Existence and Qualitative Properties of Solution for a Class of Nonlinear Wave Equations with Delay Term and Variable-Exponents Nonlinearities
Abstract
:1. Introduction
2. Preliminaries
- (A1)
- The relaxation function is a bounded function of so that
- (A2)
- We assumeLet be a positive constant that satisfies
3. Statement of the Existence Results with Their Proofs
3.1. Reformulate the Problem
3.2. Local Existence
- , ,
- The family is linearly independent,
- The space generated by the family, , is dense in .
3.2.1. First Estimate
3.2.2. Second Estimate
3.3. Global Existence
4. Asymptotic Behavior
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benaissa, A.; Benguessoum, A.; Messaoudi, S.A. Energy decay of solutions for a wave equation with a constant weak delay and a weak internal feedback. Electron. J. Qual. Theory Differ. Equ. 2014, 2014, 1–13. [Google Scholar] [CrossRef]
- Mustafa, M.I.; Kafini, M. Energy decay for viscoelastic plates with distributed delay and source term. Z. Angew. Math. Phys. 2016, 67, 35–78. [Google Scholar] [CrossRef]
- Messaoudi, S.A.; Talahmeh, A.; Jamal, H. Nonlinear damped wave equation: Existence and blow-up. Comput. Math. Appl. 2017, 74, 3024–3041. [Google Scholar] [CrossRef]
- Kbiri, A.M.; Messaoudi, S.A.; Khenous, H.B. A blow-up result for nonlinear generalized heat equation. Comput. Math. Appl. 2014, 68, 1723–1732. [Google Scholar] [CrossRef]
- Antontsev, S. Wave equation with p(x, t)-laplacian and damping term: Existence and blow-up. Differ. Equ. Appl. 2011, 3, 503–525. [Google Scholar] [CrossRef]
- Antontsev, S. Wave equation with p(x,t)-laplacian and damping term: Blow-up of solutions. C. R. Mec. 2011, 339, 751–755. [Google Scholar] [CrossRef]
- Ačik, O.; Akosnfik, J.R. On spaces lp(x)(ω), and wk,p(x)(ω). Czechoslov. Math. J. 1991, 41, 592–618. [Google Scholar] [CrossRef]
- Choucha, A.; Ouchenane, D.; Zennir, K. Exponential growth of solution with Lp-norm for class of non-linear viscoelastic wave equation with distributed delay term for large initial data. Open J. Math. Anal. 2020, 3, 76–83. [Google Scholar] [CrossRef]
- Diening, L.; Harjulehto, P.; Hasto, P.; Ruzicka, M. Lebesgue and Sobolev Spaces with Variable Exponents; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Fan, X.; Shen, J.; Zhao, D. Sobolev embedding theorems for spaces wk,p(x)(Ω). J. Math. Anal. Appl. 2001, 262, 749–760. [Google Scholar] [CrossRef]
- Nicaise, S.; Pignotti, C. Stabilization of the wave equation with boundary or internal distributed delay. Differ. Integral Equ. 2008, 21, 935–958. [Google Scholar] [CrossRef]
- Lions, J.L. Quelques Methodes de Résolution des Problèmes aux Limites Non Linéaires; Dunod Gauthier-Villars: Paris, France, 1969. [Google Scholar]
- Alam, M.N.; Tunc, C. New solitary wave structures to the (2 + 1)-dimensional KD and KP equations with spatio-temporal dispersion. J. King Saud Univ.-Sci. 2020, 32, 3400–3409. [Google Scholar] [CrossRef]
- Tunç, C.; Tunç, O. On the stability, integrability and boundedness analyses of systems of integro-differential equations with time-delay retardation. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 2021, 115, 115. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karek, M.; Otmani, S.; Bouhali, K.; Zennir, K.; Elkhair, H.M.; Hassan, E.I.; Alfedeel, A.H.A.; Alarfaj, A. Existence and Qualitative Properties of Solution for a Class of Nonlinear Wave Equations with Delay Term and Variable-Exponents Nonlinearities. Axioms 2023, 12, 444. https://doi.org/10.3390/axioms12050444
Karek M, Otmani S, Bouhali K, Zennir K, Elkhair HM, Hassan EI, Alfedeel AHA, Alarfaj A. Existence and Qualitative Properties of Solution for a Class of Nonlinear Wave Equations with Delay Term and Variable-Exponents Nonlinearities. Axioms. 2023; 12(5):444. https://doi.org/10.3390/axioms12050444
Chicago/Turabian StyleKarek, Mohamed, Sadok Otmani, Keltoum Bouhali, Khaled Zennir, Hatim M. Elkhair, Eltegani I. Hassan, Alnadhief H. A. Alfedeel, and Almonther Alarfaj. 2023. "Existence and Qualitative Properties of Solution for a Class of Nonlinear Wave Equations with Delay Term and Variable-Exponents Nonlinearities" Axioms 12, no. 5: 444. https://doi.org/10.3390/axioms12050444
APA StyleKarek, M., Otmani, S., Bouhali, K., Zennir, K., Elkhair, H. M., Hassan, E. I., Alfedeel, A. H. A., & Alarfaj, A. (2023). Existence and Qualitative Properties of Solution for a Class of Nonlinear Wave Equations with Delay Term and Variable-Exponents Nonlinearities. Axioms, 12(5), 444. https://doi.org/10.3390/axioms12050444