Centrally Extended Jordan (∗)-Derivations Centralizing Symmetric or Skew Elements
Abstract
:1. Introduction
2. Preliminary Results
- (i)
- If S is GPI, then A is GPI.
- (ii)
- If H is GPI, then A is GPI.
3. Results on Centrally Extended Jordan Derivations
4. Results on Centrally Extended Jordan *-Derivations
5. Future Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beidar, K.I.; Martindale, W.S., III; Mikhalev, A.V. Rings with Generalized Identities; Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker: New York, NY, USA, 1996; Volume 196. [Google Scholar]
- Ashraf, M.; Ali, S.; Haetinger, C. On derivations in rings and their applications. Aligarh Bull. Math. 2006, 25, 79–107. [Google Scholar]
- Ashraf, M.; Rehman, N. On Jordan generalized derivations in rings. Math. J. Okayama Univ. 2000, 42, 7–9. [Google Scholar] [CrossRef] [Green Version]
- Brešar, M. Jordan derivations on semiprime rings. Proc. Amer. Math. Soc. 1988, 104, 1003–1006. [Google Scholar] [CrossRef] [Green Version]
- Brešar, M.; Vukman, J. Jordan derivations on prime rings. Bull. Austral. Math. Soc. 1988, 37, 321–322. [Google Scholar] [CrossRef] [Green Version]
- Herstein, I.N. Jordan derivations of prime rings. Proc. Amer. Math. Soc. 1957, 8, 1104–1119. [Google Scholar] [CrossRef]
- Zalar, B. On centralisers of semiprime rings. Comment. Math. Univ. Carol. 1991, 32, 609–614. [Google Scholar]
- Brešar, M.; Vukman, J. On some additive mappings in rings with involution. Aequationes Math. 1989, 38, 178–185. [Google Scholar] [CrossRef]
- Dar, N.A.; Ali, S. On the structure of generalized Jordan *-derivations of prime rings. Commun. Algebra 2021, 49, 1422–1430. [Google Scholar] [CrossRef]
- Šemrl, P. On Jordan *-derivations and an application. Colloq. Math. 1990, 59, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Šemrl, P. Quadratic functionals and Jordan *-derivations. Stud. Math. 1991, 97, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Brešar, M.; Zalar, B. On the structure of Jordan *-derivations. Colloq. Math. 1992, 63, 163–171. [Google Scholar] [CrossRef]
- Ali, S.; Fošner, A.; Fošner, M.; Khan, M.S. On generalized Jordan triple (α,β)*-derivations and related mappings. Mediterr. J. Math. 2013, 10, 1657–1668. [Google Scholar] [CrossRef]
- Lee, T.K.; Wong, T.L.; Zhou, Y. The structure of Jordan *-derivations of prime rings. Linear Multilinear Algebra 2015, 63, 411–422. [Google Scholar] [CrossRef]
- Lee, T.K.; Zhou, Y. Jordan *-derivation of prime rings. J. Algebra Appl. 2014, 13, 1–9. [Google Scholar] [CrossRef]
- Bell, H.E.; Daif, M.N. On centrally-extended maps on rings. Beitr. Algebra Geom. 2016, 57, 129–136. [Google Scholar] [CrossRef]
- Bhushan, B.; Sandhu, G.S.; Ali, S.; Kumar, D. On centrally extended Jordan derivations and related maps in rings. Hacettepe J. Math. Stat. 2022, 1–13. [Google Scholar] [CrossRef]
- El-Deken, S.F.; El-Soufi, M.M. On centrally extended reverse and generalized reverse derivations. Indian J. Pure Appl. Math. 2020, 51, 1165–1180. [Google Scholar] [CrossRef]
- El-Deken, S.F.; Nabiel, H. Centrally-extended generalized *-derivations on rings with involution. Beitr. Algebra Geom. 2019, 60, 217–224. [Google Scholar] [CrossRef]
- Muthana, N.; Alkhmisi, Z. On centrally-extended multiplicative (generalized)-(α,β)-derivations in semiprime rings. Hacet. J. Math. Stat. 2020, 49, 578–585. [Google Scholar] [CrossRef] [Green Version]
- Divinsky, N. On commuting automorphisms of rings. Trans. R. Soc. Can. Sec. III 1955, 3, 19–22. [Google Scholar]
- Posner, E.C. Derivations in prime rings. Proc. Amer. Math. Soc. 1957, 8, 1093–1100. [Google Scholar] [CrossRef]
- Ali, S.; Dar, N.A. On *-centralizing mappings in rings with involution. J. Georgian Math. 2014, 21, 25–28. [Google Scholar] [CrossRef]
- Rehman, N.; Alnoghashi, H. Commutativity of prime rings with generalized derivations and anti-automorphisms. Georgian Math. J. 2020, 29, 583–594. [Google Scholar] [CrossRef]
- Kharchenko, V.K. Differential identities of semiprime rings. Algebra Log 1979, 18, 58–80. [Google Scholar] [CrossRef]
- Rowen, L.H. Polynomial Identities in Ring Theory; Academic Press: Cambridge, MA, USA, 1980. [Google Scholar]
- Drensky, V.; Formanek, E. Polynomial Identity Ring; Birkhäuser: Basel, Switzerland, 2012. [Google Scholar]
- Wang, Y. Power-centralizing automorphisms of Lie ideals in prime rings. Commun. Algebra 2006, 34, 609–615. [Google Scholar] [CrossRef]
- Bridger, L.E. Rings with a Polynomial Identity; University of British Columbia: Vancouver, BC, Canada, 1970. [Google Scholar] [CrossRef]
- Lanski, C. Lie structure in semi-prime rings with involution. Commun. Algebra 1976, 4, 731–746. [Google Scholar] [CrossRef]
- Lee, P.H.; Lee, T.K. Derivations centralizing symmetric or skew elements. Bull. Inst. Math. Acad. Sin. 1986, 14, 249–256. [Google Scholar]
- Brešar, M.; Martindale, W.S., III; Miers, C.R. Centralizing maps in prime rings with involution. J. Algebra 1993, 161, 342–357. [Google Scholar] [CrossRef] [Green Version]
- Herstein, I.N. Rings with Involution; UChicago Press: Chicago, IL, USA, 1976; Volume 111. [Google Scholar]
- Lee, T.C. Derivations and centralizing maps on skew elements. Soochow J. Math. 1998, 24, 273–290. [Google Scholar]
- Brešar, M. Centralizing mappings and derivations in prime rings. J. Algebra 1993, 156, 385–394. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alali, A.S.; Alnoghashi, H.M.; Rehman, N.u. Centrally Extended Jordan (∗)-Derivations Centralizing Symmetric or Skew Elements. Axioms 2023, 12, 86. https://doi.org/10.3390/axioms12010086
Alali AS, Alnoghashi HM, Rehman Nu. Centrally Extended Jordan (∗)-Derivations Centralizing Symmetric or Skew Elements. Axioms. 2023; 12(1):86. https://doi.org/10.3390/axioms12010086
Chicago/Turabian StyleAlali, Amal S., Hafedh M. Alnoghashi, and Nadeem ur Rehman. 2023. "Centrally Extended Jordan (∗)-Derivations Centralizing Symmetric or Skew Elements" Axioms 12, no. 1: 86. https://doi.org/10.3390/axioms12010086
APA StyleAlali, A. S., Alnoghashi, H. M., & Rehman, N. u. (2023). Centrally Extended Jordan (∗)-Derivations Centralizing Symmetric or Skew Elements. Axioms, 12(1), 86. https://doi.org/10.3390/axioms12010086