strict convexity can be characterized by the duality map.
Proposition 2.16. X is strictly convex iff any duality map on X is strictly monotonous. (Petryshin).

Consequently,
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Proposition 2.17. If X is strictly convex and smooth, then any duality map on X is uni-valued and
injective.

Proposition 2.18. Let X be smooth and local uniformly convex, | duality map on X and (xn)n>1,
xp € X If (Jxy — Jx)(xy — x) — 0, then x,, — x.

Proposition 2.19. Let X be Banach space. A duality map on X is uni-valued and continuous in the
topologies of the norms iff the norm on X is Fréchet differentiable.

Proof. Necessary. X is smooth, and the norm is Gateaux differentiable (Proposition 2.3),
even of the C! Gateaux class in accordance with (). Sufficient. This results from a Cudia
theorem. [

Proposition 2.20. Let X be a Banach space and |  a duality map on X. X* is uniformly convex iff
J o is uni-valued and uniformly continuous on the bounded sets of X.

. . Proposition 2.11 . . . .
Proof. Necessary. X* is uniformly convex P x — ||x|| is Fréchet differentiable =

Jx = o(||x|))||x]|, x — [|x||" is uniformly continuous on the closed unity ball. Sufficient. | uni-

Proposition 2.3 Proposition 2.11
= =

valued x — ||x|| is Gateaux differentiable x — ||x|| is uniformly

. . . Proposition 2.11 ) .
Fréchet differentiable P = X* is uniformly convex. [J

Place here the characterization of the reflexivity of a Banach space.

Proposition 2.21. The Banach space X is reflexive iff any x* in X* attains sup x*(x).
lIxll<1

In the following, there is a characterization of the reflexivity of the duality map.

Proposition 2.22. Let X be a Banach space and ], duality map on X. X is reflexive iff

X = Jox.

xeX

Proof. Necessary. Let x be in X*. There exists x( in X with ||xg[| = 1 and x{j(xo) = ||x||; take
to >0, e.g., @(to) = ||x3 ||, then x € J (fo xo). Sufficient. Use Proposition 2.21. Let xj be any
in X*, 3xpin X, e.g., x§ € [ xo, i, |25 = @([|x0]]), x§5(x0) = @(||x0)||x0]|. For yo: = ﬁ,

we have [lyoll = 1, x5(00) = %3]l = sup x3 (x). O
[Ix[[<1

Corollary 2.4. Let X be a smooth space and | a duality map on X.
1° Xis reflexive <=> | is surjective;
2° X is reflexive and strictly convex <= | is bijective.

Proof. Take Proposition 2.22 and Proposition 2.16 into account. [

Proposition 2.23. Let X be a reflexive and smooth space and ] , a duality map on X. Then J~1: X*
22X Iy =lxeX: Jo x = x*} coincides with ](’;,1, the duality map on X* coincides with the
weight @~ (identification via canonical embedding ® in the bidual). If X is also strictly convex,
then J~1 is uni-valued, and the formula holds true:

Jol=@ =" o
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Proof. The statement is, in accordance with Corollary 2.4, correct. First assertion. Let x*
be any in X*. x € ]! x* <= x* =], x <= ||x*|| = o(||x]|) and x*(x) = o(||x|))||x]| <= ||x||
= @ 1(||lx*|]) and x(x*) = @1 (||x*]))||x*]| <= x € Ji, -1 x*. Second assertion. X* is smooth
(Proposition 2.6). U

Pass to continuity properties of the duality map. A previous result is represented by
Corollary 2.3.

Definition 2.7. A Banach space has the property (h) if
Xy = xand || x, | = | x| = x — x
A Banach space has the property (H) if it is strictly convex, and it has the property (h).
For instance, any local uniformly convex space has the property (H) (Propositions 2.8

and 2.9).

Proposition 2.24. If X is reflexive and X* has the property (H), then any duality map | on X is
uni-valued, surjective and continuous relative to the strong topologies on X and X*.

Proof. | is indeed uni-valued (Proposition 2.6) and surjective (Corollary 2.4). Let x, — x.
Then, Jx, — Jx (Corollary 2.3); moreover, ||Jx, | — [|Jx|| since ||Jx|| = @(||xx|)) and ||Jx]|| =
¢(||x||). Therefore, Jx,, — Jx. O

Combining Proposition 2.24 with Corollary 2.4, one obtains the following.
Proposition 2.25. If X is reflexive and strictly convex and X* has the property (H), then any
duality map on X is uni-valued, bijective and continuous relative to the strong topologies on X and
X*.

We next proceed to the continuity of the inverse of the duality map.

Proposition 2.26. If X is reflexive, smooth and has the (H) property, then any duality map J, on X
is bijective with | (’pl continuous relative to the strong topologies on X and X*.

Proof. |, is bijective (Corollary 2.4), and X* is reflexive, smooth and strictly convex

(Proposition 2.6). Let x;;, = xo. Then, J* _,x;; Lot (Corollary 2.3), and the formula
from Proposition 2.23 imposes [J* _;x;; — [* _ x* (see (H)). U
@-1Tn @

Combining Propositions 2.25 and 2.26, one obtains the following.

Proposition 2.27. If X is reflexive and X and X* have the property (H), then any duality map on X
is a homeomorphism of X in X* relative to the strong topologies.

We finish this subsection with the following result:
Proposition 2.28. Any uni-valued duality map |, on a local uniformly convex space X has the
property S..
xn —x and @ (JoxXn — JoXo,Xn — X0y < 0= x, — x.
n—oo

Proof. The hypothesis implies

nlgglognpxn - ](px0rxn - x0> <0,
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0 < [l xn 1) =@l xo DICxn | = 1 x0 [ < {Joxn = JoX0, X — x0),
consequently,
Jim [ (][ 2 (1) = @(ll xo [DICIl 2 | =[] %0 [) = 0. (2.8)
We denote t,: = || xp, ||, to : = || X0 ||. Somehow,
lim t, = to, (2.9)

we apply Proposition 2.11 and obtain x, — x. Assume, ad absurdum, that t,, -+ ty. Then
there exists (t,,) subsequence of (t,) e.g., for instance, t,> p > fo Vn. (tx,) is bounded,
otherwise it has a subsequence (t;;, ), tj, — +0o, which implies @(t,) — +oo, [@(tir,) —
@(to)I(tix, — to) — +00,in contradiction with (2.8). Thus, (t,,) has a convergent subsequence
(t1e,) tik, — ty # to. Consequently, since o(ti,) = @(t)) # @(tp), from a rank on, we have,
with 6 >0,

ltik, —tol > O, |@(ti,) — @(to)| > &

and one obtains a final contradiction with (2.8). Here is another justification for (2.9). (¢,)
is bounded (see above); let t* be an adherence value any for this sequence (a fortiori t* €
R) and (t;, ) subsequence with nlgr(}o tj, = t*. Then, from (2.8), [@(t*) — @(to)](t* — to), which
implies t* = ¢y (ad absurdum !) and, consequently, (2.9). O

2.2.2. Main Results

Proposition 2.29. Let X be a real reflexive Banach space, smooth and having the property (H), |
duality map on X with ¢ being (K, L, a) function, S: X — X* odd compact operator and

Tim || Sx|]

R ey T

< 00

Then
1°a>0= Ay — Sis surjective VA with IN| >¢;
2° o0 =0= Ay — Sis surjective VA # 0.

Proof. |, is odd and bijective with a continuous inverse (Proposition 2.26). Moreover, since

Kt < () < LEVt>0,

we have
Kl[x[|* < o([|x[) = [[J x[| < L[x[|* Vx from X,

ie., ]y is (K, L, a). We apply Corollaries 2.1 and 2.2 from Section 2.1. []
Proposition 2.30. Let X be a real reflexive Banach space, smooth with the property (H), and |, the

duality map on X with @(t) = t'~1, p € (1, +00). Suppose that X is compactly embedded by the
linear injection i in a Banach space Z,

li(u)|| < co ||u|| Vu from X (2.10)

and N: Z — Z* is an odd semicontinuous operator with the property

INx|| < cq||x)|72 + ¢ Vx from Z, ¢1,¢2 > 0,9 € (1, p). (2.11)

Then A] o — N is surjective for any A # 0.
Explanation. N is the short notation for the operator, which acts from X to X*, i oNoi,
i’ being the adjoint of i.
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Proof. It follows to state that
Vhfrom X* Juin X, e.g, Ao u —(i"oNoi)u=h. (2.12)

Apply Proposition 2.1 with T = ], (correctly, as ¢ is (K, L, a) with K =L =1,4a =
p—1),S=i'oNoi Sis obviously odd and also compact: let (x;)uen, Xn € X, be a
bounded sequence (i(xy)),>1 has a convergent subsequence (x, ),>1; leti(x;,) = v, v € Z,
then N(i(xy,)) % N(y) and, consequently, i'(N (i(xg,))) — 7'(N(y)) since i is also compact
(Schauder theorem). So, to obtain the conclusion, it remains to prove

m ||(iro N oi)ul|

i =0. (2.13)
llul|=+eo [|u]|P

which it results (2.13) (||| < ||i|| < co has been used) [11,12,15]. O

' ' ‘ ‘ (2.10),(2.11) ‘ ) g1 )
[ NG < (|7 ING)| < co(en [[{@)][7 +e2) <colcy ~er [[uf|" +¢2), from
In the following, we search for the surjectivity of the operator AJ, — N, when N
verifies the growth condition (2.11), where g = p, i.e.,
[Nx|| < c1 [|x||P + cp Vx from Z, ¢1, ¢, > 0. (2.14)
For this reason, we present the statement:

Proposition 2.31. Let X be a real reflexive Banach space compactly embedded by the linear injection
i in the Banach space Z,

li(u) || < co |l u|l Vu fromX. (2.15)
If
. |[ue][?
A1 = infd — : X\{0} &, 1, +o0),
=it g X0 € (1)
then

1° Aq is attained and nonzero;
1 1

2° )L; P is optimal for (2.15) (i.e., )\; P < ¢o for any co);
3° If X and Z are smooth and Jxx» : X — X*, [zz+ : Z — Z* are duality maps relative to the
same weight @: @(t) = tP~1, then Ay is the smallest eigenvalue of the couple (Jxx+, Jzz+) [44].

Clarification. A is, by definition, eigenvalue for the couple (Jxx+, [zz+) if there exists ug #
0inZ, e.g., A (i' o Jxx+ 01) ug = Jzz+ up. In this case, 1y is, by definition, an eigenvector.

Proof. The set from the statement is correctly defined: u # 0 = i(u) # 0.
1° We have
M =inf{[[o[|P: v € X, [[i(v)[| =1}

(the two sets coincide, as H i (ﬁ) H =1). Let (v4)n>1, vn €X, be with [|i(v,)|| =1 and ||vy||
1

— AL
X being reflexive, (v,),>1 has a subsequence (we use the same notation for it) that is

weakly convergent in X, vy~ v (Kakutani theorem [43], Volume 3, p- 155). Then,

loll < lim o, |,
n—oo

o]lP < Ar. (2.16)
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0

(2.18)

On the other hand, since i is compact, we have i(v,) — i(v), which implies ||i(v,)||

~ [li@)]|, @] = 1 and hence [[o][? > Ay, [lollp ="
nonzero.

2° We take the definitions of A; and 1 into account.

3° Firstly, we show that A; is an eigenvalue for the couple (Jzz+, Jxx*), i.e., Jug # 0in
Xeg.,

A1, and A is attained and, a fortiori,

M (i 0 Jzz+ 0 i)ug = Jxx+ up. (2.17)

Taking the functional ®: X — R,

1 Ay
D(u)=—|u||P——| i(u)||F.
() p|| | pll()ll

0
®(u) > 0 Vu in X (see the definition of A1) and, for ug # 0 e.g., M L (Hl“(l;‘;‘;” ) p, D(ug) =0,

which imposes (taking into account Proposition 2.3)
@' (up) = 0 (Gateaux derivative). (2.18)

Then (the formulae: (x) and that from Proposition 2.4), Vu in X,

() (1) = <||uo P o). > A <||i<u0>||”‘1 -1 o). i<u>> — (e o)1) = Az (i) (i(u))) =

(S xoe ttg =My (i 0 T 770 00)(utg)u) , . (2.17).

Let A now be an eigenvalue for the couple (Jzz+, Jxx*) and u be a corresponding eigenvector.
Then

[ [1P= (Boce w)(u) = MJzz. (i(w)), i(u))= A i(u) |7,

hence

Jul|?
= > A0
liGu) [P = ™

We can now state the following.

Proposition 2.32. Let X be a real reflexive Banach space, smooth and have the property (H), ],
duality map on X with ¢(t) =t P~1, p € (1, +00). Suppose that X is compactly embedded with the
linear injection i in the Banach space Z and let N: Z — Z* be an odd semicontinuous operator with:

[Nx|| < ey ||x||Pt + cp Vx from Z, ¢1, ¢3 > 0.
Then, for any A, if

A > fm M@reNoiul

W TR oot >

where

A = inf{ |1H(L;|)|Tp Tu € X\{O}},

then N[ — N is surjective (N means i’ o N 0 i).

Proof. The statement is correct, A; # 0 (Proposition 2.31, 1°). We apply, as for Proposition
2.30, Proposition 2.29 with T =], S =i’ o N 0 i. We prove

e
— iiro N o i)ul

i <At (2.19)
lu >+ |[uf|P~1 !
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using 2° from Proposition 2.31, which will be sufficient to impose the conclusion. ||(i “o N o
1 1-p 1

Dul| < [|i ‘|| ING@)|| <Ay P @Ay [ul[P~ +e) (Jir]] < J)i]| < A7), and (2.19) becomes
obvious. [

Remark 2.1. Propositions 29, 30 and 32 have been briefly presented by the author in [11,12,15].

2.3. Existence of the Solutions of the Problems

Consider the problems

—Adi p—2 = f(- .
(*){ Adiv(|Vu| Vu)ula];)(:,g( ))+h,x€Q’p€ (1, +c0)
and
Ay (P Pan ) —pr.
o [ AEE(B78) s nrea
u|oQd =0

In this subsection, we apply (the idea originates in [45]) the results from Section 2.2 to
partial differential equations (weak solutions).

2.3.1. Preliminaries for Sobolev Spaces

To prepare the framework for this subsection and to be coherent and understandable,
we start with a theoretical recapitulation for Sobolev spaces.

The spaces LP(Q)) (Lebesgue integral in RN).

Let Q) be a nonempty open set in RN,

p € [1,4o) = LP(Q) := {u: QO — R: umeasurable,

:
lullrqyi= | [ ulPax |
Q

This norm is Gateaux differentiable on LP(Q)\{0} for p > 1. It is even of Fréchet Cl
class ([43,46]).

u|, Lebesgue integrable},

p=+00=L*(Q):={u: QO — R: u measurable, 3 c>0e.g. |u(x) <conQa.el,

||u||Lw(Q) :=infec.
1_1
I£ () <-+oo, then || 1t [y < [W(Q)]F 7| 1 150y, 1 < p < < +co.
pe [l,4e] = [lull,:= llullq):

LP(€}), modulo the known factorization, is a Banach space for p € [1, +co], LP(Q)) is
uniformly convex and hence reflexive (Proposition 2.9) for p € (1, +o0), L(Q) and L™ (Q)
are not reflexive, LP(Q)) is separable for p € [1, +o0), and L™ (€2) is not separable.

For pin [1, +o0], p’ is defined by:
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Ll (Q): = {u: Q — R: u integrable on any compact part of Q}.

At the end of this part of the exposure, we prove ([43], Q2 is a Lebesgue measurable
set):

Proposition 2.33. When p € (1, +00), u — || u || p(qy) is of Frechet C! class on LP(Q))\{0}.

Proof. For the following calculus, we use the inequalities [47]:

cllE=CIlAEN+IICIP2,p>2

&, CERN, p € (1, +oo) = [IENP2E - ICHP2CI S{ o
CH&,—CHP 9p€(172]

c independent by &, C. (2.20)
Let 1
D(u): = [ ullop ¥(u):= ;H” Oy
hence,
1 1
D(u) = pr[¥(u)]r. (2.21)

Y is Gateaux differentiable on LP(Q)) and [48]

() (h) = / |u|P~ (sgnu)h dx, Vh in LP(QQ)
A

We prove that u — ¥’(u) is continuous on LP(Q2) and then (2.21) will impose the conclusion,
taking into account Proposition 2.4.
Let
Uy — ugin LP(Q)). (2.22)
It follows to prove

lim W’ (un) = W' (uo) in (LP(Q))*, i.e.

n—oo

lim  sup [(W'(un) — W’ (uo), h)| = 0.

oD g p =1 (2.23)
||h||0,p =1= 1 {¥(u,) — ¥ h)l = |f(|un\P_1sgnun - |u0|P_1sgnuo)hde <
o}
Holder
S 1(lun|P~tsgnuy, — |ug|P~tsgnug)h|dx < Au, Ap: = |[1uny P71 sgnu, — lug P! sgn
Q
However, | |u,|P~! sgn Uy — lug IP~1 sgn ug 1P = | lu, 1P2y, — Lo 1P=2 1P’
(2.20)
<

7

colttn — uo|P'(|ttn] + 1o )PP, p > 2
colun —uolP,p € (1,2]

hence AR = [ ||un|P~sgnu, — |uo|P~Lsgnug|P’ dx <
Q

co.f |un — uo[P' (|un| + |uo| )PP~ Pddx, p > 2
9]

7

co [ |un — to[Pdx = col[un — uol[f ,, p € (1,2]
Q

therefore, when p € (1, 2], nlgn Agl =0 (see (2.22)), i.e., nlgn Ay =0 and hence (2.23), and
whenp >2,
lim A" =0, (2.24)
n—o0
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ie., lgn Ay =0and hence (2.23). (2.24) is proved as follows:
n—oo

ol
2
< uw — tolP’llo, 2 1l (Jeen] + Ju )PP~

-_)

, tim [l — w8, %2

J Tt — 1o |P' (Jutu| + [110]) PPl o1
Q "pr(p=2)

0, and the second factor is

0p)P [ Tun 1+ Tug

-2
= (|[un — 10 | [E P2

. 222
bounded, since || lu, | + lug! ||0,p < Hun||0,p + Huo||0,p and HuHHO,p(_>)HuO||O,p' O

Corollary 2.5. When p € (1, +00), any duality map on LF(Q)) is a homeomorphism of LP((}) on
L7 (Q).

Proof. LP(Q)) is smooth (Proposition 2.3) and uniformly convex, hence local uniformly
convex (Proposition 2.8) and, in particular, has the (H) property, even U’/(Q) has the same
properties (by applying Proposition 2.27). [

Let Q) be a nonempty open set from RN and p in [1, +co].
W1P(Q)) designates the real vector space of the functions u from LP(Q) for which there
exists g1,...,gnin LP(Q)) e.g.,

in C°( 910 . ' -
Yo in CZ /uaxldx /le(pdx,z

In the definition, CZ°(Q2) can be replaced by Cg(Q). We denote, for each i, 1 <i <N,

u i
—— = gi, the weak derivative.
axi

These are uniquely determined.
Remark 2.2. By weak differentiation, one remains in LP(Q2).
Additionally, for u from WP(Q),

Ju
Vu = gradu = (6_x1 6xN) the weak gradient

1
2

=[2G

divu = Z ax, , the weak divergence.

i=1

N
ou
V| € LP(Q): [Vul < g : = Z |§| € 1P(Q), [VulP < gP.
=1

Moreover, for p € (1, +o0) and p’ the conjugated coefficient,

ou ,
|Vu|P—2— e L’ (Q),i = I,N,

d (10u’? ou
axi axi

ax;

)ELP(Q)1= N.
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To justify the above two relations, for

!

oupn” , ou P , _p
p* 2,(|\7u|p—2 —”|) = [Vur'®-2 %| [VulP' @D e D (q),
i i
re-2_ 1
€ LD ), =1,
e 7t
and for p = 2—obviously since p’ =
We define:
N
I llwie ) = I I
WiP(Q) ; ax1 1p()

anorm on W7(Q).
Sometimes, when p € [1, +00), one takes the equivalent norm:

, NigulP \?
<||u||Lp(Q) » me)).

WLP(Q) is a Banach space for p € [1, +c0], it is uniformly convex and reflexive for p €
(1, +00) and separable for p € [1, +c0). When p > N, any function from W' (Q) is Fréchet
differentiable on () a.e. ([49], Chapter VIII).

We now provide some clarifications related to the weak derivative, p € [1, +oo]. If u
€ C () N LP(QY) and g—;‘l_ € LP(Q), i =1, N (derivatives in the usual meaning), then u €
WLP(Q) and the weak derivatives coincide with them in the usual sense. In particular, if Q)
is bounded, then C!' (Q0) € WP(Q)). Reciprocally, if u € WLP(Q) N C(Q) and g—; eC()),i=
1, N (weak derivatives), then u € C! (Q).

Let p be in [1, +00).

u
Bxi

WP(0) Wir(0)

WP (Q) = CL(Q) — C.(Q)

W&’p (€2) with the norm induced is a separable Banach space. It is reflexive if p € (1, +0).
Since C!(RN) is dense in W'P(RN), W&’p (RN) = whP(RN). However, when Q # RN, in
general, W&’p Q) # WLrP(Q).

Proposition 2.34. For any p in [1, +00),
WY (Q) N Ce (Q) € W,7(Q).
The following considerations strongly imply Wé’p(()) in the theory of partial differential equations.

Definition 2.8. We define, by local charts, W'P(T) with p € [1, +c0), T reqular manifold, for
instance T = 0Q), Q) open set of C! class with 9Q) bounded. In this situation there exists a unique

_1
continuous linear operator y: W/P(Q) — WP (0Q)), the trace, such that vy is surjective and
ue W (Q) n C(Q) = q(u) =u|oQ.
By the way,

Proposition 2.35. Let Q) be of C! class and u in W'"P(Q) N C (Q), p € [1, +c0). Then

u e W,P(Q) < ulan =0
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Here is another characterization of the spaces WS Q).

Proposition 2.36. Let Q) be of C' class and u in LP(Q), p € (1, +o0). Then

L)

—d
/Q u o, X

Suppose w(Q) < +oo. Then u — ||| Vul|| () is anorm on W&’p(Q) equivalent (and hence
also complete) to u — Uy (-

We denote:
ue Wg’p(Q) = lull1p: = IIVulll Ly = [IVulllp, when confusion cannot appear).

uc W&’p(Q) <= Jc > 0 such that <cle HLP’(Q)'i =1L N,¥gin Cc(Q).

This norm, when p € (1, +0), is Gateaux differentiable on W& 'p(Q)\{O} (combine Proposition
2.15 and Proposition 2.4), which assures uni-valued duality maps (Proposition 2.3).

Proposition 2.37. (Wé’p(()), Il - llip), p € (1, +00), is uniformly convex and hence particularly
reflexive.

Proof ([50]). The case p € [2, +c0). We use the following inequality: ([51], Euclidean norm)

a,CeR”,nzle'i;n

p _ p 1
HE2 = saer v nm e

Let ¢ be from (0, 2] and u, v from Wé’p(Q) with

lullLp = lollLp =1, lu—0l1p > e (2.26)

Then

||u+v
2

p +||u—v||P _ J‘<|Vu+Vv|p+|Vu—Vv|p>dx(225)
1,p 2 1,p 2 2 2 -

P (2.26)

<1-(3)

1 1 (226) |[lU+v
7 | Qwule + 1wvPyax = S (f, + wiE,) =715
O

1p

We take 6 > 0 defined by

()] e
The case p € (1,2). We use

1

p-1

p/ 1
< F0er+inm]™, e

p/
ECeR, n> 1 :sHEI” +‘

&—
2

p’ the coefficient conjugated with p ([51]).
We remark that, for u in WS P,

— /
[VulP" € LP7H(Q), [lullf, =] [Vul”

0p1- (2.28)

/ , (227)
Let e be in (0, 2] and u, v in Wé’p(Q). Then | VulP, IVoIP € LP~1Q)and as

I [Vul?’

op-1+ I Vo[

op-1 < || [VulP’ + Vol [lop-1 - (2.29)
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Since 0 <p — 1 <1, it results:

/
p u—ov

2

u+o
2

P/ (228),(2.29),(227) 1
< 3

If,p+ ||'U I]D,p) 4

1p 1p

consequently, if [|u|1p = [[0]l1p =1 and ||u — v||1, > €, one obtains

<1-(3)"

u+oll?

Lp

and hence the conclusion. J
The dual of W&’p (Q), pin [1, +00), is denoted
W—l,p/ (Q),

p’ the coefficient conjugated to p.
If Q) is bounded,

Nz—fz <p <40 = WP(Q) C I3(Q) ¢ WP(Q)

with continuous injections and dense and, if (2 is not bounded,

2N
N+2

<p<2 = WPQ) c 13Q) c WP(Q).
The elements of W’LP,(Q) can be characterized by the following.

Proposition 2.38. Let F be from W~ (Q)). There exists f, ... , fy in LP' (Q)) such that
N Jdu 1
F(u)= /foudx+ Z/figdx Yu in W, (Q)
o) =19 '

and
IEll= max || fi ller -

When ) is bounded, one can take fo = 0.

2.3.2. The Operators —Ap, —Aj and N¢
—Ap, p € (1, +o0), the p-Laplacian

Let Q) be an open set, with the finite Lebesgue measure, from RN, N > 2. The norm on

W,y P(Q) will be 1 — |[ul|,,-
Consider the operator — Ap, : Wol’p Q) = W-P(Q),

Apu= div(|Vu|P~2Vu).
This acts according to [45]:

(~Bpu, v) = / VP2V u - VodxVu, vin Wy (Q).
QO

(2.30)

(2.31)

Taking into account the following, the next property of the p-Laplacian—the identification

with a particular duality map—is the most important.
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Proposition 2.39. Let ¥: Wé’p (Q) = R,
1
(ORI

Then Y is Gateaux differentiable on W, Lp (M)\{0}, and
Yi(u) = —Ap u = Jo u¥,from Wg’p(()),
where @(t) = tP~1 ([50]).
[ullyp
Proof. Since ¥ (u) = f @(t)dt, we have
Jo u=0Y¥(u) Vuin W&’p(Q) (Proposition 2.2),
thus, it remains to prove that ¥ is Gateaux differentiable and
¥1(u) = —Ap u Vuin Wy (Q). (2.32)
¥ =g of whereg: LP(Q) — R, g(u) =  [|ul[g . f : WP (Q) = LP(Q), f (u) = 1 Vul.

From now on, the proof is continued as in [11] and has been proposed by the author.
g is of Fréchet C! class on LP(Q)) (Proposition 2.33). f is Gateaux differentiable on

W&’p ()\{0} and f ' (u)(h) V” VIt h in W P(Q) [50]. Applying Proposition 2.4, u # 0 and h

Vil
€ WP (Q) = ¥(u)() = f|w|P 1Tk dx—f|w|p 2Vy . Vhdx 2V

(— Ap u, h) and

the case 1 = 0 remains to f1msh with (2 32)
However, ¥Y/(0)(h) = 11m1‘I’(th) = 1 mtp ! ||h||l P =(=Ap0,h). 0O

Remark 2.3. ¥ has even the Fréchet C! class on Wg’p (Q) [44,52].

Corollary 2.6. u — ||ul|q,, is Gdteaux differentiable on Wé’p(ﬂ)\{O} and W&’p(Q) is smooth.

1p = PP ¥ ()]7;

Proof. For the first assertion, apply Proposition 2.4 considering ¢(u) = ||u
for the second assertion, we use Proposition 2.3. [

Proposition 2.40. The operator — A,. WYP(Q) — W-LP/(Q) is bijective with monotonous
p p p: "o ]
inverse, bounded and continuous.

Proof. —A;, =], (Proposition 2.39), and Wg’p (Q)) is uniformly convex; apply Proposition
2.26 and take into account the formula | (_pl =91 -1, P is the canonical embedding in
bidual (Proposition 2.23). [J

A}, p € (1, +o0), the p-Pseudo-Laplacian

Let Q) be an open set of finite Lebesgue measure from RN, N > 2, and p in (1, +).

N P\ P
|%p:<2 )
i=1 LP(Q)

u
axi
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. 1 .
is a norm on WO’p (Q)) since

P

1 1
P \7 N p \Fr
0,p i=1 0,p
applying Minkovski inequality.

The dual of (Wé’p (), l |1,p) is also designated by W‘LP/(Q), where p’ is the exponent
conjugated with p.

o
8x1~ axi

u

£
axi

N
I-1, , is equivalent to the norm luly, : = ’a—” :
1,p 1S equiv Lp igl 9% |[Lp(Q)
d
o < NIMI1 p S .
=l 9xille () axl L (0)
However, | - |1 is equivalent to || - [|1, since [[u(|yp < lul1p <N [Juf|1p. Consequently,

Proposition 2.41. (Wé’p(()), l. |1,p), p € (1, +00), is Banach space.
Furthermore,
Proposition 2.42. (Wé’p (Q),l . |1,p), p € [2, +00), is uniformly convex.

Proof. The following proof was proposed by the author in [11]. Use the inequality (2.25):
EneER",n>1 :>HC+TWHP + HQI_TWHP < J(I&|IP + [n||P) with the Euclidean norm [51].

Let ¢ be in (0, 2] and define u, v with |u|1 p= IUI1 p=1 L - UI1 p > E Suppose pel2,

ou , dv |P ou _ ov |P p
+oo). 11l + Ju2lp = zf( >dx< zf ( & )dle,

o Tox | ox;
1
and hence, 1421 <1 — (§)P, take § defined by 1 — & = [1 _ (g)P] P O
P

9x; Bxl

Let Q be an open set in RN, N > 2, of the finite Lebesgue measure and p in (1, +c0).
Considering the operator fAIS;,: W&’P Q) = WL,

o (|ou|P2ou
_AS —
Aptt = Z 1 0x; ( ox; axi>'
This acts according to [45]:
Nl ou [P%9u oh 1
_AS _ P
ASu, h) 1; ({ Sr | o gy Vu hinWg (2.33)

Proposition 2.43. The function ¥: ¥ (u) = %lulllj/p, p € (1, +00), is Gadteaux differentiable on

”’(Q)\ ,and
¥r(u) = —Aju=Jou o(t):= Pt
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Proof ([11]). Fix the index 7,1 <i < N, and let g: Wl’p(Q) —+ R, g(u) = ‘ a—” P . We have g

=Fof.f. Wy"(Q) = LV(Q), f (u) = 3%, F: LP(C) — R, F(0) = [0][6,p- Asf <u>(h> = 5 and
F'(0)(h) = p[ |o|P~2vhdx ([48]), §'(u) = F'(f (u)) o f '(u) (formula from Proposition 2.4),
Q

P=2 5y on
x; axl

u

I (2.34)

g/(u)(h) = P/

and hence
al
axi

!
P
(2.34),(2.33)
(h) = —ASu, ).
) (830, 1)

The rest of the proof is the same as for Proposition 2.39. [

N
() ) = 1 (\

Corollary 2.7. u — |u|1,p, p € (1, +00), is Giteaux differentiable on W&’p (Q)\{0}. Consequently,
(Wg’p(Q), I |1/p) is a smooth space.

Proof ([11]). Taking ®(u) = |u|1,p, we have

O =

®(u) = pp (¥ (u))?.

We apply the formula from Proposition 2.4. For the second assertion, we take Proposition 2.3
into account. [

Nemytskii Operator N

In the following, some statements from [53] are necessary to develop some results.

Definition 2.9. Let () be a nonempty open Lebesgue measumble (L.m.) set from RN, N > 1, u the
Lebesgue measure in RN and M (Q) : = {u: Q — R: u L.m.}. By definition, f: O x R — Risa
Carathéodory function if:

1°f(-,s)isLm. Vsin R;

2° f(x, -) is continuousVx in Q\A, u(A) = 0.

Proposition 2.44. Iff : QO X R — Ris a Carathéodory function, then, for any u in M (), x —f
(x, u(x)) is L.m.

Proof. Let (¢,),>1 be a sequence of real functions, simple, L.m., with

@ (x) = u(x).

Fp:Fp(x):=f(x, n (x))is Lm. on Ay, ..., Ap, where @, | Ay = constant, k = 1p 1°
from Definition 2.9), hence Fj, is L.m. on Q). Vx in O\ A, and since ¢, (x) — u(x), we have
Fy (x) = f (x, u(x)) (2° from Definition 2.9), which implies, since the Lebesgue measure is
complete, x — f (x, u(x)) L.m. O

Definition 2.10. Thus, one may consider the Nemytskii operator:
Ne: M Q) = M (Q), (Nf u)x =f (x, u(x)).
Proposition 2.45. Suppose u(Q}) < +co. Then

un (x) X?Q ug (x) = Npu(x) xfo N ug ().
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Proof ([54]). 1t is sufficient to show the proof in the case f (x, 0) = 0 Vx in () and u; (x) 5 0

xeQ)
thus, it remains to prove that:

Ve,n>03INinN,eg, n>N=p({xc Q: | f(x,u, (x))| >¢}) <n. (2.35)

Set g: =O\A. Forke N, O : ={x € Qp: Isl < % = | f(x, s)| < ¢} (nonempty set for

sufficiently big k; f (x, -) is continuous in 0), we have Oy C Q1 Vkand Qg = fj Oy, hence
k=1
w( ) = klim () and hence kg in N, e.g., w(Qp\ Q) < 3. Let Ay = {x € Qg = luy (x)1
— 00
< kl—o}, INinN,eg,n >N = nu(Q\A4,) < % Setting B, = {x € Qo : If (x, uy (x)) 1< €},
we have, since A, N Oy, C By, n > N = w(Qo\By) < w(Qo\An) + 1(Qo\Qx,) < n, which
implies (2.35). O

Proposition 2.46. If the Carathéodory function f verifies the growth condition:

[f(x,s)1 <clsl™+ B(x), Vx € Q\A with p(A)=0Vs € R,
wherec > 0,r>0,3 € LP(Q)),1 <p > +oo,

then
1° Ny (L (Q) € LP(Q);
2° Nyis continuous (p < +00) and bounded on LF'(Q).

Clarification. A map between metric spaces is bounded if the image of any bounded set
is bounded.

Proof. 1° Let u be in LP"(Q).
If (x, u(x))] <clu@)l’+Bx), x € O\A, s €R, (2.36)

but lul™ € LP(Q)), p € LP(Q)), hence N¢ u € LP(Q)) (when p < +oo, taking the power p, the
first member is integrable and measurable (Proposition 2.44); when p = +oo, the justification
is obvious).

2° From (2.36),

[N ul[o () < e ful"+ Blle) < Il [ul" e ) +Blle)= cllullip) + [IBllrq)

and hence N¢ is bounded on LP"(()).
We proceed to the continuity. Suppose f (x, 0) = 0 Vx in 3, and let

u, — 0in LP"(QQ). (2.37)
We will prove:
Niu, — 0in LP(Q)). (2.38)

For (2.38), it is sufficient to prove that any subsequence (N u;,) has a subsequence (N¢
”lkn) convergent to 0 in LP(QY) (if (x,), the sequence in the metric space X has the property
that any subsequence (xj, ) has a subsequence (xlk”) with Xy, — Xo, and then x,, — xy — ad
absurdum justification).

Since uy, — 0in LP"(Q)), 3 (”lkn) a subsequence with

u, (x) = 0,x € O\B, u(B) =0

and
g, (x)] < g(x), g € L7 (Q).
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From (2.36),
| f (2, (x))] < e(g(x))" + B(x), x € Q\(A U B). (2.39)

Taking the power p in (2.39), the second member is integrable, and as x € Q\(A U B) =f (x,
uy, (x)) — 0, it results in (Lebesgue theorem of dominated convergence)

/ INpitn (x)[Pdx — 0,
Q

ie., (2.38).
Pass to the general case and let u,, — up in LP"(Q)). g: O x R =+ R,

8(x,5) =f (x, 5+ ug (x)) — f (x, ug (x)),

is a Carathéodory function. Since g(x, 0) = 0 Vx in ) and u, — ug — 0 in LP"((2), we obtain
Ng (un — ug) — 0in LP(Q)) and, hence N¢ u, — N¢ ug in LF(Q)). UJ

Remark 2.4. Retain the inequality:

r

[INeullee ) < cllullfpr )+ Bl Lr ()

2.3.3. The Problem
Consider the problem

(*){ ~ABApu=f(-,u(-))+h x€Q, AER
uloQ =0

The next two propositions were obtained by the author and are given in [11,12,15].

Proposition 2.47. Let Q) be an open bounded set of the C! class from RN, N > 2, p € (1, +c0), h
be from W=1P'(Q) and f : Q x R — R a Carathéodory function with the properties

1° f (x, —s) = — f (x, 5) Vs from R, Vx from (),

2° 1f (x,8)| <cp Is19! + B(x) Vs from R, Vx from Q\A, w(A) =0,

wherecy > 0,q € (1,p), B € LT7(Q)), % + % =1

Then, for any A # 0, the problem (x) has a solution in Wé/p(Q) in the sense of W~1P/(Q).

Explanations. The relationship u | 0Q2 from (x) is in the sense of the trace (Definition 2.8).
Moreover, y~1(0) = Wé’p Q). f(,u= N u, where Ny is the Nemytskii operator (see
Section 2.3.2 above), and so the equation from () can be written as

~AApu=Niu+h (2.40)

From 2° of the last assertion, it is determined (via Proposition 2.46) that Ny maps L7((2)
on L7(Q)), and it is continuous and bounded. Moreover (Proposition 2.46),

| N¢u

oq < 1 llu

-1 .
0q +c2, c2:=|[Bllog , Vuin L7(Q). (2.41)

Since g € (1, p) and q < p* (the Sobolev conjugated exponent), (Wé’p @), || - |
compactly embedded in L9(Q}). Let i (linear injection) be such an embedding,

1,p) is

ol
1q Vuin W P

(1) llog < coq IIu
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(using the Rellich-Kondrashev theorem and taking into account that the norms || - ||;, , and
I - llwir(qy) are equivalent).

Leti": L‘7’(Q) — W~ LP(Q) be the adjoint of i (as (L7(Q)))* = L (Q)!).
up from W&’p(Q) is a solution for (%) in the sense of W17/ (Q) if

—A Ap Uug = (l" o Nf o i)uo +h. (2.42)
We proceed to the proof of Proposition 2.47.

Proof. — pProposmonZ > J o, where ], is the duality map with @(t) = P~1; the Banach space
(W(}’p (@), || - [l1,p) is uniformly convex (Proposition 2.37) and, consequently, has the (H)
property, and it is reflexive (uniformly convex = reflexive). It is also smooth (its norm being
Gateaux differentiable on WS P(Q)\{0} (Proposition 2.3)). Thus, one can apply Proposition
2.30 with X = Wé’p (), Z =L9(€2), N = Ny — odd continuous operator (Proposition 2.46) and
Z* = L7(Q) and take (2.41) into account; the operator A(—Ap) — S: W&’p(Q) — W-LP/(Q)),
where S =i’ o Nf o i is surjective, a fortiori the operator —AA, — S — h is surjective

(commutative group) and hence Jug in Wg 'P(Q)) which verifies (2.42). O

By replacing g with p in Proposition 2.47, 2, and by applying Proposition 2.32, we
obtain the following;:

Proposition 2.48. Let Q) be an open bounded set of the C! class from RN, N > 2, p € (1, +o0), h
from W=LP'(Q) and f : Q x R — R Carathéodory function having the properties

1°f (x, —s) = — f (x, 5) Vx from Q), Vs from R,

2° If (x,8)] <cp IsIP1 + B(x) Vs from R, Vx from Q\A, uw(A) =0,

where ¢; >0, B € L7 (Q), % + % =1.

Finally, let i : Wg’p(()) — LP(Q) be linear compact embedding. Then, for any A, if

[l I
Al > aATh A = inf g ——Pu e WP (Q)\ {0}
i[5,

then the problem (x) has solution in Wé’p(Q) in the sense of W-LP(Q).

Proof. The statement is correct since (W&’p (Q), || - |I1, p) is compactly embedded in LP(Q2)
(Rellich-Kondrashev theorem). Apply Proposition 2.32. J

Remark 2.5. The condition from Proposition 2.48 can be replaced (Proposition 2.32 allows this) by:
S iloNrsoi)u
A > T M@reNgoiul
[ufl =0 [[u][P

_1
Attention to Mz A, 7 is optimal for the inequality from the statement; it is attained and nonzero,

and it is the smallest eigenvalue of the couple (Jrara, J 1.1, (see Proposition 2.31).
0

2.3.4. The Problem
Consider the problem

—ANu=f(-,u(-))+h xeQ, AR
(xx) uloQ) =

The following two statements are obtained by the author and given in [11,12,15].
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Proposition 2.49. Let Q) be an open bounded set of C' class from RN, N > 2, p € [2, +o0), h from
W-LP(Q) and f : Q x R — R Carathéodory function with the properties

1° f (x, — s) = — f (x, 5) Vx from (), Vs from R,

2° 1f (x,8)] <cp Is19! + B(x) Vs from R, Vx from Q\A, w(A) =0,

wherec; > 0,9 € (1,p), p € LT(Q), ; + % =1.

Then, for any A # 0, the problem (xx) has solution in W&’p(Q) in the sense of W=1P/(Q).
Explanations (similar to those for Proposition 2.47): The relationship u | 9Q2 from (*x)
is in the sense of the trace. f (-, u) = Ny u, Ny Nemytskii operator, and so the equation from

(*%) can be written as
~AAu = Npu+h, (2.43)

Now, the norm that endows Wl’p(Q) isl- |1 , and WP (Q , l. |1 is a Banach space
0 P 0 P p

that is compactly embedded in LI(Q2) since |- |1,p and || - ||1,p, and hence also || - [|y1p ()
are equivalent (see above). Let i be the embedding.

Let i': L7(Q) — W~ 'P/(Q) be the adjoint of i (as (L1)* = L7). uy from W,”(Q) is a
solution for (xx) in the sense of W—P/(Q) if

—AA} g = (i o Npo i)ug + h. (2.44)

Prop.2.43
Proof. —AS R Jo, Jo duality map with @(t) = tP~ !, the Banach space (W (), I

|1 p) being umformly convex (see above, proposition 2.42). It is also smooth (its norm
being Gateaux differentiable on W P(Q)\{0}). So, we apply Proposition 2.30 with X =

S ), z=11 (Q), N = N¢ — odd continuous operator, Z* = L7((2), take into account || N¢
ullog < c1||u||0q +0, 000 = ||Bllog, Vu from L7(Q)) the operator A (—A}) — S W&’p(Q)
— W~ P(Q)), where S =i’ 0o Nf o i is surjective, a fortiori the operator — ?\AIS3 —S—his

surjective (commutative group) and hence Jug in Wé P(Q)) which verifies (2.44). O
Replacing g with p in 2° from Proposition 2.49 and applying Proposition 2.32, obtain:

Proposition 2.50. Let Q be an open bounded set of C! class from RN, N > 2, p € [2, +00), h from
W=LP/(Q) and f : O x R — R Carathéodory function having the properties

1°f (x, —s) = — f (x, 5) Vx from Q), Vs from R,

2° 1 f(x,8)] <cp IsIP71+ B(x) Vs from R, Vx from Q\A, w(A) =

where cq > 0, [SGLP(Q) 1 1/ =1.

Finally, let i: Wo’p Q) — L” (QY) be a linear compact embedding. Then, for any A, if

i(u)

LE,
Al > aatl A :—mf{H e Wy (Q\{0) b,

the problem (xx) has solution in W&’p (€Y) in the sense of W-Lr(Q).
Proof. The proof is the same as for Proposition 2.48. [J
Remark 2.6. The condition from Proposition 2.49 can be replaced (see Proposition 2.48) by:

Al > T ||(ir o Ny o i)u|
[ LF
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_1
Attention to Ay : A, 7 is optimal for the inequality from the statement; it is attained and nonzero,
and it is the smallest eigenvalue of the couple (Jrara, ]Wg,pwfl,p,) (see Proposition 2.31).

Remark 2.7. The above results will be used to provide solutions, together with their characteriza-
tions, for particular problems from glaciology [55-57], for nonlinear elastic membrane [41,58], for
the pseudo-torsion problem [9,59] for nonlinear elastic membrane with the p-pseudo-Laplacian as
in [60]. They are presented in the second part of this paper.

3. Results of the Fredholm Alternative Type for Operators AJ, — S
3.1. Important Results

In this section, we continue with results that complete the previous theory provided
in Section 2. The statements from this section originate from the generalization due to
the author in [11,13] of a theorem of Necas [42,61] in which normed space is used instead
of Banach space and the goal function is a bijection with continuous inverse instead of
homeomorphism. The results mentioned above have been obtained based on this theorem
and also on propositions of the author and presented in the previous section.

Definition 3.1. Let X, Y be real normed spaces and F: X — Y, Fy : X— Y. F is strongly closed and
strongly continuous, respectively, if

X, = aand F(x;) — a= « = F(a),
and, respectively,
X, = aand F(x,) — F(a).
For instance, any linear compact operator between Banach spaces is strongly continuous [62].
Definition 3.2. Let a be a real, strictly positive number. F is, by definition, a-homogeneous if F(tu)

=t F(u), Vuin X, Vt > 0.
F is a-quasi-homogeneous relative to Fy, and Fj is a-homogeneous if

th L0, uy = ugand £ P(?") = v = v=F (ug).

n

F is a-strongly quasi-homogeneous relative to Fy, Fy a-homogeneous if

th 10, uy = ugand 2 F(Z:n) — Fo (up).

n

Proposition 3.1. Let F be an a-homogeneous and strongly closed (respectively, strongly continuous),
then F is a-quasi-homogeneous (respectively a-strongly quasi-homogeneous) relative to F.

Proof. Observe, in both cases, that t3 F (”t‘—:) — Fo (ug). O

Proposition 3.2. If F is a-strongly quasi-homogeneous relative to Fy, then Fy is a-homogeneous
and strongly continuous.

Proof. First assertion. t > 0. Let 1y be arbitrarily fixed from X and t,, | 0, uy 2 4o. Then
t%F(”t’—:) — Fo (up), hence (tt,)* F (’f—;‘) — 12 Fy (up), but (tt,)? F(tt't‘—:) — Fo (tug) since tuy,
2 tug, 2 Fy (up) = Fo (tug). £ = 0. It should be shown that Fy (0) = 0. Take #, J 0 and (Un)n>1
with u,, =0 Vn. Then, 3 F(%’:) — Fp (0), but F(It%) =0, etc.
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Second assertion. From the hypothesis,
u
li taP(f) — Fy(u)Vuin X. 3.1
HI%L t 0( ) mn G.1)

(83)

33
e < | F(uo) — Fo (un)

Suppose, ad absurdum, that Fj is not strongly continuous. Then there exists uy, u, = ug,
and
Fo(un) — Fo(uo). (32)

¢ > 0 being arbitrarily fixed, from (3.2), there exists a subsequence of (u,), it is denoted in
the same manner, e.g.,
[1Fo (un) — Fo (uo)|| > e Vn > 1. (3.3)

Furthermore, from (3.1), for any n from N 3¢, 0 < t, < %, for which
u 13
| Fo (un) —tgF(”>| <5 (3.4)

Then

u u (34) ¢ u
1< 1R o) = F(E )1+ 1 F() = () 1< 5+ 1 R o) =2 F(32) 1
n n "

and taking the limit for 7 — co, we obtain ¢ < 5, which is a contradiction. []

Proposition 3.3. The uni-valued duality map ], is a-homogeneous iff ¢ is a-homogeneous.

Proof. Necessary. Vi # 0, Vt > 0, ] (tu) = ‘f;((j}‘;“"‘)) J o t (Proposition 2.2,5°), J o (1) = £ ]

u, and by taking the norm, @(t||u||) = t* @(||u||), taking into account that u — ||u|| takes all
the values from R.. Sufficient. Use the same formula. [J

Thus, for p € (1, +00), —Ap and —A), are (p — 1)-homogeneous maps on Wé'p(ﬂ)
(Propositions 2.39 and 2.43).

Proposition 3.4. If the Banach space is reflexive, smooth and has the property (H), then any duality
map ], on X is strongly closed.

Proof. Let u, — uy and Jo tn — y. We have

(Jo un — J to, un — 1g) — 0,

but
e tin — T 0, tn — 10} = [@(lttn ) — @(luolDI(lall — llo]l) = O (Proposition 2.2),
hence lim [@([| ux [|) — @([[uolDI([[un|l = [[uo]l) = O, which implies [ux]| — [[uo] (see the

proof for Proposition 2.28). With X having the property (H), we obtain u, — 1y, which

implies (X is smooth reflexive = ], is semicontinuous, Corollary 2.3) that ], t, — [ to
and hence J, ug=7vy. O

Corollary 3.1. If the Banach space X is reflexive, smooth and has the property (H), any duality map
on X ] o that is a-homogeneous is a-quasi-homogeneous related to | .

Proof. Combine Propositions 3.1 and 3.4. [

We proceed to the basis proposition of this section. The conditions are slightly weak-
ened. Previously:
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Definition 3.3. The map f: X — Y, where X and Y are normed spaces, is regularly surjective if it
is surjective and VR >0 3r > 0e.g.,

I f @) <R=|x]| <

Proposition 3.5. Fredholm alternative. Let X and Y be real normed spaces, T: X — Y a(K, L,
a) and a-homogeneous bijection, odd with a continuous inversei and S: X — Y an odd compact
a-homogeneous operator. Theni for any A % 0, AT — S is reqularly surjective iff A is not an
eigenvalue for the couple (T, S).

Proof. Necessary. Let, ad absurdum, xy # 0 be from X such that

AT(xp) — S(xg) = 0. (3.5)
Multiplying (3.5) by t*, we obtain

AT (txg) — S(txg) =0 (3.6)

and as tlir+n ||txg]| = +00, (3.6) imposes (ad absurdum!) the conclusion that AT — S is not
—r o0

regularly surjective, which is a contradiction.
Sufficient. Firstly, we prove that:

0= ||i|r|1£1 || AT(x) — S(x) || > 0. (3.7)

Assume, ad absurdum,
p=0. (3.8)

With (3.8), we obtain a sequence (x;;),en, X1 € X,
x|l =1 (3.9)

and
lim [AT(x,,) — S(x,)] = 0. (3.10)

n—oo

The sequence (x,;) being bounded, (5(x;)),,cn has a subsequence (xx, ) convergent in Y,
and lety = nlgn S(x,)- However, T is surjective and A # 0, so 3 xy € X such that AT(xg) =y,

and then, from (3.10),
Hm AT (xx,) = AT(xp). (3.11)

n—o0

From (3.11), T having a continuous inverse, we obtain

nll_I>Ioloxkn = X0- (3.12)

(3.12) imposes, on the one hand, ||x0||(34—9) 1 and, on the other hand, nlng}O S(xx,) = S(xp),
which, combined with (3.10) and (3.11), gives AT(xg) — S(xp) = 0, which is a contradiction,

and hence (3.7).
Thus, from (3.7),

pr (o) () | 2o < oo

pllx[|* < IAT(x) — S(x) || ¥x € X\ {0}, (3.13)

SO
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From (3.13),
lim || AT(x) — S(x) |[|= +oo, (3.14)
[|x || =400
from which one concludes that AT — S is surjective (see Proposition 2.1).
This surjectivity is regular. Indeed, assuming, ad absurdum, the contrary, we obtain
R>0suchthatVn € N 3x',, € X, ||x/,]| > n and

| AT(x'n) —S(x'n) || < R. (3.15)
. . / . / 7y (314)
However, since nlgroloﬂx n|| = +00, we have nlgrt}OHAT(x n) — S| =
contradiction with (3.15). [

+o00 and obtain a

Proposition 3.6. Let X be a real reflexive Banach space, smooth and having the property (H),
which is compactly embedded in the real Banach space Z, and N: Z — Z* an a-homogeneous odd
semicontinuous operator. Then the operator AJ, — N, with |, being the duality map on X with ¢(t)
=%, A # 0, is regularly surjective iff A is not an eigenvalue for the couple (], N) ([11]).

Explanation. In the expressions AJ, — N and (J, N), Nis actually/ oN o, i: X — Z
linear compact injection, i': Z* — X* is its adjoint.

Proof ([11]). We apply Proposition 3.5 with T: =], S: =i 0 N 0, correctly, as ], is (K, L,
a) with K = L = 1, bijective with continuous inverse (Proposition 2.26), odd and S is odd,
a-homogeneous and compact (see the proof of Proposition 2.30).

3.2. Applications
3.2.1. Application for the p-Laplacian and p-Pseudo-Laplacian

In Proposition 3.6, we now take (X, || - ||x) = (W&’p(Q), Il - Il1,p), where p € (1, +o0)
and () is an open bounded set of C! class from R", n > 2 (hence Jo = — Ap, @(t) = -1
Proposition 2.39), (Z, || - ||z) = (LP(Q), || - llop), N: LP(Q) — LP'(QY), T+0 =1, Nu=lulP=?
u.

Wg P(Q) is uniformly convex (Proposition 2.37) and hence also reflexive (Proposition
2.9) with the property (H), with its norm being Gateaux differentiable (Corollary 2.6) and
hence smooth (Proposition 2.3). It is compactly embedded in LF((}). For the last assertion,
we can mention the following:

Theorem 3.1. Let Q) be a bounded set of the C! class. Then

p<n=We(Q)c LUQ)Vqin[l,p*], pi -

11

p n

p=n=Wir(Q)c LIQ)Vqin 1, +0),
p>n=Wwr(Q)cCQ),

in all cases with compact injections (Rellich-Kondrashev).

Concerning N, it is the duality map on LF(Q) relative to the weight t — tP~! (see
the following Proposition 3.8); consequently, N is a homeomorphism of LP((2) on L¥' (€0)
(Corollary 2.5), odd and (p — 1)-homogeneous.

We apply Proposition 3.6 in order to obtain the following statement [11,13].

Proposition 3.7. Let p be from (1, + o0) and A # 0. If

AM—Apu)=lulP2y
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does not have a nonzero solution in Wg’p (Q), then, for any h from W—L1P'(Q), the equation
AM—=Apu)=lulP2u+h
has solution in Wol/p(Q) in the sense of W=1P/(Q).

Explanation. The term |u1P~2 4 from (3.16) and (3.17) is actually considered to be its
image through a compact embedding of LV,(Q) in WLP/(Q) (use Schauder’s theorem).
Regarding the operator N, we can complete it with the following result.

Proposition 3.8. The duality map on LF(Q)), p € (1, +0), of weight @(t) = tP~1is
Jou=|ulPlsgnu, u € LF(Q)

ie.,
e 1, h) :/\uv’*l(sgnu)hdx Vh e LP(Q)
Q

[llo,p

Proof. Let ¥: ¥(u) = %||u| |g,p. As¥(wu)= [ ¢(t)dt, we have (Proposition 2.2, 3°)
0

Jo (u) =0Y ().

However, ¥/(u)(h) = [ |u|P~!(sgnu)hdx Vh from LP(Q) ([46]), and thus the conclusion. (]
Q

Proposition 3.9. In the statement of Proposition 3.7, if p € [2, +c0), then —A,, can be replaced
by —A3 ([11,13]).

Proof ([11,13]). In Proposition 3.6, we take (X, || - ||) = (Wé’p(Q), I |1,p) (see above),
and (Zr || : ”Z) = (LP(Q)/ || : ||0,p)/ N: LP(Q) — Lp,(Q)/ % + % = 1/ Nu = |M|P—2 u, and
take into account that (W&’p (), I |1,p) is uniformly convex (see also Proposition 2.42

and Corollary 2.7 above). The compact embedding of Wg’p(Q) in LP(Q)) is given by the

equivalence of the norms | - |1,p and || - [|1p sincel - |1,p is equivalent to the norm | - Iy,
(see the p-pseudo-Laplacian in Section 2.3.2). [

3.2.2. Another Application for p-Laplacian

Here, in Proposition 3.6, we take (X, || - ||x) = (W&’p (@), || - |l1, p), where Q) is an open
bounded set of C! class in R", 1 > 2, (Z, || - ||z) = (LP(Q), || - [lo,p), N: LP(Q) — LV (), %+pl
=1, Nu = N¢ u, Ny is the Nemytskii operator, with f: (3 X R — R a Carathéodory function
which verifies

1°1f(x9)l < Is1P1 + B(x) Vs € R, Vx € Q\A, u(A) =0, wherec; >0, € LF’/(Q);

2° fis odd and (p — 1)-homogeneous in the second variable.

Then, N¢ is odd, (p — 1)-homogeneous and continuous (Proposition 2.46). We apply
Proposition 3.6 (see also Section 3.2.1 above) and obtain the following:

Proposition 3.10. Let p be from (1, +oo) and A # 0. If
A(—Ap u)=N¢u

has no nonzero solution in Wé’p (QY) in the sense of W-LP(Q), then, for any h from W-Lr(Q),
the equation
M—=ADpu)=f (-, u(-))+hxeQ)
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has a solution in W&’p(Q) in the sense of W=17(Q) ([11,13]).
Remark 3.1. This statement can be compared with Proposition 2.48 above.

Remark 3.2. Applications to real phenomena regarding the nonlinear elastic membrane with
p-Laplacian and with p-pseudo-Laplacian will be developed in the second part of this article.

4. Surjectivity to Different Homogeneity Degrees

The propositions in this section originate from another assertion of the author [11,15],
which generalizes a theorem of Fucik [42], but they are also based on other propositions
obtained by the author. Applications to partial differential equations (weak solutions) are
also given.

4.1. Theoretical Results

Proposition 4.1. Let X and Y be real normed spaces, X complete and reflexive, T: X — Y (K, L,
a) bijection odd with continuous inverse and S: X — Y odd compact operator b-strongly quasi-
homogeneous relative to So, b < a. For any A # 0, the operator AT — S is surjective.

Remark 4.1. The author proposed this weakened version of the theorem from [42], i.e., with normed
space instead of Banach space, and bijection with continuous inverse instead of homeomorphism.

Proof. According to Corollary 2.2, it is sufficient to prove:

im ”Sx”(— lim ”S"”>—o. 4.1)

el [=o0 [ 2[4\ [Jx][ =00 [[x] ]2

Supposing, ad absurdum, the contrary, we obtain a sequence (x,),en, Xz € X\ {0}, nlgr;o [|%n |

= +o00, for which
S (xn) |

> ggVninN, (4.2)
[[2n ]

where ¢( > 0. With X being complete and reflexive, the bounded sequence (v,),,en, Yn : =

HinH has a weakly convergent subsequence, one denotes this identically, y, — 1o. Then,
S(|xnllyn)
lim ———=— = S (yo)
RPN !
b
and as lim Hxnl\ﬂ =0, we obtain
n—ro0 ||xn]|

Lo ISGDIL

n=veo ||t

in contradiction with (4.2), and hence (4.1).
An immediate consequence:

Proposition 4.2. Let X be a real reflexive Banach space and smooth with the property (H) which
is compactly embedded in the real Banach space Z and N: Z— Z* odd semicontinuous and b-
homogeneous operator.
Then, for any A # 0,

No —N,

Jp the duality map on X with @(t) =", a > b, is surjective ([11,15]).
Clarification. In the expression AJ, — N, N is actually (abbreviation!) the operator i’ o
N o, is the adjoint of i.
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Proof ([11,15]). Applying Proposition 4.1, with T = J, (K = L =1 is odd bijective with
continuous inverse (Proposition 2.26)), S : =i 0 N 0 i is odd, compact and b-homogeneous.
It remains only to prove that S is b-strongly quasi-homogeneous relative to S. Let ¢,

1 0 and u,%up, then tZS(?—:) = S(uy) and S(in) — S(g): un-Sup =P i) — i(ug)

N semicontinuousny iy, ) SN (i) " S(tt) — S(ttg). O

4.2. Applications
4.2.1. First Application

We now take (X, || - Ix) = (Wg” (@), || - [l1,p) with p € (1, +00) and (X, || - [|lx) =
(Wé’p (), I |1,p) with p € [2, +0), respectively, and () is open bounded set of C! class in
R", n>2, o(t) = tP~1; hence Jo = —Ap (Proposition 2.39) and [, = — A‘; (Proposition 2.43),
respectively, (Z, || - ||z) = (LY(Q), || - |lo,q) with g € (1, p), N: L1(Q) — L(Q), Nu = lul q-2
u, % + 1 =1. Nis odd, continuous (an even homeomorphism; see Proposition 3.8 and

Corollary 2.5 above) and (g — 1)-homogeneous, g — 1 <p — 1. Applying Proposition 4.2,
we obtain the following.

Proposition 4.3. Under the above conditions, for any \ # 0 and for any h from W=1P'(Q), there
exists ug in WS’P(Q) such that

M—Ap)ug = (" o N o i)ug +h
and
A(=Ap)ug = (iroNoi)ug+h
respectively ([11,15]).

4.2.2. Second Application

This second application of Proposition 4.2 is made by replacing the operator N from
Proposition 4.3 with Ny, the Nemytskii operator. More precisely, we take N: L1(Q)) — L7(Q)),
N =Ng, withf: Q x R — R odd Carathéodory function and (g — 1)-homogeneous in the
second variable, which verifies the growth condition

If (x,5)] <cp 1s1971 4+ B(x) Vsin R, Vxin Q\A, u(A) =0,

where ¢; > 0, B € L7(Q).
Then, N¢ is odd, (7 — 1)-homogeneous and continuous (Proposition 2.46), and one can
apply Proposition 4.2 to obtain:

Proposition 4.4. Under the above conditions, for any A # 0 and for any h in W=1P/(Q), there
exists ug in WS’F(Q) such that

?\(—AP)MO = (i, o Nf (o} i)uo +h

and
AMN=A3)ug = (ir o Npoi)ug +h

respectively ([11,15]).
Remark 4.2. Applications to models of real phenomena involving a nonlinear elastic membrane

and a nonlinear elastic membrane with p-Laplacian and the p-pseudo-Laplacian will be provided in
the second part of this work.
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5. Weak Solutions Starting from Ekeland Variational Principle
5.1. Critical Points and Weak Solutions for Elliptic Type Equations

The theoretical results in the following two subsections were obtained by the author
in [17].

5.1.1. Theoretical Support
In order to introduce the first result, theoretical support will be given, starting with:

Ekeland Principle. Let (X, d) be a complete metric space and ¢: X — (—o0, +00] bounded from
below, lower semicontinuous and proper. For any € > 0 and u of X with

o) <inf @(X) + ¢

and for any A > 0, there exists ve in X such that

0(0:) < @(w)+ 2d(ve, w) Vw € X\{v)
and
©(ve) < (), d(ve, u) < A

([22,63,64]).

We continue with the following;:

Definition 5.1. Let X be a real normed space, 3 a bornology (Definition 2.3) on X, and let @: X
— R. Let ¢ be in R and F a nonempty subset of X. @ verifies the Palais-Smale condition on level ¢
around F (or relative to F), (PS). g, with respect to 3, when ¥ (uy),>1 a sequence of points in X for
which

lim @ (uy) = ¢, r}grgo||vﬁ@(un)|| = 0and Jgrgodist(un, F) =0, (5.1)

n—o0

this sequence has a convergent subsequence.

To clarify the above notation, see Definition 2.3 regarding the 3-derivative.
Let us introduce the definition of the metric gradient in order to provide other obser-
vations related to this central notion for the following statement.

Definition 5.2. Inn a real normed space X, consider the Gateaux-differentiable functional f: X — R.
The metric gradient of f is the multiple-valued mapping:

VX = P(X),Vfx)=i"fyx),

where J.: X* — P (X*) is the duality mapping on X* corresponding to the identity, and i is the
canonical injection of X into X**: i(x) = x**, (x**, x*) = (x*, x), Vx* € X*.

Consequently, for any x € X: Vf (x) = {y € X: i(y) € J.f,(0)} = {y € X: (i(y), fi,(x)) =
), 1) = @I i) = lIvll = | @) I X is reflexive, for any x € X, Vf (x) is
nonempty. X** being strictly convex, J. is single-valued. So, if X is reflexive and strictly
convex, then Vf: X — X, Vf (x) = i~ J. f},(x), and the following equalities hold:

(for (), VF(x)) = fo@IP [IVf )l = 1| f(0)].

Through the minimization of a functional on F (minimization with constraints), its global
critical points may be obtained.

As a preliminary, we generalize some results from [65] by introducing Banach space
instead of Hilbert space and Gateaux differentiability instead of C!-class Fréchet.
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Proposition 5.1. Let X be real reflexive strictly convex Banach space, let ¢: X — R be lower
semicontinuous and Gateaux differentiable and let F be a closed subset of X such that for every u
from F with the metric gradient V ¢ (1) # 0O, for sufficiently small r > 0,

Veo(u) .
(u 5Hv C )||> € F,V5 € ]0,7]. (5.2)

Then, if ¢ is lower bounded on F, for every (v,),>1 a minimizing sequence for ¢ on F, there
exists a sequence (Uy)y>1 in F such that

[@/(un)|| < Ven, (5.3)
@(un) < @(vn) Vn (5.4)
nlgr.}o”un — vy =0, (5.5)

where ¢, > 0and ¢, — 0.

Remark 5.1. This result is reported in [65] as Lemma 9 in the frame of Hilbert spaces having
the function ¢ of the Fréchet C class, but the condition (5.3) is more complicated due to another
condition imposed on the set F.

Proof. Denote ¢ : = inf @(F) and let n be from N. For ¢,, : = ¢(v,) — ¢+ %, hence ¢, > 0, we
have @(v,) < ¢ + &,. We apply the enounced Ekeland principle with A = \/e;;, Juy, in F, with
known properties. Thus, we obtain the sequence (,,),,>1 satisfying (5.4), (5.5) (||uy — v4]|
< Ven, en — 0) and

@(v) > @(un) — eullv — uyl|| Yo € F. (5.6)

Next, we verify (5.3). It is sufficient to work under the assumption that || ¢/, (1,)|| > 0
Vn. Thus, we apply the hypothesis made in the statement with respect to F with u = uy

and, denoting, for § € (0,7], vs 1= uy — 5H§$7””H (€ F), replace vs in (5.6) and find

Venl[vs —un|| = @(un) — @(vs),

multiply this inequality by %, d > 0, and take the limit for 5 — 0+ in order to keep the sense
[V (un)]|

of the inequality. We remark that 11mv§ = Uy; hr% llos—un]| _ ‘1511% el = 1. Consider that
—

the existence of the limit for 5 — 0 1mp11es the existence of the limit for § — 0+, together
@ (un)
o) —o(s) _ 1 0 Oetd) W) _ V() ) _
e S A - = o) (T 8tiey) -
WW(@W’(W), Vo(uy)) = m | @ty (un) 1 12=11¢",(uy) ! |; taking into account
the definition of the Gateaux derivative and the above considerations on the metric gradient,
(5.3) is also fulfilled. [J

with their equality, lim
6—0+

Remark 5.2. The Giteaux derivative from the above statement can be replaced by any B-derivative,
and the result remains the same. In the case of the Fréchet derivative, the condition “¢ lower
semicontinuous” must be removed from the statement.

Notation. ¢: X — R is B-differentiable, c € R =
Ke(o):={xeX:9(x) =c, Vgo(x) =0}.

Proposition 5.2. Let X be a real reflexive strictly convex Banach space and ¢: X — R lower
semicontinuous and Gdteaux differentiable and let F be a nonempty convex closed subset such that
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(I =V @)(F) C E, where L is the identity map. If @ is lower bounded on F, then for every (vn),>1, a
minimizing sequence for @ on F, there is a sequence (uy),>1 in F such that

() < @(o) ¥, lim [y — o] =0, lim [l hy(us)| = 0.
Moreover, if ¢ satisfies (PS). g, where ¢ = inf @(F), then

FNK(¢) # 2.

Proof. Applying Proposition 5.1, (5.2) is satisfied; indeed, if u € F and ¢/,,(u) # 0, then, F
being convex,

4 Vo) _ 5 5 _ u
NIl (1 o G >||> Tow@n ~ VeI W eF

Let (14,),>1 be the sequence given by the statement. ¢ < @(u;) < @(v,) Vi, hence @(u;) —

(53)
c. [lo'w(un)|| < \/fen, hence ||@'w(un)|| — 0, clearly dist (u,, F) = 0, and consequently,
(un)n>1 has a convergent subsequence (i, )n>1, U, — o € F. This implies ||}, (uy, )|| =
||@l,(10)]| = 0 and thus uy is a global critical point of ¢ contained in F. (]

5.1.2. Weak Solutions

Open set of C! class in RN. We use the following notations (the norm is that Euclidean
from RN"1): RY = (= (¥, xn): x> 0}, Q = {x = (¥/, xn) : ' || < 1, |an] < 1}, Q4 = Q
N R+, Qo = {x = (¥, xn): ||| <1, xx = 0}. Let Q be an open nonempty set in RN, Q) # RN
and 0Q) its boundary. By definition, () is of C! class if Vx from 9Q) U is a neighborhood of
xin RN and f : Q — U is bijective such that f € C}(Q), f~! € C'(U), f (Q+) =U N Q, and

f(Qop)=UnNoO.

Weak solution. Let Q) be an open bounded nonempty setin RN, N> 1,f: Q x RN — R,
and ug € Wé’p (Q)). Consider the problems:

(+) —Apu = f(x,u), x € Q)
u =0 on dQ),

and . (x)
—Nu = f(x,u), x € Q)
P 4 7
(**){ u =0 on 9.
The equality u = 0 on dQ) for both problems is in the sense of the trace (Definition 2.8). u
from X = W& Q) is, by definition, a weak solution for (x) and (*x) if 7 = 0 on d() in the sense
of the trace and

/ |Va#[P~2Vi - Vodx — /f(x,ﬁ(x))vdx =0WVo e Wg’p (5.7)
Q Q
and )
1 ou [P~ ou av _ 1p
1_21/ o o axl - /f(x,u(x))wlx =0Vov e W, (5.8)
T Q Q
respectively.

Remark 5.3. Here, Vw is the weak gradient (see Section 2.3.1 here and what follows). X : =
W&’p (Q) is endowed in the first case (x) with the norm || - |1, , that was defined in Section 2.3.1,
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1
P L
LP(Q)) (also highlighted there). For

1
P P
LP(O)) ’

which is equivalent to the norm u — <|

n
the second case (xx), equip the same vector space with the norm u — |u|1,p = ( Y. ’ %
=1 i

which is equivalent tou — lulq p = b@) (Section 2.3.2).
1

For the Nemytskii operator, see also Section 2.3.1 and suppose now that p(2) < +co.
Then,

un (x) XZ)Mo( ) = Niun(x) ng Nig(x).

Assume that f satisfies the growth condition:
If(x, 5)] < cls|P™t+b(x), Vx € Q\A with u(A) =0,Vx € R,

wherec>0,p>1and b € LI(Q}), g € [1, +oo]. Then N (LP=1(Q))) C L(Q); Ny is continuous
(g < +00) and bounded on Lp=Da(y) (Proposition 2.46). If () is bounded and % + % =1, then

N¢(LP(Q))) C L1(Q)) with Nf continuous; moreover, Ng(L?(Q))) C LY(Q), with Nk continuous
(ibidem), where F(x,s) ff x,t)dt, and ®: LP(Q)) — R, P(u) fF x,u(x))dx is of Fréchet

C! class and @' = N¢ [65], so it is also Gateaux differentiable.

Theorem 5.1. Let Q) be an open bounded nonempty set in RN and f : Q) x R — R a Carathéodory
function with the growth condition:

If (x,9)] <clsIP™! 4+ b(x), (5.9)
wherec > 0,2 < p < =5 whenN> 3and 2 < p < +co when N =1, 2, and where b € L1(Q}),
1.1 _

p T q 1.
Then, the energy functional @ : WS””(Q) — R, and
o(u) = ;1j||u||fp —/ F(x,u(x))dx, for the problem (x) (5.10)

’ Q
and ,

o(u) = —lulfp—/ F(x,u(x))dx, for the problem (xx), (5.11)
= Ja

where F(x,s) fo (x, t)dt is Gateaux differentiable on W P (Q)\(0} and, respectively,
¢'w(u)(v) = /Q |VulP~2Vu - Vodx — /Qf(x,u(x))vdx,Vu,v € Wg’p(ﬂ) (5.12)

and

P=29u 9v .
—_ _ P
Fre axid" /Q f(x,u(x))vdx, Vu,ve Wy (Q). (5.13)

u
axi

iﬁi/o

Proof. One may consider ¢, in both cases, to be the sum of two other functions. The
second of these functions being Gateaux differentiable (see the above considerations), it is

sufficient to remark that the maps u — 1 ||u| |p and u — |u|]‘D are also Gateaux differen-

tiable on WO1 P(0)\{0} (Propositions 2.39 and 2.43) and then ¢ is Gateaux differentiable on
Wy (Q)\(0). O
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Corollary 5.1. Let Q) and f be as in Theorem 5.1 above. Then the weak solutions of (x) and (xx) are
precisely the critical points of the functional ¢ : Wg’p (QY) — R, respectively:

1
o) = Sl — [ Pl u(o)dx, F(xs) = [ fx, 0t

and

(p(u)zfl)lulp / (x,u(x))dx, F(x,s) : /fxt

Proof. Indeed, if i is a weak solution of (x) and (xx), then ¢’y (%) (v) = 0 Vo € W&’p(Q)
((5.7) and (5.8) respectively (Theorem 5.1)), hence, @'\ () = 0. The inverse assertion is
obvious. [J

Weak subsolutions and weak supersolutions of () and (xx). Let (3 be an open bounded set
of C! class in RN, N > 3,f: Q) x R — R a Carathéodory function and let % € Wé’p (). uis
a weak subsolution and a weak supersolution, respectively, of (x) or (xx) if

u < 0ondQand u > 0 ond(), respectively, and

[|Vu|P=2Vu - Vodx < [ f(x,u(x))vdx Vo € Wg’p(Q), v>0
Q Q
respectively (5.14)

[|VulP=2Vu - Vodx > [ f(x,u(x))vdx Vo € Wg’p(ﬂ), v >0.
Q Q

or
n —
1§1(f2 T <ffx“ ))odx Yo € Wy (Q), 0> 0
respectlvely (5.15)
n .
Eu{ ‘%u 83;! aa;’dx>ff (x,(x))vdx Yo € Wy P(Q), 0 > 0.

Proposition 5.3. Let Q) be an open bounded set of C! class in RN, N >3, and let f : O x R —

R be a Carathéodory function and uy and uy from W&’p (Q)) bounded weak subsolution and weak
supersolution of (x), respectively, with uq (x) < up (x) a.e. on Q). Suppose that f verifies (5.9) and
there is p > 0 such that the function g: g(x, s) =f (x, s) + ps is strictly increasing in s on [inf u1(Q)),
supup(Q)]. Then there is a weak solution u of (x) in Wé’p (Q)) with the property

u1(x) <7(x) < wp(x)ae on Q.

Proof. Taking the equivalent norm on X = WO1 7(Q), we obtain

1
P
(@ >> '

S

o(u) = :7||uP—/G(x,u(x))dx,G(x,s) - /g(x,t)dt. (5.16)
(@)

0

n

||ul| = (p“uLP(Q Z

| E)Jc1

Considering the functional ¢: Wé’p (Q)— R,

where ¢ is Gateaux differentiable, and its critical points are the weak solutions of (x) (see
Corollary 5.1 above). ¢ is also lower-bounded, with the norm on LP(QQ) actually being of
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Fréchet C! class (see, for instance, [43], Volume 2). Use Proposition 5.2, (X, || - ||) being a
reflexive strictly convex Banach space (see Section 2). Let

F:={u € W&’p(Q) s up(x) <u(x) <wup(x)ae onQ}.

F is closed convex. We also obtain
(I-Ve)FCE

Here, V ¢ denotes the metric gradient of ¢. Since (X, || - ||) is reflexive and strictly convex
(see in Section 2), V @ is thus uni-valued, and it has the above-described properties. Indeed,
let u bein Fand v := (I — V¢)(u). We should prove thatv € F.v = u — Vo(u) €
W&’p (Q) and u7(x) < v(x) < uy(x). Since the definition relation of the subsolution for i
actually means @,/(111)(w) < 0 Vw in W&’p (Q2) with w(x) > 0 almost everywhere (a.e.) on
Q), and that of the supersolution for u; is @/ (uz)(w) > 0 Vw in Wé’p(ﬂ), verifying w(x)
> 0 a.e. on (), we will prove that v(x) — u;(x) > 0 a.e. on Q) and uy(x) — v(x) > 0 a.e.
on () using the Gateaux derivatives of ¢ in u; and uy, respectively. @y/(u1)(0 — 1) =
ow' (u1)(ur — u) — @w' () (Vow) < —ow' u)(Vew)) < —ow' @) (Vow) = —[low' @)
< 0 (take into account that 11 < u, @y/(11) is a linear map and some properties of the metric
gradient). Also @w'(12)(u2 — v) = @w'(U2)(U2 — ) + @' (U)(V (1)) > @w'(U2)(V @ (u)) >
ow' (W)(Vo)) = |ew'm)]|?> > 0. ¢ is lower bounded on F, ¢ being continuous, actually
(for this assertion, see Section 2). Until now, applying Proposition 5.2, for every (vy),>1, a
minimizing sequence for ¢ on F, there is a sequence (1,),,>1 in F such that ¢(u,) < ¢(vy)

Vn, nlgn [lun —vu]| =0, nlgn [l@"w(un)|| = 0. So nlgn ¢@(uy) = ¢ and since ¢ : = inf @(F),
we have nlgn l|@’w(un)|| = 0 already, and the last property from the (PS). ¢ condition is

verified. To finish the proof, we once again apply Proposition 5.2. [

Example 1. Consider the problem (Q) is an open bounded set of C! class in RN, N > 3)

{ Apu = o(x) u|u[P~%on O, (517)

u = 0 ondQ),

where p = % and « is continuous with 1 < a(x) < a < +coon Q. Then uq : =1 is a weak

subsolution, uy : = M, M > 1 sufficiently big, is a weak supersolution, 1f (x,s)! < al slp-1
(condition (5.9)), and s — o(x)s|s|P~2 + s is increasing in s on [1, M]; consequently, according to

Proposition 5.3, (5.17) has a weak solution u with 1 < u(x) < Ma.e. on Q.

Proposition 5.4. Let Q) be an open bounded set of C! class in RN, N >3,andf: O x R — Ra

Carathéodory function and uy, up from Wg’p(Q) bounded weak subsolution and weak supersolution
of (xx), respectively, with uq (x) < uy (x) a.e. on Q). Suppose that f verifies (5.9) and there is p > 0
such that the function g: g(x, s) = f (x, s) + ps is strictly increasing in s on [inf u1(C2), sup uz(QY)].
Then there is a weak solution u of (xx) in Wé’p(()) with the property

up(x) <u(x) <up(x)ae on Q.

Proof. We follow, step by step, the above proof for Proposition 5.3 considering the real

reflexive strictly convex Banach space X = W& P(Q)) endowed with the norm u — |u|1, p=
p .
Qu Ju , which are both also

N
(EJ % [lLp () %% [lLe ()
equivalent to the other two norms used in Remark 5.3. The function ¢ is from (5.11), having
the weak derivative given in Theorem 5.1. Using similar calculus, we obtain a similar
conclusion. [J

P N
> or the equivalent norm u — uyp = ). ’
i=1
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Example 2. Consider the problem (Q) is an open bounded set of the C! class in RN, N > 3)
—ASu = o(x) u|ulP~?on Q
P ’ 5.18
{ u=00ndQ), (5.18)
where p = % and o is continuous with 1 < a(x) < a < +oo on Q. Then, uq : = 1 is a weak

subsolution, up : = M, M > 1 being sufficiently big, is a weak supersolution, |f (x,s)| <alsl p-1
(condition (5.9)), and s — o(x)s |s1P~2 + s is increasing in s on [1, M]; consequently, according to
Proposition 5.8, (5.18) has a weak solution u with 1 < u(x) < M a.e. on Q).

Remark 5.4. The results from Sections 5.1.1, 5.1.2 and 5.2.1 have been reported by the author
in[17].

Remark 5.5. Applications to real phenomena, as well as an application in glaciology, a nonlinear
elastic membrane, the pseudo-torsion problem and a nonlinear elastic membrane with the p-pseudo-
Laplacian, will be presented in the second part of this article.

5.2. Critical Points for Nondifferentiable Functionals
5.2.1. Theoretical Results

The meaning of the title is actually “not compulsory differentiable”. We start this
section with the following:

Definition 5.3. xq is a critical point (in the sense of the Clarke subderivative) for the real function f
if 0 € 0 f (xp). In this case, f (xg) is a critical value (in the sense of the Clarke subderivative) for f.
To clarify this notion, the Clarke derivative should be introduced. Let X be a real normed space, E C

o
X, f:E—=R,xg € Eandv € X. We set

Py )= T LS

X — X
t— 0+

The upper limit obviously exists. f (xo; v) is by definition the Clarke derivative (or the generalized
directional derivative) of the function f at xq in the direction v. The functional & from X* is by
definition Clarke subderivative (or generalized gradient) of f in xq if f° (xo; v) > &(v) Vo € X. The
set of these generalized gradients is designated as d f (xg).

Here it is a generalization at p-Laplacian and p-pseudo-Laplacian of an application of
this concept from [66].

Let ) be a bounded domain of RN with the smooth boundary 9Q (topological bound-
ary). Consider the nonlinear boundary value problems (x) and (*x*) from Section 5.1.2
above, where f : (3 X R — R is a measurable function with subcritical growth, i.e.,

D Ifx,s)l <a+blsl®VseR,xeNae,

wherea,b>0,0§cr<%forN>2andG€[0,+oo)forN:10rN:2.
Set [67]: B o
f(x, t) =lmf (x, s), f(x, t) = ligr%f (x, s).
S

s—t

Suppose
(I) f and f: Q x R — R are measurable with respect to x.

We emphasize that (II) is verified in the following two cases:
1° f is independent of x;
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2° f is Baire measurable and s — f (x, s) is decreasing Vx € (), in which case we have:
fle, ) =max{ f (x, t4), f (x, t=)}, f(x, t) = min { f (x, t+), f (x, t=)}.

Definition 5.4. u from Wg’p(Q), p > 1, is solution of (x) and (x*) if u = 0 on d ) in the sense of
the trace (see in Section 2.3.2 above) and

—Apu(x) € [f(x, u(x)), f(x, u(x))] inQae. (5.19)
and B
—Apu(x) € [f(x, u(x)), f(x, u(x))]inQae. (5.20)
respectively.
Let X : = Wl’p(Q) but in the first case (x), the norm endowing X is || - [|1,p i-e.,
[l2e]]1, nOtatlon||u|| Q) =[[ul[rr ()’ which is equivalent to the norm u —

(unl{p 5

N
same set X with the norm u — |u|1,p = <Z 37”
i=1

P
Q)) . For the second case (**), equip (also as previously) the

p P :
, which is equivalent to u —
LP(Q2)

luly,p = 2‘ el

Assoc1ate w1th (*) the locally Lipschitz functional ® : X — R,

P(u) = }19 lullf, — /F(x,u)dx, u € X, (5.21)
O

and associate with ()

D(u) = ;lulﬁj’p/P(x,u)dx, u e X, (5.22)

Q

S
where F(x, s) = [ f(x, t)dx. Set
0

QU= ull, u e X, ¥ ()= [ E(upix,u € X, (5.23)
P @)
and 1
Q(u)::ﬁlulp u e X, ¥ (u /qudquX (5.24)

respectively, where F, a map defined on ) x R, taking values in R, is locally Lipschitz (use
(I)). The functional ¥: L*1(Q)) — R, ¥(u) = [ F(x, u)dx, is also locally Lipschitz (again (I)).
Q

Using the Sobolev embedding X C Lo*1(Q), we find that ¥1. = ¥ | X is locally Lipschitz on
X, which implies that @ is locally Lipschitz on X, and consequently, according to a local
extremum result for Lipschitz functions (if x( is a point of local extremum for f, then 0 € 9 f
(x0)), the critical points of ® for Clarke subderivative can be taken into account. One may
state:
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Proposition 5.5. Suppose (I) and (I1) are satisfied. Then ¥ is locally Lipschitz on L°* (Q) and
(B Y (u) C[f(x,u(x)), flx,u(x))]in Qae.
(i) If ¥1 =¥ | X, where X = Wé’p(()) endowed with the norm || - |1, for the problem (x) and
l. |1, p for the problem (xx), respectively, then

¥ () C Y (u) Vu € X.

Proof. The proof for (i) can be found in [67], Theorem 2.1, which remains the same here,
while the problem was solved for the Laplacian with X = H(l) (Q) only. In order to prove (ii),
we use 2.2 from [67], observing for both cases (X is endowed with each one from those two
norms) that X is reflexive and dense in L°*1(Q)), as can be seen, for instance, in Section 2,
where they are summarized. [

Proposition 5.6. If (1) and (II) are verified, every critical point of @ is a solution for (x) and (xx),
respectively.

Proof. Problem (x). Let ug be a critical point for ®. We have

0 € 9 D(up) C 0 Qug) + 9 (—¥1)(uo) (5.25)

since CI)(5£)Q — Y1, and we apply some rules of subdifferential calculus concerning finite
sums. 9 Q(ug) = {Q'(uo)}, where Q'(up)(v) = [ |Vug|P~2 - Vodx = (—Ap ug , v) (Section 2).
Q

Using (5.25) and a specific property of a function f Lipschitz around xq (f° (xo; v) =
sup &), Voe X, f 0 the Clarke derivative of 1), we find
geaf(xg)

0 < /|Vuo|p72~ Vodx + (—¥1)0 (ug; v).
Q

However, (—¥1)° (up; v) = ‘I’(l)(uo ; —v) (a property of the Clarke derivative; see [22]), and
thus,

/.|Vu0|P_2~ V(-v)dx < ¥(up; —v) Yo € X;
o)
thatis,
yo (v) : = /\Vuo\sz-Vvdx < ¥(ug; v) Vo € X,
Q
Ko = —Ap ug € d Y1 (up) and, using Proposition 5.5, —Ap uy € 9 ¥(u). Since 0 ¥(ug) C
(Lo (Q))* = LD/ 9(Q)), we obtain uy € W2 (e+1)/9(()) and (5.19):

—Ap ug (x) € [f(x, up(x)), f(x, ug(x))]in Q a.e.

Problem (xx). Let ug be a critical point for ®. We have

0 € 9 P(ugy) C a3 Qug) + I(—¥1)(up) (5.26)

since CD(SiZ)Q — ¥4, and we apply some rules of subdifferential calculus concerning finite
sums (Section 2).

P=29uy v
P — S
ox; ox, dx <Apu0, v>.

auo
aXi

N
3 Q(ug) = {Q' (o)}, where Q' (ug) (v) = .21/
=0
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Using (5.26) and a mentioned property of a function f Lipschitz around xj, we find

N
0 gz/
i=1¢

P=29uy 9v
x; afxidx-f— (—‘1’1)0 (Llo, Z)).

E)uo
aXi

However, (—¥1)° (ug; v) = ‘P(l)(uo ; —v) (a property of the Clarke derivative, see [22]), and

thus,

N p—2 _

Z/ g g 3 v)dx < g0 (ug; —v) Yo € X;

i—1 aXi 8xi aXi

=a
thatis N ,

oug [P~ 0ug dv 0
1= —Ldx <
Ko (v) 1_210 ax; ox; 8xidx <Y (ug, v) Vo € X,

Ho = —A;uo € 0 Y1(up) and, using Proposition 5.5, —Af,uo € d ¥(up). Since 9 ¥(ug) C
(Lo*1(Q))* = LoD/ o(Q)), we obtain 1y € W (°*D/o(Q)) and (5.20),

—Ajug (x) € [f(x, up(x)), f(x, up(x))]in Q ae.
O

Remark 5.6. Some applications to characterize the solution of the modeling given in [68] and
solutions using this kind of definition for Dirichlet problems derived from the previously presented
problems of the movement of glacier, nonlinear elastic membrane, pseudo-torsion problem or a
nonlinear elastic membrane with the p-pseudo-Laplacian will be developed in Part two of this article.

5.3. Other Solutions
The results from this section have been obtained by the author in [18].

5.3.1. Basic Results

Let us now consider the two problems () and (**) from the above two subsections,
but the boundary condition is now by Bu = 0 instead of u = 0. Once again, we take the

function f as in Section 5.2.1 with the corresponding f and f, as was performed there.

Definition 5.5. u from W2P(Q), p > 1, is solution of (x) and (xx) from this section if Bu =0 on 0
Q) in the sense of the trace (whose meaning is introduced above) and

—Apu(x) € [f(x, u(x)), f(x, u(x))] inQa.e. (5.27)
and B

-Apu(x) € [f(x, u(x)), f(x, u(x))] inQae. (5.28)
respectively.

We now continue with some necessary results on Lipschitz functions and Palais-Smale
type conditions. First, we provide some comments related to the Clarke derivative. From
Definition 5.3, the Clarke derivative is:

flx+to) — f(x) (529)

O (xg;0) = inf sup ;

Ve V(xg) X€EV
re (0,+0) te(o,r)
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Proposition 5.7. Let f be Lipschitz around xy with the constant L. Then
1° the function v — f° (xo; v) has values in R, is positive homogeneous and subadditive on X
and
£ (x0; 0)| < Llo]l vo € X;

2° f0 (xp; — v) = (— )° (x0; v) Vo € X, A > 0 = (A f)° (x0; 0) = A f0 (x; ) Vo € X;
3° v — 9 (xo; v) is Lipschitz on X with the constant L [69].

Proof. 1° f° (xp; v) € R. For x near xq and with ¢ strictly positive near 0, we have

flx+to) = f(x)
t

1
<sLitwl=L]o]. (5.30)

From (5.30), we obtain
‘fo(xo;v)’ < L||v | andso f° (xo; v) € R. (5.31)

Indeed, suppose ad absurdum that f° (xo; v) > L||v||, for instance. Then, with YV from V
(xp) and Vr from (0, +00), we have

flx+tv) - f(x)
t

sup > Lo,
x eV

te (0,r)

in contradiction with (5.30).
v — fO(x; v) is positive homogeneous. Since fO (x0; 0) =0, let A > 0. Then, f0 (xo; Av) =
AT Gim OO e
X — Xp

At — 0+
v — fO(x; v) is subadditive.

f (x0; v1+ v2) = h»

] Ariny o)) S /0]

t—=0+
Tm S+ ) +1v) = flx+1w) + Tm Sx+v)—f(x) .
X=X, t X—Xg t
=0+ =0+ (5.32)
As lim (x+tv;) = x, in the third member of (5.32), the first term is equal to fO(xo; v2),
X — Xp
t — 0+

and the second is equal to f°(xo; v1).
2° £O(xp; —0) = Tf(x—tvt)—f(ﬂ u=x—tv T(—f)(wrfvt)—(—f)(u) = (—f)° (xo;

X — XQ u — Xp
t— 0+ t— 0+
v),since  lim  (x — tv) = x¢. For the second statement, we use Formula (5.29).
X — X
t— 0+

3° Let v and w be arbitrary in X. For x near x¢ and with ¢ strictly positive near 0, we
have

f(xo +tv) — f(x0) < f(x0+ tw) — f(x0) + Lt[|v — w]|.

Dividing by t and taking the upper limit for x — xo and t — 0+, one finds:

fO(x0:0) < fO(x0;w) + Lo — w].
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Exchanging v with w, we come to the desired conclusion. [

Proposition 5.8. Let f be locally Lipschitz on X. The function @ : X x X — R,
P(x; v) = f° (x0; v)

is upper semicontinuous [69].

Proof. Let (xg, vp) be a point in X x X and (x;, vs),>1 be an arbitrary sequence such that
(xxn, v) = (x0, v9). We show that

lim O (xn, vn) < fO(x0;v0)- (5.33)

n—oQ

According to (5.29), we have Vm, p € N

O vn) — % < sup 1 f(x—i—tv,;) —f(x)' (5.34)
x € B(xy, )
te (0,%)

< . (5.35)

With (5.34), we find yj,, and t,, such that Hykn - an < % and t; € (O, %), hence

(535) 1
Hykn - XnH + tkn < kf (536)
and moreover (see (5.34)),
fo(xn} vn) _ kl < f(]/kn + tkntv") - f(ykn) ) (5.37)
n kn

The second member of (5.37) is equal to

f Wk, + te,00) — f(yx,) N f Wi, + te,on) — f(Yk, + t,v0)
tk, tk,

7

consequently passing in (5.37) to the upper limit for n — oo, and taking into account y; —
xo, ty, — 0 (see (5.36)) and | f(yx, + t,0n) — f (Vk, + tk,00)| < Ltk ||on — 0o, we find even

S Wi Thn 0) —f i) fO (

e, X0, Uo). U

(5.33), since lim
n—oo

Proposition 5.9. If f is Lipschitz around xo, and L is the constant, then
1° 9 f (xp) is nonempty, convex, x-weakly compact (for X complete) and

[El < LVE € 9 f(x);

2° fOxp;0) = sup &(v) Vo € X ([69]).
£eaf(xo)

Proof. 1° With the function v — f° (xp; v) being positive homogeneous and subadditive
(Proposition 5.7), there is a linear functional & such that

— 0 (x0; —v) < &) < f° (x0; 0) Vo € X.
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However,
Proposition 5.7
flrov) < Lloll, =f(x0; —) = —Ll| -],
consequently |&(v)| < L||v|| Vv € X, hence & € X*, & € 9 f (xg) and ||&]] < L.
The convexity is obvious according to Definition 5.3.
For the remaining statement, i.e., d f (xp) is *-weakly compact, it is sufficient to show

that d f (xp) is *-weakly closed (corollary of the Alaoglu-Bourbaki-Kakutani theorem [43],
*—weak
Volume 10, p. 144, 3.37,). Let & € 3f(xo) . Prove

£ (x0; v) > £(v) Vo € X. (5.38)

Fix v in X and let ¢ > 0 be arbitrary. There is pin 9 f (xp) such that 1 (& — w)(v)| <e. Thus
w(w) > &(v) — € and we have

f0 (x0;0) > p(v) > &) — e.

We pass to the limit for ¢ — 0 and obtain (5.38).
2° Suppose, ad absurdum, that 3 vy € X such that fO(x;v9) # sup &(vg). Since f°

FEf(xy)
(x0; v9) > &(vg) VE € 9 f (x9), this implies
f (x0; vo) > E(vg) VE € 9 f (x). (5.39)
We take o, a linear functional on X, with
u(vo) = f° (xo; o) (5.40)

and —f0 (xo; —v) < (@) < 0 (x; v) Yo € X ([43], Volume 10, p- 91,2.2). However, u € 0 f
(x0) (see the beginning of the proof), and consequently, (5.40) contradicts (5.39). U

Proposition 5.10. Let X be a reflexive or separable Banach space and f: X — R locally Lipschitz.
For every xq from X and ¢ > 0, there is & > 0 such that, for every & in d f (x) with ||x — xo || <,
there exists &/ in 0 f (xo) having the property ([67], p. 105)

(& — &) <eVveX.
Proof. Suppose, ad absurdum, the contrary, 3 xg, vg € X, € > 0, and also the sequences

(Xn)u>11n X, (En)p>1, En in @ f (x,,) such that Vn € N:

1
ln = xol[ < — and [(& — &) (v0)[ > €0 VE € 9 f (x0). (5:41)

According to (5.41), x; is, for n > N, in a neighborhood of x( as in Proposition 5.9,
hence n > N = [|&,]| < L, so there is a subsequence (g, ), that is weakly convergent

(émulian corollary [43], Volume 10, p. 171, 4.29) and, consequently, *-weakly convergent
(X reflexive < X* reflexive (Pettis [43], Volume 10, p. 151, 4.7)). Let &, ek g e,

&, (v) = &(v) Vo € X (5.42)

([43], Volume 10, p. 145, 3.39 or p.145, ex.9 or p. 164, 4.25). However, &y € d f (xp). Indeed,
with u being arbitrarily fixed in X, 3 (h,)y>1, hn — 0 and (t4)n>1, tn | 0 such that (use
Definition 5.3—the Clarke derivative)

Vn %[f(xkn +hy + tau) — f(xx, +hn)] > Gk, (u) — %
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pass to the limit for n — oo, taking (5.42) into account, O (xo; u) > Eg(u), ie., & € 9 f (xo)-
Thus, it can take & = & in (5.41), and one obtains a contradiction with (5.42). [

Remark 5.7. In [67], Proposition 5.10, alias 1, (6), has another formulation. Moreover, X must be
reflexive or separable.

Proposition 5.11. Let X be a real reflexive space and f : X — R be locally Lipschitz.
1° For every xg in X, there is &g in 0 f (xg) such that

I&oll = inf{{IE]l: & € 9 f (xo)}-
2° The function w: X — R
p(x) = inf {[|E]]: £ € 0 f (x)}
is lower semicontinuous ([67], p. 105).

Proof. 1° The application & — ||&|| of X* in R is weakly lower semicontinuous and hence
x-weakly lower semicontinuous ([43], vol 10, p. 147, (0)), since X* is reflexive. On the other
hand, 9 f (x¢) is *-weakly compact (Proposition 5.9), hence the conclusion.
2° Suppose, ad absurdum, the contrary and let xg and x,,, n € N, be from X, x, — xo,
with
lim p(x,) < p(xp)- (5.43)
n—o0
We take &, in 0 f (x,) with p(x,) = ||&n|| (see 1°). Proposition 5.10 yields, for every n from
N, &, in 9 f (x,) and & in @ f (xg) such that

(& —En)(0)] < %Vv € X. (5.44)

With 9 f (xg) being *-weakly compact (Proposition 5.9), it is bounded, and hence, (&2)@1

has a weakly convergent subsequence and hence is *-weakly convergent, (&2 ) oy
n n>

£ T ED € 9 F (x). (5.45)

Since

(&, =& (@) < (&, — &) (@) +1(&, — &) (@),

*—weak

from (5.44) and (5.45), we obtain &~ — &Y, and this attracts lim || & || > ||£°] ([43],

n—o0

Volume 10, p. 145, 3.39, 3°), i.e., lim p(xx,) > ||€°|| > u(xp) and we obtain a contradiction

n—oo

with (5.43). O

Remark 5.8. In [67], 1, (7) (here, Proposition 5.11), the condition “X reflexive” is lacking, and this
is an error.

Definition 5.6. Let X be a real normed space, E C X and x € E. The vector v of X is by definition
a possible direction for E according to xo, if there is p > 0 such that xo + tv € E Vtin (0, p). In
addition, let be f : E — (—oo, +co] and xo € dom f. If
lim £ o+ t0) = f(x0)
t—=0+ t

exists and is finite, it is designated by

f1(xo;0),
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the derivative of f at xq according to the vector v or according to the direction v (directional
derivative). Thus
/ . f(xo+ 1) — f(x0)
Xo;v) = lim .
f(x0;0) t—=0+ t

Remark 5.9. Suppose E convex, f convex and finite on a neighborhood V of xq. Then there exists f’
(x0; v). Indeed, one can suppose V an open ball with the center in x, let & be its radius, 5 < p||v]|.

Consider the function F : [O, m) — R, F(t) = f (xo + tv) (we supposed v # 0, f' (xo; 0) = 0). F

is convex: ty,ty € {O, m) and M, M >0, A1+ M =1=FM\ 1 + A b)) Zf (M + A)xg +
(At +Aot2)o) = f (A1 (x0 + £10) + A2 (x0 + £20)) < Aq f (X0 + 110) + Ap f (x0 + £20) = M F(ty) +
M E(tp). Thus the function & : (0 L) — R, () = w is increasing, that is the function

7o
b f(XOHUt)*f(xo) 8

“lell)”

has this property on (0 consequently tlir& MW is finite.
—

Proposition 5.12. Let E be a convex subset of a real Banach space and f : E — R be convex. If f is

0
Lipschitz around xy € E, then for every v in X, we have
£ (03 0) = f'(x0; 0)
and the set of subderivatives in xq coincides with the set of Clarke subderivatives in xq ([69]).

Proof. It is sufficient to prove the first statement because the second is obtained by the
formulae that are found in Proposition 5.9 and [22], I, 5.5. We obviously suppose that v # 0
and let € > 0 be arbitrarily fixed. We set

flx+tv) — f(x) ((5.29) fO(Xo; ),

a:= inf sup =
VEV(x) xev t
r€(0,400) te(0,r)

fle+t0) = f(x) 6546

f:= lim sup sup ;

120+ |} x| [<rete(0,r)

The suppositions « < 3 and 3 < « lead to a contradiction (attention to the definitions: limit,
least upper bound and greatest lower bound), therefore & = 3. However, with the function
b f(vat)*f(X)

via (5.46),

, X near xy, increasing on an interval (0, n) (see Remark 5.9), we obtain,

O (x0; v) = lim  sup flx+ro) —f(x)' (5.47)

I‘*>0+HX7XOH<I,E r

However, we have

flx+ro) = f(x) _ [f(x+rv) —f(x) _ f(xo+70) = f(x0)

r

| flo+70) — flxo)
r r r

and, via the Lipschitz condition verified on the open ball B(xy; re) for r near 0, x € B(xo; r¢)
= f(x+rvr>_f(x) — f(x°+rvr)_f(x°) < 2¢L, and hence, using (5.47),

< lm r> — f(xo) +2¢L = f'(x0; v) +2¢L

and hence

12 (x0; ©) < f/(x0; 0).
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We take the opposite inequality. We have, with Vt from (0, r),

flro+t0) = ) _ (Flbto) = f@)
t xeV t
te(0,r)
hence, lim £ (XOHUt) —fx) < sup f (XHUt)*f ™) and, consequently, according to (5.29),
t—0+ xeV

te(0,r)

f/(x0; v) < f° (x0; V).

O
Remark 5.10. The second part of the proof uses only the hypothesis “there exists f (xo; v)”.

Proposition 5.13 (Local extremum). Lef f be Lipschitz around xg. If x¢ is a point of the local
extremum for f, we have ([69])
0 €af (xp).

Proof. xq local minimum point. Let v be arbitrary in X. We must prove that fO(xo; v) > 0.
Suppose ad absurdum that f°(xo; v) < 0. There is, according to (5.29), V in V (x) and r > 0

such that supw < 0; hence, in particular, we have t € (0, 1) = f (xg + tv) — f (x0) <

xeV
0, which prevents xj from being a local minimum point for f, which is a contradiction.

xg local maximum point. In this case, x( is a local minimum point for —f, and hence 0 €
a(—f)(xo) = —9 f (xo) ([22], Rules of subdifferential calculus, 5.26), 0 € 9 f (xg). O

5.3.2. Some Palais-Smale Type Conditions

We now present some results following from some ideas in [67] that are improved and
generalized. These results contain conditions of Palais-Smale type suggested by Ekeland
principle.

Let X be a complete metric space, ¢: X — Rand c € R.

@ satisfies the (PS)*. + condition when, for every sequence (14,),>1, Uy € X, (€4)y>1 and
(On)n>1, €n, Oy € Ry, €y = 0 and 5, — 0, if

¢(un) —c (5.48)

and
Vu € Xd(up, u) < 0y = @(un) < @(u) + end(un, u), (549)

then
(n)p>1 has a convergent subsequence.

By changing u, and u to each other in (5.49), we obtain the (PS)*.,— condition. Finally,
(PS)*. condition means (PS)*c+ + (PS)*.,—.
When, with X being a real Banach space, the conclusion required by the hypothesis

“(un)n>1 has a convergent subsequence”

is replaced by
“(Un)n>1 has a weak convergent subsequence”,

we obtain, respectively, the conditions

(PS)*c, w, +, (PS) "¢, w, - (PS) "¢, w-
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Suppose that X is a real Banach space and ¢ is locally Lipschitz. ¢ satisfies the [PS]* +
condition (obvious definition for [PS]. —, [PS]"c) when the properties in (5.48) and (5.49)
imply that

c is a critical value of ¢ (for the Clarke subderivative).

The definition is, according to Proposition 5.9, coherent. We have
(PS)’¢, + = [PS]'c, +,
and the reciprocal assertion it is not true (consider @: R — R Lipschitz, periodic and
c = inf @(R) or ¢ = sup ¢(R)).

Finally, we provide the last version of the Palais-Smale condition according to Chang [67].

Let X be a real Banach space, ¢: X — R be locally Lipschitz and c € R. ¢ satisfies the (PS)Eh
condition when, for every sequence (u;),>1 from X, if
@(un) = ¢ (5.50)
and
w(uy): =inf {||&x ||: & € 0 @(un)} — 0, (5.51)
then

(ttn)n>1 has a convergent subsequence.

The definition is correct, d@(u,) # @ Vn (Proposition 5.9, see also Proposition 5.10).
One can state the following.

Proposition 5.14. Let X be a real Banach space and @: X — R locally Lipschitz and convex. Then,
o verifies (PS)M = ¢ verifies (PS); .

Proof. Let (1,) be a sequence from X and let (¢,,) and (6,,) be sequences from Ry, ¢, — 0, 5,
— 0, such that
o(uy) — ¢

and
i — ull < 8n = @) < @un) + €5ty — uVu € X. (5.52)

We must prove, for finding a convergent subsequence of (1), that
w(uy): = inf {||&x||: En € 0 @(un)} — 0. (5.53)
Take u: = uy, + tv, ||v]| =1,0 < t < §y. Since ||ty — u|| < by, (5.52) gives:

@ (un + tUt) — @ (un) <e,

and, passing to the limit for { — 0+, we obtain (Proposition 5.12):
0" (1tn; 0) = @ (1un; V) < €,
and consequently, &(v) < ¢, VE € 9 @(uy,) (Proposition 5.9); hence, changing v in —v,
lE]l < en VE € 9 @(un). (5.54)

Let &, be in d¢(u,) such that ||&,|| = w(u,) (see Proposition 5.9). Then, taking (5.50)
into account, we obtain
U(un) S E}’l/
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which yields (5.49) by passing to the limit. []

Remark 5.11. The last statement represents what the author recovered from Proposition 5.3 in [67],
p. 475. The proof of this ([67], p. 483) contains, among other things, the implicit statement that v
— @0 (ug; v) is not a subnorm, but an even linear functional.

We now proceed to some propositions of [67].

Proposition 5.15. Let X be a complete metric space, @: X — R lower bounded, lower semicontinu-
ous and c : = inf @ (X). c is attained when @ verifies (PS) ¢, +.

Proof. Let (v4),>1, vn € X, be a minimizing sequence for ¢ such that, for every n, ¢,: =
@(v;) — ¢ >0, and hence ¢, — 0. Applying Ekeland principle with ¢ = ¢,;, A = 1, one finds
(4n)n>1, a sequence in X, with the properties

o (uy) < @(vn),
Q(un) < @) + &4 d(un, u) Yu € X.

Since ¢ < @(uy), we have @(u,) — c; applying (PS)*., + and letting (u, ),,>1 be a convergent
subsequence, uy, — ug. However, @(ug) < lim @(uy,) = ¢, and this imposes ¢(ug) = c. [

n—oo

Proposition 5.16. Let X be a real Banach space, @: X — R lower bounded, locally Lipschitz and c :
=inf @(X). If @ satisfies (PS)*., ., then ¢ has critical points (for the Clarke subderivative).

Proof. Apply Proposition 5.15 combined with Proposition 5.13. O

Proposition 5.17. Let X be a real Banach space, ¢: X — R lower bounded, locally Lipschitz and c :
=inf @(X). If ¢ verifies [PS]*c, +, then c is a critical value of ¢ (for the Clarke subderivative).

Proof. Let (¢4)y>1, €n > 0, &4 — 0. For every ¢, take v, such that ¢(v,) < c + ¢, and apply
Ekeland principle with A = 1. 3 u,, such that @(u,) < @(v,),

ouy) < o) + ey ||un — ul|, Vu € X. (5.55)

Since @(u,,) — ¢, (5.54) allows the application of the hypothesis [PS]*., .+, where c is a critical
value. [

As an application, we continue with the problems () and (*x) in this subsection.
However, firstly:

Proposition 5.18. Let X : = WP(Q)) and ®: X — R, ®(u) = % [|ul \ip — Jo G(u)dx — [ hudx
and ®(u) = %lullflp— Jo G(u) dx — [, hudx, respectively, where G : R — R has the period T and
is Lipschitz, h € LV () and Jq huhudx = 0. Then, for every c from R, ® verifies [PS]*..

Clarification. On X = WYP(QQ), we can consider for this statement the following norms:

p N
lulls,p = ( 1l + X |
i=1

N
2|
i=1

au ||P
axi LP(Q)

P
) , which is equivalent to the norm u — ||ul|1y(q) +

g—;‘i Lp() for (*). For the second case (x*), we equip the same vector space with the
u ||P

axi P (Q)
(see the considerations in the sections above).

N
norm u — Iull,p = (21‘
1=

P N
) , which is equivalent to u — luly , = ) ’
i=1

du
axi LP (Q)
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Proof. It is sufficient to prove this for [PS]*. +. Let (1,),>1 be a sequence from X, (¢,,),>1
and (8,,),>1 sequences from R, convergent to 0. Suppose ®(u,) — c and

lJun — ul| < 8p = Puy) < Du) + €y ||ty — u]|. (5.56)
We decompose X into the direct sum
X=Xy Xy, (5.57)

where X is the vector space of constant functions, and Xy = X1+, the vector subspace of
functions from WLP(Q) having a mean value equal to 0. Let u;, = vy + ¢y, v, € X, ¢ €

Rand IG(s)| <M on R. Hence ‘fG(un)dx < [|G(up)|dx < [ Mdx = Mu(Q)), and since
0 0 0

J cuhdx =0, we have, in the first case,
@)

1 1
D(un) =—|[u, I, = JG(Mn)dX— Jhun de=—|lv, +c, P, - J G(v, +¢, )dx -
p Q Q P Q

R P

[hey +eyae=Lyp, (e pel3 ov,
Q p

i=l1 i

—Mp(Q)—thn dx—CnJ‘hde
b Q Q

1 1 X ov, [0 1
— vy B+ =[S = Mu(Q) = 1Al lfon [[1e =— 1 v, [P, = Mu(Q) = |1l [[on |15
p pid|@ p

i=1 i b

1 _
= O(un) 2 [[on [lup (= [ v, [F5 = Il = Mp(Q2)
P (5.58)

since [ hvudx < | [ hvudx | < |||l |[on llp < ||1lly [on ||1,p, and, similarly, for the second
Q Q

case,
A p dx -1 G dx
D(uun) =— Juy I~ ) OWB~ [ by dx=—1v, +¢, I7,~ ) OO +¢)dx -
p RPN Q p )
J-h(vn+cn)dx2i|vn+cn P Mu@Q) -] Ay, dx—CnJ-hdleh;n r,-
Q P ’ Q Q V4 ’

1
Mu(€2) = [l [on [l =; v, If, - Mp(Q) - alonlip =
(1) 2 onlip (— Iy, ;' -~ Mp(Q))
P (5.59)
since [ hodx < | [ houdx| < |kl |lon [|p < oclvnlllp.
0 0
As (P(1))n>1 is bounded, (5.58) and (5.59) impose that ([ |V0n|2dx)n21 is bounded,
Q

and hence, (||on]|1,p)n>1 and (Ivnllrp)nzl, respectively, are also bounded.

Consider the sequence (ii,);>1, iy = Uy + Zn, where En = ¢; (modulo T) and En €
[0, T]. Since @ has the period T, (5.56) gives

fitn—(u+ cn—ca)|| < 8u = P(un) < ®(u) +en |[(Un—1) + (ca — cn)ll,

ie.,
[lup—w|| < & = P(uy) < P(w) + &y ||un —wl|. (5.60)
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However, (v,) and (Zn) are bounded, and hence (Zn) is bounded, consequently, it has
a weakly convergent subsequence (an)nzl, ﬂkn gk (Eberlein-Smulian), whence the

existence of a convergent subsequence of (uy, ),>1, and using the same notation,
Uy, — u (5.61)

(the same proof as in Proposition 4 [67], p. 484). In (5.60), taking w = an + 0,0, ||| =

1, we obtain CID(Ekn + 6knv) — @(Ekn) > *iknékn, — & < %[@(Ekn + 5anJ) — CD(;{kn)], and

~ 561) ~ — ~
passing to the limit, we find that, since (uy , o) (—>) (u,0),0< gm%[@(ukn + 0, 0)
— ®(uy,)] < ®(u; v), 0 < ®Ou; ), ||v]| =1, whence 0 < ° (u; v) Vo € X (0 < @0 (u;

ﬁ) = L ®0; v)) (Proposition 5.7),1.e.,0 € 0 (). Moreover, ¢ = ®(11), since CD(ﬂkn) =

[[o]]
5.61)
—

CID(Qk’1 - an +Ck,) = @(an) — ¢, and also @(ﬂkn) ( @(E) (P is continuous, being locally

Lipschitz), and c is a critical value for ®. [
Now:
Proposition 5.19. Nonlinear Neumann problems

(N) {—Apu =g(u) +h(x),x € Q
Bu = 0 on 9(),

and

(N) —A>u = g(u) +h(x),x € Q
Bu = 0 on 9(),

respectively, with the conditions

T
() ¢ : R — R boundedmeasurable T — periodic, / g(s)ds =0
0

and
(IV) h boundedmeasurable, / hdx =0,
o)

have solution in WYP(Q) in the sense of (5.27) and (5.28), respectively.

Proof. We are in the presence of problems of types (*) and (x*) (this subsection), respectively,
with f (x, u) = g(u) + h(x). Conditions IIl and IV imply (I) (o = 0) and (II) from Section 5.2.1.
The associated functionals are

D) = 1||uuljp—/c(u) dr— [ hudx, u € W'(Q),
P Q (@)

and 1
() = W~ [ Gy dx— [ hudx, u € WP(),

u(x)
respectively, where G(u(x)) = [ g(t)dt. G is Lipschitz and has the period T (use (III)).
0

Since (I) and (II) are satisfied, any critical point of ® is, according to Proposition 2.6, a
solution for the problems (N) and (N'), respectively. However, ® verifies [PS]*. for every ¢

in R, particularly for c = irllf ®(u). This is correct since ® is lower bounded (the same
HEWLP(Q))
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justification as for (5.58) and (5.59), respectively). It only remains to apply Proposition 5.18,
c is a critical value, ¢ = ®(up), ug a critical point, ug is a solution for (N) or (N'), respectively.
O

Remark 5.12. The series of results in this subsection has been presented by the author in [18].

Remark 5.13. Other applications to the velocity problem under the assumption of solid friction, or
to the problem studied in [70], for thermal transfer or another pseudo torsion problem are provided
in the second part of this work.

6. Weak Solutions Using a Perturbed Variational Principle

An Application of Ghoussoub-Maurey Linear Principle to p-Laplacian and to p-Pseudo-Laplacian
The results in this section have been partially reported by the author in [17]. We

start with the statement of the generalized perturbed variational principle. To clarify the

involved notions, we present the following:

Definition 6.1. Let X be a real normed space, f : X — (—oo, +o0], and C a nonempty subset of X,
xg € C. fstrongly exposes C from below in xg when f (xg) =inf f (C) < +coandx, € CVn>1,f
(xn) = f (x0) = xy — x¢. “f strongly exposes C from above in xo” and has a similar definition. We
remark that, taking C = X in the given definition, we fall on the definition of strongly minimum
point. And also, a set of G type means a set that is a countable intersection of open sets. A set of the
Fq type means a set that is a countable union of closed sets.

Ghoussoub-Maurey Linear Principle. Let X be a reflexive separable space and @: X — (—oo,
+ oo] lower semicontinuous and proper.
(D) If @ is bounded from below on the closed bounded nonempty subset C, the set

{& € X*: @ + & strongly exposes C from below)

is of G type and everywhere dense.
(IT) If, for any & from X*, @ + & is bounded from below, the set

(& € X*: @ + & strongly exposes X from below)

is of Gs type and everywhere dense.

The above linear principle devolves (see the continuation to Theorem 6.1) from the
more general Theorem 6.1, and we proceed to its preparation with definitions and some
auxiliary propositions.

Definition 6.2. Let X be a real normed space and C, D with C C D nonempty subsets of X*. C is
strict w-Hg set in D or strict w*-H set in D if

D\C = U K,, (6.1)
n=1
dist (Ky,, C) > 0, and K, convex and weakly compact or x-weakly compact, respectively.
For instance,
Proposition 6.1. Any nonempty closed set C of a separable reflexive space X, C # X, is strict w-Hg
set in X. In particular, if @: X — (—oo, +00] is I. s. c. (lower semicontinuous) and proper, then the

epigraph of @ in X x R is strict w-Hg set in X x R.

Proof. Let (x,),>1 be a sequence with the set of the terms dense in X\C (open set). Take,
for each n from N, K, the closed ball centered in x,, with the radius r,, : = %dist (xn, C). Ky is
convex, weakly compact (Kakutani—émulian theorem [43], Volume 10, p. 151) and dist(Kj,
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C) > ry : let x be from K,;, dist (x, C) > dist (xn, C) — dist (x, x,,) > 4r,, — 1y, = 3r,,. We take
the greatest lower bound. Moreover, X\C = U Kn let x be from X\C, and let 3 (x},)n>1

subsequence of (x,),>1 such that x,, — x, Wthh also implies that dist (xp,, C) — dist (x,
(), and if u and v are taken such that 0 < u < v < dist (x, C), from a rank on, we have 4 dist
(xp,, x) < u but, on the other side, 4r, = dist (x},, C) > v, and hence x € Kp,,. [

Let X be a reflexive space and C, D subsets of X*, C C D. We set
M(C,D):={x e X.3E € Csuch that Jx (§) > Jx (n) Vn € D},

otherwise expressed, M (C, D) is the set of x from X for which Jx is upper-bounded on D,
and the least upper bound is attained at a point of C, | the Hahn embedding of X in X**. So,
with X being reflexive, | is an isomorphism of vector spaces that preserves the norms.

In the following, to abridge the writing, sometimes x designates Jx.

Retain that if C is *-weakly compact, M (C, D) is closed.

Notations. Bx (xg, r) = the closed ball centered in xj of radius r in the normed space X.

By = Bx (0,1).

= the closure of the subset E from X* for the x-weak topology.
We proceed to the auxiliary propositions.

Definition 6.3. Let (X, d) be metric space and (M, ) the metric space of real functions defined on
X. For each nonempty subset A of X, we consider

={f € M : f upper bounded on A}
and, for each f from My and t > 0, the slice of A,
def
S(A, f, ) = {x € A: f(x) > sup f(A) —t},
is a set that is obviously nonempty when Mp # @.
Proposition 6.2. Let X be a reflexive space, D C X* and K C D, and K be convex *-weakly compact.

If
Bx (x, ) C M(K, D),

then, for any € > 0,
S(D, Jx, €) C K+§Bx*.

In particular, when C C D C conv *C, we have
dist (K, C) =
Proof. First assertion. This reverts to
§ ¢ K+ By, = £ ¢ S(D, x,e). 6.2)
Suppose ad absurdum that & € S(D, x, ¢), i.e., (see Definition 3.3)
x(&) > sup x(D) — ¢ (x € M(K, D) = Jx (D) upper bounded). (6.3)

The first member of (6.2) gives

&
lE=mllx. >—n € K. (6.4)
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Let z be from X such that
IJzll5+ (= l|z]]) = 1 and Jz(& —n) = ||& — n||x* (6.5)

(Hahn lemma [43], Volume 10, p. 94).
Combining this with (6.4) and taking the least upper bound, one obtains

supz(K) < z(£) - - (6.6)

(65)
However, x + az € By (x, &) C M(K, D), hence 3n is in K such that

(x + az)(no) = (x + az)(&). (6.7)

However,

(63),(66) ¢
(x+az)(&) =x(&) + az(§) > [sup x(D) — €] + «[sup z(K) + ;c] > x(ng) +z(ng)

and we obtain a contradiction with (6.7); thus, (6.2) is validated.
Second assertion. This results from

S(D K .
QO (D,x,¢) C K, (6.8)
NS(D,x,e)N C # @. (6.9)
e>0

6.2
For (6.8): &€ ﬂOS(D,x,s)(:>)E=na +Lue,me €K, |luel]| <1,andhence | 1§ —m 11 < £, &
>
is strong adherent point of K, and the strong closure of K is included in the *-weak closure
of this, which is in K. (O

Proposition 6.3. Let X be reflexive space, C C X* nonempty and U C X nonempty open having
the property
sup Jx (C) < +o0 Vx € U.

Then Jx, for any x from U, is upper bounded on conv *C and attains its least upper bound.
Proof. Set D : = conv *C. We have

sup Jx (C) =sup Jx (D)

[E€convC=E=AE+M &, &1, EH €EC M+ =1,A, 0 2>20=Jx (&) =71 Jx (&) + A2

*—weak

Jx(&p) <sup Jx (C; £ € D=3 €convC & = &= & (x) = &), & (x) < sup Jx (C)
Vn > 1, hence &(x) < sup Jx (C)], and so,

sup Jx (D) < +o0 Vx € U, (6.11)

and the first assertion is proved.
We proceed to the second assertion. We fix x from U, 3¢ > 0 with x + ¢z € U Vz in Bx.
Then
sup J(x + €z)(D) = sup (Jx + ¢Jz)(D) < +00 Vz € Bx ((6.11)),

consequently, once again using (6.11),
sup Jz (D) < +o0 Vz € By, (6.12)

which implies
sup Jz (D) < +co Vz € X (6.13)
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G(K, ¢):= {x

(for any fixed z, z # 0, replace z in (6.12) with ﬁ, Jy(&) = &()). Replacing z with —z in
(6.13), one finds
inf Jz (D) > —o0o Vz € X. (6.14)

However, X is reflexive, hence (6.13) and (6.14) express that D is weakly bounded, and
consequently, D is even bounded. With D also being x-weakly closed, it is *-weakly
compact ([43], Volume 10, p. 144), hence the conclusion by applying Weierstrass theorem.
O

Remark 6.1. Proposition 6.3 is Lemma 2.7 from [65], Ch.2. Here, an improved proof is proposed.

Proposition 6.4. Let X be a reflexive space, C C X* nonempty and U nonempty open from X such
that
sup Jx (C) < +o0 Vx € U.

If Cis a strict w*-Hy set in D: = conv *C, then the set
V :={x € U: Jx attains sup Jx (D) in C}
includes a set of G4 type that is dense in U

Proof. According to the definition
[e)
D\C = U K, (6.15)
n=

Kj is convex x-weakly compact and dist (K;;, C) > 0. Every Jx, x € U is upper bounded on
D and attains its supremum on this (Proposition 6.3). As dist (K, C) > 0, Proposition 6.2
prevents M(Kj, D) from including any nonempty ball; in other words, Vn > 1 int M(K},, D)
=@, and so M(K;, D), being also closed, is thin, and U, : = X\M(Ky, D) is open and dense

in X. Then ﬁlun is dense in X (Baire theorem), hence ﬁl(u N Uy), a set of the G; type, is
n= n=

dense in U. We see that if x € or%l(u N Uy ), then Jx, which is upper bounded on D, attains
e

a fortiori its least upper bound on C,as x ¢ M(K,;, D) Vn > 1 and one takes into account
(6.13). O

Proposition 6.5. Let X be a reflexive space, C subset of X* and separable, D : = conv *C and U
nonempty open subset of X such that sup Jx (C) < +oo Vx € U. Suppose that M(C, D) includes a
dense and of Gs-type subset of U. Then, for any K C D *-weakly compact with K N C = @ and for
any € > 0, the set

€ U: Ir > OsuchthatS (D, Jx, r) N K = & and diam S*(D, Jx, r) < e}
is open and dense in U.

Proof. G(K, ¢) is open. We use the fact that, D being bounded (proof for Proposition 6.3), the
subset S(D, Jx, r) is also bounded.

G(K, €) is dense in U. Let V C U, V nonempty open arbitrary. C being separable, we
can find a sequence (Cy),,>1, Cn C D, with C;; being convex x-weakly compact, with the
properties

Ccc UG, (6.16)
n=1
dist (Cp,, K) > 0V, 6.17)

diam Cn < = Vn. (6.18)

N[ ™
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(6.16)
We obviously have V D N U M(Cn, )NV D M(C, D) N V. However, the last member

includes, according to the hypothes1s a set of the G; type that is dense in V, which forces,
via the Baire theorem, the second member to have at least one term, let this term be M(Cy,,
D) NV, with a nonempty interior. From this interior, we take a point x. It remains to show

x € G(K, ¢). (6.19)
Applying Proposition 6.2, for every p > 0, there exists r > 0 such that
S(D, Jx, r) C Cyuy+ pBxx (6.20)

(3 ov > 0 such that Bx (x, «) C M(Cy,, D), taking r = ap). We take
p < mm{ dist (Cy,, K)}. (6.21)

(6.20) gives
S*(D, Jx, r) C Cuy+ pBx: = Cyy + pBx: (6.22)

because the last term, being *-weakly compact, is also *-weakly closed. However,
(Cup+pBx) N K= (6.23)

let, ad absurdum, & + pu =, & € Cyy, u € Bxs, ¢ € K, then p = ||& — || > dist (Cp,, K),
and we obtain a contradiction with (6.21). So, (6.22) and (6.23) give S*(D, Jx,r) N K=@Q.

Moreover,

- (6.22) (6.18),(621) ¢ ¢
diam S *(D, Jx, r) < diam C,y+2p < 5t =

which finishes the proof. [

Now:

Theorem 6.1. Let X be a reflexive space, C separable subset of X*, which is a strict w*-Hg set in D :
=conv *C, and U be open subset of X such that sup Jx (C) < +o0 Vx € U. Then
(I) The set

{x € U: Jx strongly exposes D from above at a point of C}

is of the G type and dense in U.
(IT) If @: C — (—o0, +o0] is proper lower semicontinuous and @ + Jx is, Vx from X, bounded
from below on C, then the set

{x € X: @ + Jx strongly exposes C from below}

is of Gs type and dense in X (N. Ghoussoub, B. Maurey [65]).

Proof. (I). According to the hypothesis, D\C = U Kn, K, is convex x-weakly compact,

dist (K;;, D) > 0. M(C, D) includes a subset of the G5 type dense in U (Proposition 6.4),
but then, for each n from N, theset V,, : = G(K1 UK, U ... UK, 711) is open and dense in

U (Proposition 6.5), consequently gan is dense in U (relativized Baire theorem) and it
n=

remains only to observe that ﬁlvn = {x € X: Jx strongly exposes D from above at a point
n=
of C}.
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(IT). C x R, separable subset of X* x R, is a strict w*-Hs setin D x R and then, ¢ being 1. s.
c., the epigraph epi ¢ in C X R (nonempty set, ¢ is proper) is a strict w*-Hs setin D x R
and hence also in conv *epi @. W : ={(x, ): x € X, « <0} is open in X x R, and sup (Jx,
a)(epi @) < +oo V(x, &) € W [(Jx, x), continuous linear functional, acts on C x R by the rule
(Jx, )&, A) = Jx(&) + A]. Indeed, Jx(&) + oA < Jx(&) + x@(£), Fain R, such that (J3)(E) +
@(&) > a VE € C (the hypothesis), hence Jx(&) + x@(&) < aa VE € C. We show that for each
e >0, Jyo with ||yo|| < 2e and ¢ + Jyg strongly exposes C from below, which is enough to
validate (II). Applying (I), 3 (x¢, ) in W such that

ll(xe, oxe) = (0, —D)|| < e (6.24)

((0, —1) € W) and (Jx¢, ) strongly exposes epi ¢ from above at a point (&g, Ag). Then, V
(&, A) from epi ¢ with & # &), we have

Jxe (&) + ote Ag > Jxe (&) + e A

consequently, taking vg : = ;—EE, we have, in particular,

©(&0) +Jyo (£0) < @(&) + Jyo () V & € C\{&o},

£, is a strict global minimum point for ¢ + Jijy. Moreover, as ¢ < 3 can be supposed, we have
& p Y 2 pp

llyoll = % < 2¢, because, via (6.24), ||xe || < eand lae + 11 < ¢, hence, oce E(—%, —% )

Finally, let (& ,),>1 be a minimizing sequence for ¢ + Jyp on C, then (&, ®(&,))y>1 is
maximizing sequence for (Jx,, ote) which strongly exposes epi ¢ in (&g, Ag), which imposes
&n — &o. U

Proof of Ghoussoub-Maurey linear principle

Proof. (I). Set Y : = X*, a separable reflexive space ([43], Volume 10, p. 162). Then, Y* =X
(identification via the Hahn embedding; X is reflexive). C is separable and strict w*-H; set
in Y* (Proposition 6.1, the weak and *-weak topologies coincide) and hence also in D :

conv*C (X\C = U Kn with the properties from (6.1), take the intersection with D). Apply

(II), Theorem 6. 1 transcrlbed with Y replaced by X; this is correct, as ¢ + &, £ € X* = Y**, is
bounded from below | (£(x)| < ||&]| ||x|| and C is bounded).

(II). The epigraph epi @ of ¢ in X x R is strict w-Hg set in X x R (Proposition 6.1).
In the following, using the proof for (II), Theorem 6.1 beginning from (6.24), epi ¢ is that
considered above. [

Corollary 6.1. Let X be reflexive space, C a subset of X* separable bounded strict w*-Hg set in D :
=conv*C and @: X — (—oo, +oo] bounded from below, I. s. c. and proper. For any ¢ > 0, there
exists xo in X with ||xg|| < e and &y in C such that

1° (@ + Jx0)(&0) < (@ + Jx0)(£) VE € C\{& o};
2° Any minimizing sequence from C for @ + Jxg converges to &g ([65]).

Proof. C bounded implies that ¢ + Jx bounded from below Vx € X, consequently (II),
Theorem 6.1 can intercede to obtain 1° and 2°. [

We imply this theorem in two generalizations of a minimization problem of the
form [71]:

N
Cf::min{/ l;(mp—l—z ou
o i=

1 axi

p) —f(u)]dx: u e W,P(Q), | ull2x =1}, (625
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E 1
Cri= mln{/ L ax — F(u) )dx: u € WIP(Q), || u | 26 =1}, (6.26)
i=1 1
where Q is open set of C! class in RN, N >3, f € W-7/(Q) (= (Wl p(Q))*) = =1,2*

= 1&5’2 —the critical exponent for the Sobolev embedding (for the necessary explanatlons,

here and in the following, see Section 2).

Let Q) be an open bounded set of the C! class in RN, N > 3. Consider the problems
() and (*x*) from Section 5.1.2, where f : (3 X R — R is a Carathéodory function with the
growth condition

If (x, 8)] < clsP™t +b(x), >0,2<p< Nzi]

/

, 11
,b e LP(Q), —+—= =1. (6.27)
> ()p ;

The functionals ¢: W&’p () — R,

o) = [ ( a” ) x,u<x>>] dx (6.28)
Q
and N
u p
o(u) :/(2}2 ;’7 —F(x,u(x))) dx, (6.29)
a i=1 1

S

with F(x, s) : = [ f(x,t) dt, are of the Fréchet C! class and their critical points are the weak

0
solutions of the problems (x) and (xx), respectively.

Problem (x). Let A1 be the first eigenvalue of -Ap in Wé’p(()) with a homogeneous
boundary condition. We have (see, for instance, Section 2)

o {|||( |)| : u€ WP(Q)\{0}} (the Rayleigh — Ritz quotient).  (6.30)
u Op

Now, we provide an answer to (6.25). We use the norm || - |1, , on Wl’p (Q)) (see above). We
denote the dual of (W&’p ), || -
%: 1).

W=LP'(Q)), where p’ is the conjugate of p (i.e., 5+

Proposition 6.6. Under the above assumptions and, in addition, the growth condition

p
F(x,s) < S; + ofx)s, (6.31)
with 0 < c1 <Ap, « € L7(Q) for some 2 < q < 2 5 and f (x, —s) = —f (x, s), Vx from Q), the

following assertions hold:
(i) The set of functions h from W—1P'(Q), having the property that the functional @y, : Wé/p(())
— R,

oh (1) = lul f= [ (Fox u(x) + hux)) dx ©32)
Q

has an attained minimum in only one point and includes a G set that is everywhere dense.
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(ii) The set of functions h from W=1P'(Q)), having the property

—Apu = f(x,u)+h (u)inQ

U=0ond O has solutions,

the problem {

includes a G set that is everywhere dense.
(iii) Moreover, if s — f (x, s) is increasing, then the set of functions h from W~P'(Q), having
the property

—Apu = f (x,u) +h(u) in

u = 0o0n 9o has a unique solution,

the problem {

includes a G set that is everywhere dense.

Remark 6.2. This is a generalization applied to the p-Laplacian and at Wé’p(Q) of Theorem 2.13
from [65].

Proof. It is sufficient to justify (i). Consider, for each h from W~1"/(Q), the functional &,
from W—LP/(Q),

- / h(u(x)) dx. (6.33)
Q

One may see that ¢, = @ + &, (see (6.28)). Consequently, according to the Ghoussoub-
Maurey linear principle, (II), if we show that ¢y, is bounded from below for any / from
W=LP(Q)), then (i) is proven. However, taking into account the Sobolev embedding and

(6.31), we have Vu € W, (Q),
(¢ +Enu w’ J F(x,u(x))dx - j hu(x))dx=-— w jlumw e
g{a(x)u(x))dx- [ h(u(x))dxz;j||u||?9—,w—‘p 1t 1R~ el lallo =Wy, Nl p

1 1 c
1= ulPy = sl =l —[ ——lj wlp —r |,
15l == o 1)

r € R, and hence the conclusion since 1 — f\—ll > 0. To prove some of these inequalities,

j Flxu(x)dxs | ('”(x” +0L(x)u(x)jdx —*||1(u)|g Ia(X)u(X)dM
Q

Q

L||u||lo + Jletllo, o [l <t [+ Kleels
phy TR I g T v

(see g and properties of Sobolev spaces in Section 2) and

/h ) dx= (h, u) < [|h||y-1e||tt|[1,p (the norm of the linear continuous map).
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Problem (xx). Let A1 be the first eigenvalue of —A}s, in Wé’p (€2) with a homogeneous
boundary condition. We have (see Section 2)

: P
i,

Iullfp 1
A =inf{ —E—: ue Wy (Q)\{0}} (the Rayleigh — Ritz quotient).

Now, we provide an answer to (6.26). We use the norm |- lp on Wé’p (Q)) (see above). We
denote the dual of (W&'p(Q), I |p) also by W—17(QQ), where p’ is the conjugate of p (i.e.,
11—

pp

Proposition 6.7. Under the above assumptions and, in addition, the growth condition
sP
F(x,s) < cl > + ofx)s,

with 0 < c1 <A, o € LT(Q) for some 2 < g < % and f (x, —s) = —f (x, s), Vx from Q, the
following assertions hold.

(i) The set of functions h from W—1P'(QQ), having the property that the functional @y, : Wol/p(Q)
>R,

oh (u) = ;Iulf_j— [ (Fxu(x)) +h(u())) dx
(@)

has an attained minimum in only one point and includes a Gs set that is everywhere dense.
(ii) The set of functions h from W~1P'(Q)), having the property

—Apu=f(xu)+h (u)inQ

the problem{ U= 0ondQ

has solutions,

includes a Gg set that is everywhere dense.
(iii) Moreover, if s — f (x, s) is increasing, then the set of functions h from W—1P'(Q), having
the property

—Aju=f(x,u) +h(u)in Q

u=0o0n0Q has a unique solution,

the problem{

includes a Gg set that is everywhere dense.

Remark 6.3. This is a generalization applied to the p-pseudo-Laplacian and at Wé P(Q)) of Theorem
2.13 from [65].

Proof. The proof and the afferent calculus follow, step by step, those for Proposition 6.6.

There, one replaces the norm || - ||, on W& 7 (Q)) with the norm I - |p, and the inequalities
and considerations remain the same. [

Remark 6.4. For the above results, there are some applications for particular problems from [72-74],
together with others for the pseudo torsion problem.

7. Conclusions

Seven methods to obtain and/or characterize weak solutions for some problems
of mathematical physics equations involving Dirichlet or Neumann problems for the p-
Laplacian and the p-pseudo-Laplacian have been developed. They were presented starting
from the most general abstract framework, together with detailed proofs, and numerous
auxiliary propositions are highlighted. The aim of this unfolding is to be applied to
problems derived from the modeling of real phenomena.
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The first three ways use surjectivity results (obtained from three generalizations due to
the author of three surjectivity theorems of Fu¢ik and Necas) and they are applied to duality
maps and Nemytskii operators. The novelty of this work consists of the presentation of all
the proof details, together with examples, to use this theory to solve mathematical physics
problems describing real phenomena. Many demonstration details are explained in accor-
dance with the aim of this journal. We proposed solving methods, and the characterization
of the solutions for problems derived from glaciology, a nonlinear elastic membrane either
with the p-Laplacian or with the p-pseudo-Laplacian and the pseudo torsion problem will
be provided in Part two of this work.

The fourth sequence of results starts with Ekeland variational principle to obtain
theoretical propositions that generalize two statements given by Ghoussoub, in which
the author replaced the real Hilbert space with a real reflexive uniformly convex Banach
space and the Fréchet C! class of the goal function with the condition imposed that it
be lower semicontinuous and Gateaux differentiable. It is also worthwhile to underline
that Gateaux differentiability can be replaced by the property of 3-differentiability, with 3
being a bornology any. These theoretical statements have been used to characterize weak
solutions for the p-Laplacian and for the p-pseudo-Laplacian. Some adequate examples
will be also given in Part two of this work. The novelty consists in using these results for
the targeted modeling of real phenomena problems solved for glaciology, nonlinear elastic
membrane with p-Laplacian and p-pseudo-Laplacian and pseudo torsion problem.

The fifth succession of statements establishes results for nondifferentiable functionals
using the Clarke gradient and critical points for this type of map and other specific notions
until their insertion for the characterization of weak solutions for Dirichlet problems with
the p-Laplacian and the p-pseudo-Laplacian, respectively, in Wé’p (Q)). Applications in
thermal transfer, for Dirichlet problems derived from previously presented problems of
the movement of a glacier, nonlinear elastic membrane, the pseudo torsion problem or
nonlinear elastic membrane with the p-Laplacian and p-pseudo-Laplacian will be presented
in Part two.

The sixth series of results, using properties of the Clarke subderivative, conditions of
the Palais-Smale type and Ekeland principle, are results for Neumann or mixed problems.
They are involved in the solution of corresponding problems for the p-Laplacian and
the p-pseudo-Laplacian. The novelty resides in applications to solutions for the velocity
of solid friction, the study of glacier flow, injection molding, thermal transfer and the
pseudo-torsion problem.

The last sequence of assertions starts from the Ghoussoub-Maurey linear principle,
which is used in order to solve some minimization problems. Generalizations of the
minimization problem for the Laplacian given by Brezis and Nirenberg have been obtained
in conjunction with the characterization of weak solutions of Dirichlet problems for the
p-Laplacian and for the p-pseudo-Laplacian.

We are particularly interested in these applications, and this work is a necessary study
for our future developments since our final goal is to obtain a mathematical model for a
specific process involving transfer phenomena for the targeted environmental engineering
application. The role of the reactor (in nanofabrication) in nano-liquid-liquid dispersed
systems, in which micro- or nano-droplets play this role, and the determinant parameters
are related to surface phenomena as a result of special intermolecular forces at the interface.
In this context, some innovative mathematical modeling methods have to be proposed
and tested in order to properly simulate the physical-chemical interactions and processes
specific to nanofabrication. However, one may stress that there are no models available that
can be applied for describing the diffusion phenomena involved in the micro-emulsification
of dispersed systems in connection with surface properties at the interface in self-organized
systems, and this will be the subject of future research.
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