Minimum Energy Problem in the Sense of Caputo for Fractional Neutral Evolution Systems in Banach Spaces
Abstract
:1. Introduction
2. Background
- (i)
- There exists such that
- (ii)
- For any , there exists such that
- 1.
- For any , the operators and are linear and bounded, i.e.,
- 2.
- For , if is compact, then and are both compact operators.
- (i)
- , ;
- (ii)
- , .
3. Controllability
- (A1)
- is compact for every ;
- (A2)
- The function is continuous, and there exists a constant and such that , and for any , , the function is strongly measurable and satisfies the Lipschitz condition
4. Optimal Control
5. An Application
- (a)
- The function , , is measurable and
- (b)
- The function is measurable, , and
- (i)
- ;
- (ii)
- The operator is given by
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rabah, R.; Sklyar, G.M.; Barkhayev, P.Y. On the exact controllability and observability of neutral type systems. Commun. Math. Anal. 2014, 17, 279–294. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Karunanithi, S. Existence results for neutral functional integrodifferential equations with infinite delay in Banach spaces. J. Appl. Math. Inform. 2015, 33, 45–60. [Google Scholar] [CrossRef]
- Huang, H.; Fu, X. Optimal control problems for a neutral integro-differential system with infinite delay. Evol. Equ. Control Theory 2022, 11, 177–197. [Google Scholar] [CrossRef]
- Harisa, S.A.; Ravichandran, C.; Sooppy Nisar, K.; Faried, N.; Morsy, A. New exploration of operators of fractional neutral integro-differential equations in Banach spaces through the application of the topological degree concept. AIMS Math. 2022, 7, 15741–15758. [Google Scholar] [CrossRef]
- Baker, C.T.H.; Bocharov, G.A.; Rihan, F.A. Neutral delay differential equations in the modelling of cell growth. J. Egypt. Math. Soc. 2008, 16, 133–160. [Google Scholar]
- Baculikova, B. Oscillatory behavior of the second order functional differential equations. Appl. Math. Lett. 2017, 72, 35–41. [Google Scholar] [CrossRef]
- Bazighifan, O.; Elabbasy, E.M.; Moaaz, O. Oscillation of higher-order differential equations with distributed delay. J. Inequal. Appl. 2019, 55, 1–9. [Google Scholar] [CrossRef]
- Lions, J.L. Optimal Control of Systems Governed by Partial Differential Equations; Springer: New York, NY, USA, 1971. [Google Scholar]
- Li, X.; Yong, J. Optimal Control Theory for Infinite Dimensional Systems, Systems Control: Foundations Applications; Birkhäuser Boston, Inc.: Boston, MA, USA, 1995. [Google Scholar] [CrossRef]
- Karite, T.; Boutoulout, A. Global and regional constrained controllability for distributed parabolic linear systems: RHUM Approach. Numer. Algebr. Control Optim. 2021, 11, 555–566. [Google Scholar] [CrossRef]
- Ge, F.; Chen, Y.Q.; Kou, C. Regional Analysis of Time-Fractional Diffusion Processes; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Guechi, S.; Debbouche, A.; Torres, D.F.M. Approximate controllability of impulsive non-local non-linear fractional dynamical systems and optimal control. Miskolc Math. Notes 2018, 19, 255–271. [Google Scholar] [CrossRef]
- Almeida, R.; Tavares, D.; Torres, D.F.M. The Variable-Order Fractional Calculus of Variations; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific Publishing: Singapore, 2000. [Google Scholar] [CrossRef]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House Inc.: New York, NY, USA, 2006. [Google Scholar]
- Tabanfar, Z.; Ghassemi, F.; Bahramian, A.; Nouri, A.; Ghaffari Shad, E.; Jafari, S. Fractional-order systems in biological applications: Estimating causal relations in a system with inner connectivity using fractional moments. In Emerging Methodologies and Applications in Modelling; Radwan, A.G., Khanday, F.A., Said, L.A., Eds.; Fractional-Order Design; Academic Press: Cambridge, MA, USA, 2022; pp. 275–299. [Google Scholar]
- Mophou, G.M.; N’Guerekata, G.M. Existence of mild solutions of some semilinear neutral fractional functional evolution equations with infinite delay. Appl. Math. Comput. 2010, 216, 61–69. [Google Scholar] [CrossRef]
- Shu, X.B.; Lai, Y.; Chen, Y. The existence of mild solutions for impulsive fractional partial differential equations. Nonlinear Anal. TMA 2011, 74, 2003–2011. [Google Scholar] [CrossRef]
- Abada, N.; Benchohra, M.; Hammouche, H. Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions. J. Differ. Equ. 2009, 246, 3834–3863. [Google Scholar] [CrossRef]
- Ahmadova, A.; Mahmudov, N.I. Existence and uniqueness results for a class of fractional stochastic neutral differential equations. Chaos Solitons Fractals 2020, 139, 110253. [Google Scholar] [CrossRef]
- Kavitha, K.; Vijayakumar, V.; Shukla, A.; Sooppy Nisar, K.; Udhayakumar, R. Results on approximate controllability of Sobolev-type fractional neutral differential inclusions of Clarke subdifferential type. Chaos Solitons Fractals 2021, 151, 111264. [Google Scholar] [CrossRef]
- Sakthivel, R.; Mahmudov, N.I.; Nieto, J.J. Controllability for a class of fractional-order neutral evolution control systems. Appl. Math. Comput. 2012, 218, 10334–10340. [Google Scholar] [CrossRef]
- Sakthivel, R.; Ganesh, R.; Ren, Y.; Anthoni, S.M. Approximate controllability of nonlinear fractional dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 3498–3508. [Google Scholar] [CrossRef]
- Qin, H.; Zuo, X.; Liu, J.; Liu, L. Approximate controllability and optimal controls of fractional dynamical systems of order 1 < q < 2 in Banach spaces. Adv. Differ. Equ. 2015, 73, 1–17. [Google Scholar] [CrossRef]
- Yan, Z.; Jia, X. Optimal controls for fractional stochastic functional differential equations of order α∈(1,2]. Bull. Malays. Math. Sci. Soc. 2018, 41, 1581–1606. [Google Scholar] [CrossRef]
- Zhou, Y.; He, J.W. New results on controllability of fractional evolution systems with order α∈(1,2). Evol. Equ. Control Theory 2021, 10, 491–509. [Google Scholar] [CrossRef]
- Xi, X.-X.; Hou, M.; Zhou, X.-F.; Wen, Y. Approximate controllability of fractional neutral evolution systems of hyperbolic type. Evol. Equ. Control Theory 2022, 11, 1037–1069. [Google Scholar] [CrossRef]
- Dineshkumar, C.; Udhayakumar, R.; Vijayakumar, V.; Kottakkaran Sooppy, N. A discussion on the approximate controllability of Hilfer fractional neutral stochastic integro-differential systems. Chaos Solitons Fractals 2021, 142, 110472. [Google Scholar] [CrossRef]
- Ma, Y.-K.; Kavitha, K.; Albalawi, W.; Shukla, A.; Sooppy Nisar, K.; Vijayakumar, V. An analysis on the approximate controllability of Hilfer fractional neutral differential systems in Hilbert spaces. Alex. Eng. J. 2022, 61, 7291–7302. [Google Scholar] [CrossRef]
- Wen, Y.; Xi, X.-X. Complete controllability of nonlinear fractional neutral functional differential equations. Adv. Contin. Discrete Models 2022, 33, 1–11. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations, Mathematics in Science and Engineering; Academic Press, Inc.: San Diego, CA, USA, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Pazy, A. Semi-Groups of Linear Operators and Applications to Partial Differential Equations; Springer: New York, NY, USA, 1983. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiao, F. Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 2010, 59, 1063–1077. [Google Scholar] [CrossRef]
- Kumar, S.; Sukavanam, N. Approximate controllability of fractional order semilinear systems with bounded delay. J. Differ. Equ. 2012, 252, 6163–6174. [Google Scholar] [CrossRef]
- El-Borai, M.M. Some probability densities and fundamental solutions of fractional evolution equations. Chaos Solitons Fractals 2002, 14, 433–440. [Google Scholar] [CrossRef]
- Ge, F.; Zhou, H.; Kou, C. Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique. Appl. Math. Comput. 2016, 275, 107–120. [Google Scholar] [CrossRef]
- Carmichael, N.; Pritcbard, A.J.; Quinn, M.D. State andparameter estimation problems for nonlinear systems. Appl. Math. Optim. 1982, 9, 133–161. [Google Scholar] [CrossRef]
- Quinn, M.D.; Carmichael, N. An approach to nonlinear control problems using fixed-point methods, degree theory and pseudo-inverses. Numer. Funct. Anal. Optim. 1985, 7, 197–219. [Google Scholar] [CrossRef]
- Karite, T.; Boutoulout, A.; Torres, D.F.M. Enlarged controllability and optimal control of sub-diffusion processes with Caputo fractional derivatives. Progr. Fract. Differ. Appl. 2020, 6, 81–93. [Google Scholar] [CrossRef]
- Karite, T.; Boutoulout, A.; Torres, D.F.M. Enlarged controllability of Riemann-Liouville fractional differential equations. J. Comput. Nonlinear Dynam. 2018, 13, 090907. [Google Scholar] [CrossRef]
- Khan, A.; Ullah, H.; Zahri, M.; Humphries, U.W.; Karite, T.; Yusuf, A.; Ullah, H.; Fiza, M. Stationary distribution and extinction of stochastic coronavirus (COVID-19) epidemic model. Fractals 2022, 30, 2240050. [Google Scholar] [CrossRef]
- Zarin, R.; Khan, A.; Inc, M.; Humphries, U.W.; Karite, T. Dynamics of five grade leishmania epidemic model using fractional operator with Mittag-Leffler kernel. Chaos Solitons Fractals 2021, 147, 110985. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ech-chaffani, Z.; Aberqi, A.; Karite, T.; Torres, D.F.M. Minimum Energy Problem in the Sense of Caputo for Fractional Neutral Evolution Systems in Banach Spaces. Axioms 2022, 11, 379. https://doi.org/10.3390/axioms11080379
Ech-chaffani Z, Aberqi A, Karite T, Torres DFM. Minimum Energy Problem in the Sense of Caputo for Fractional Neutral Evolution Systems in Banach Spaces. Axioms. 2022; 11(8):379. https://doi.org/10.3390/axioms11080379
Chicago/Turabian StyleEch-chaffani, Zoubida, Ahmed Aberqi, Touria Karite, and Delfim F. M. Torres. 2022. "Minimum Energy Problem in the Sense of Caputo for Fractional Neutral Evolution Systems in Banach Spaces" Axioms 11, no. 8: 379. https://doi.org/10.3390/axioms11080379
APA StyleEch-chaffani, Z., Aberqi, A., Karite, T., & Torres, D. F. M. (2022). Minimum Energy Problem in the Sense of Caputo for Fractional Neutral Evolution Systems in Banach Spaces. Axioms, 11(8), 379. https://doi.org/10.3390/axioms11080379