On Hermite–Hadamard-Type Inequalities for Functions Satisfying Second-Order Differential Inequalities
Abstract
:1. Introduction
- (i)
- f is convex;
- (ii)
- For all with :
- (iii)
- For all with :
2. Main Results
- (i)
- (6) holds;
- (ii)
- For all with , it holds that:
- (i)
- ;
- (ii)
- For all with , it holds that:
3. Applications
3.1. Characterizations of the Classes of Functions
- (i)
- ;
- (ii)
- For all with , (21) holds.
- (i)
- ;
- (ii)
- For all with , (22) holds.
3.2. Characterizations of the Classes of Functions
- (i)
- ;
- (ii)
- For all with , it holds that:
- (i)
- ;
- (ii)
- For all with , it holds that:
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite-Hadamard Inequalities and Applications; RGMIA Monographs; Victoria University: Footscray, VIC, Australia, 2000. [Google Scholar]
- Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef]
- Guessab, A.; Semisalov, B. Optimal general Hermite-Hadamard-type inequalities in a ball and their applications in multidimensional numerical integration. Appl. Numer. Math. 2021, 170, 83–108. [Google Scholar] [CrossRef]
- Pearce, C.E.; Pecarić, J. Inequalities for differentiable mappings with application to special means and quadrature formulae. Appl. Math. Lett. 2000, 13, 51–55. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Saglam, A.; Yildirim, H. New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are convex and quasi-convex. Int. J. Open Probl. Comput. Sci. Math. (IJOPCM) 2012, 5, 3. [Google Scholar] [CrossRef]
- Latif, M.A. On some new inequalities of Hermite-Hadamard type for functions whose derivatives are s-convex in the second sense in the absolute value. Ukr. Math. J. 2016, 67, 1552–1571. [Google Scholar] [CrossRef]
- Zhao, D.; Gulshan, G.; Ali, M.A.; Nonlaopon, K. Some new midpoint and trapezoidal-type inequalities for general convex functions in q-calculus. Mathematics 2022, 10, 444. [Google Scholar] [CrossRef]
- Kórus, P. An extension of the Hermite-Hadamard inequality for convex and s-convex functions. Aequ. Math. 2019, 93, 527–534. [Google Scholar] [CrossRef]
- Samraiz, M.; Perveen, Z.; Rahman, G.; Adil Khan, M.; Nisar, K.S. Hermite-Hadamard fractional inequalities for differentiable functions. Fractal Fract. 2022, 6, 60. [Google Scholar] [CrossRef]
- Nasri, N.; Aissaoui, F.; Bouhali, K.; Frioui, A.; Meftah, B.; Zennir, K.; Radwan, T. Fractional weighted midpoint-type inequalities for s-convex functions. Symmetry 2023, 15, 612. [Google Scholar] [CrossRef]
- Gulshan, G.; Budak, H.; Hussain, R.; Nonlaopon, K. Some new quantum Hermite-Hadamard type inequalities for s-convex functions. Symmetry 2022, 14, 870. [Google Scholar] [CrossRef]
- Niculescu, P.C. The Hermite-Hadamard inequality for log convex functions. Nonlinear Anal. 2012, 75, 662–669. [Google Scholar] [CrossRef]
- Dragomir, S. Refinements of the Hermite-Hadamard integral inequality for log-convex functions. Aust. Math. Soc. Gaz. 2000, 28, 129–134. [Google Scholar]
- Dragomir, S. New inequalities of Hermite-Hadamard type for log-convex functions. Khayyam J. Math. 2017, 3, 98–115. [Google Scholar]
- Dragomir, S.S. Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces. Proyecciones 2015, 34, 323–341. [Google Scholar] [CrossRef]
- Breaz, D.; Yildiz, C.; Cotirla, L.; Rahman, G. New Hadamard type inequalities for modified h-convex functions. Fractal Fract. 2023, 7, 216. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Toader, G. Some inequalities for m-convex functions. Stud. Univ. Babes Bolyai Math. 1993, 38, 21–28. [Google Scholar]
- Dragomir, S.S. On some new inequalities of Hermite-Hadamard type for m-convex functions. Tamkang J. Math. 2002, 33, 1. [Google Scholar] [CrossRef]
- Chen, D.; Anwar, M.; Farid, G.; Bibi, W. Inequalities for q-h-integrals via h-convex and m-convex functions. Symmetry 2023, 15, 666. [Google Scholar] [CrossRef]
- Qi, Y.; Wen, Q.; Li, G.; Xiao, K.; Wang, S. Discrete Hermite-Hadamard-type inequalities for (s, m)-convex function. Fractals 2022, 30, 2250160. [Google Scholar] [CrossRef]
- Zhao, D.F.; An, T.Q.; Ye, G.J.; Liu, W. New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions. J. Inequal. Appl. 2018, 2018, 302. [Google Scholar] [CrossRef]
- Rashid, S.; Noor, M.A.; Noor, K.I.; Safdar, F.; Chu, Y.-M. Hermite-Hadamard inequalities for the class of convex functions on time scale. Mathematics 2019, 7, 956. [Google Scholar] [CrossRef]
- Budak, H.; Ali, M.A.; Tarhanaci, M. Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions. J. Optim. Theory Appl. 2020, 186, 899–910. [Google Scholar] [CrossRef]
- Samet, B. A convexity concept with respect to a pair of functions. Numer. Funct. Anal. Optim. 2022, 43, 522–540. [Google Scholar] [CrossRef]
- Barani, A. Hermite-Hadamard and Ostrowski type inequalities on hemispheres. Mediterr. J. Math. 2016, 13, 4253–4263. [Google Scholar] [CrossRef]
- Chen, Y. Hadamard’s inequality on a triangle and on a polygon. Tamkang J. Math. 2004, 35, 247–254. [Google Scholar] [CrossRef]
- De la Cal, J.; Cárcamo, J.; Escauriaza, L. A general multidimensional Hermite-Hadamard type inequality. J. Math. Anal. Appl. 2009, 356, 659–663. [Google Scholar] [CrossRef]
- Mihailescu, M.; Niculescu, C. An extension of the Hermite-Hadamard inequality through subharmonic functions. Glasg. Math. J. 2007, 49, 509–514. [Google Scholar] [CrossRef]
- Niculescu, C.P.; Persson, L.E. Old and new on the Hermite-Hadamard inequality. Real Anal. Exch. 2004, 29, 663–686. [Google Scholar] [CrossRef]
- Hardy, G.H.; Littlewood, J.E.; Pólya, G. Inequalities; Cambridge University Press: Cambridge, UK, 1934. [Google Scholar]
- Roberts, A.W.; Varberg, D.E. Convex Functions; Academic Press: Cambridge, MA, USA, 1973. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldawish, I.; Jleli, M.; Samet, B. On Hermite–Hadamard-Type Inequalities for Functions Satisfying Second-Order Differential Inequalities. Axioms 2023, 12, 443. https://doi.org/10.3390/axioms12050443
Aldawish I, Jleli M, Samet B. On Hermite–Hadamard-Type Inequalities for Functions Satisfying Second-Order Differential Inequalities. Axioms. 2023; 12(5):443. https://doi.org/10.3390/axioms12050443
Chicago/Turabian StyleAldawish, Ibtisam, Mohamed Jleli, and Bessem Samet. 2023. "On Hermite–Hadamard-Type Inequalities for Functions Satisfying Second-Order Differential Inequalities" Axioms 12, no. 5: 443. https://doi.org/10.3390/axioms12050443
APA StyleAldawish, I., Jleli, M., & Samet, B. (2023). On Hermite–Hadamard-Type Inequalities for Functions Satisfying Second-Order Differential Inequalities. Axioms, 12(5), 443. https://doi.org/10.3390/axioms12050443