A Survey on the k-Path Vertex Cover Problem
Abstract
:1. Introduction
- The weighted version of MinVCP (for short, -MinVCP). A graph with a weight function is given, and our goal is to find a minimum weight VCP of G.
- The connected version of MinVCP (for short, -MinVCP). A connected graph G is given, and our goal is to find a VCPS of G with minimum cardinality so that is connected.
- The weighted version of -MinVCP (for short, -MinVCP). A connected graph with a weight function is given, and our goal is to find a VCPS of G with minimum weight so that is connected.
2. Computational Complexity
3. Exact Algorithms
4. Approximation Algorithms
5. Parameterized Algorithms
6. The -Path Vertex Cover Number
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bondy, J.A.; Murty, U.S.R. Graph Theory; Springer: New York, NY, USA, 2008. [Google Scholar]
- Tu, J.; Zhou, W. A primal–dual approximation algorithm for the vertex cover P3 problem. Theor. Comput. Sci. 2011, 412, 7044–7048. [Google Scholar] [CrossRef] [Green Version]
- Tu, J.; Zhou, W. A factor 2 approximation algorithm for the vertex cover P3 problem. Inform. Process. Lett. 2011, 111, 683–686. [Google Scholar] [CrossRef]
- Brešar, B.; Jakovac, M.; Katrenič, J.; Semanišin, G.; Taranenko, A. On the vertex k-path cover. Discret. Appl. Math. 2013, 161, 1943–1949. [Google Scholar] [CrossRef]
- Acharya, H.B.; Choi, T.; Bazzi, R.A.; Gouda, M.G. The k-observer problem in computer networks. Netw. Sci. 2012, 1, 15–22. [Google Scholar] [CrossRef]
- Ries, B.; Schamberg, B.; Unger, W. The k-Observer Problem on d-regular Graphs. In Proceedings of the Stabilization Safety, and Security of Distributed Systems (SSS 2015), Edmonton, AB, Canada, 18–21 August 2015; pp. 81–93. [Google Scholar]
- Lee, E. Partitioning a graph into small pieces with applications to path transversal. Math. Program. Ser. A 2019, 177, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Brüstle, N.; Elbaz, T.; Hatami, H.; Kocer, O.; Ma, B. Approximation Algorithms for Hitting Subgraphs. In Proceedings of the 32nd International Workshop on Combinatorial Algorithms (IWOCA 2021), Ottawa, ON, Canada, 5–7 July 2021; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2021; Volume 12757. [Google Scholar]
- Fujito, T. A unified approximation algorithm for node-deletion problems. Discret. Appl. Math. 1998, 86, 213–231. [Google Scholar] [CrossRef] [Green Version]
- Krishnamoorthy, M.S.; Deo, N. Node-deletion NP-complete problems. SIAM J. Comput. 1979, 8, 619–625. [Google Scholar] [CrossRef]
- Yannakakis, M. Node-deletion problems on bipartite graphs. SIAM J. Comput. 1981, 10, 310–327. [Google Scholar] [CrossRef]
- Brešar, B.; Kardoš, F.; Katrenič, J.; Semanišin, G. Minimum k-path vertex cover. Discret. Appl. Math. 2011, 159, 1189–1195. [Google Scholar] [CrossRef] [Green Version]
- Novotný, M. Design and analysis of a generalized canvas protocol. In Proceedings of the 4th Workshop on Information Security Theory and Practice, WISTP 2010, Passau, Germany, 12–14 April 2010; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2010; Volume 6033, pp. 106–121. [Google Scholar]
- Vogt, H. Integrity Preservation for Communication in Sensor Networks; Technical Report 434; Institute for Pervasive Computing, ETH Zurich: Zurich, Switzerland, 2004. [Google Scholar]
- Poljak, S. A note on the stable sets and coloring of graphs. Comment. Math. Univ. Carolin. 1974, 15, 307–309. [Google Scholar]
- Brešar, B.; Kos, T.; Krivoš-Belluš, R.; Semanišin, G. Hitting subgraphs in P4-tidy graphs. Appl. Math. Comput. 2019, 352, 211–219. [Google Scholar] [CrossRef]
- Tu, J.; Yang, F. The vertex cover P3 problem in cubic graphs. Inform. Process. Lett. 2013, 113, 481–485. [Google Scholar] [CrossRef]
- Kumar, M.; Mishra, S.; Devi, N.S.; Saurabh, S. Approximation algorithms for node deletion problems on bipartite graphs with finite forbidden subgraph characterization. Theor. Comput. Sci. 2014, 526, 90–96. [Google Scholar] [CrossRef]
- Devi, N.S.; Mane, A.C.; Mishra, S. Computational complexity of minimum P4 vertex cover problem for regular and K1,4-free graphs. Discret. Appl. Math. 2015, 184, 114–121. [Google Scholar] [CrossRef]
- Tu, J. Efficient algorithm for the vertex cover Pk problem on cacti. Appl. Math. Comput. 2017, 311, 217–222. [Google Scholar] [CrossRef]
- Brešar, B.; Krivoš-Belluš, R.; Semanišin, G.; Šparl, P. On the weighted k-path vertex cover problem. Discret. Appl. Math. 2014, 177, 14–18. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.; Huang, X. Approximation algorithms for minimum (weight) connected k-path vertex cover. Discret. Appl. Math. 2016, 205, 101–108. [Google Scholar] [CrossRef]
- Xiao, M.; Nagamochi, H. Exact algorithms for maximum independent set. Inform. Comput. 2017, 255, 126–146. [Google Scholar] [CrossRef] [Green Version]
- Chang, M.-S.; Chen, L.-H.; Hung, L.-J.; Liu, Y.-Z.; Rossmanith, P.; Sikdar, S. An O*(1.4658n)-time exact algorithm for the maximum bounded-degree-1 set problem. In Proceedings of the 31st Workshop on Combinatorial Mathematics and Computation Theory, CMCT 2014, Taipei, Taiwan, 25–26 April 2014; pp. 9–18. [Google Scholar]
- Chang, M.-S.; Chen, L.-H.; Hung, L.-J.; Liu, Y.-Z.; Rossmanith, P.; Sikdar, S. Moderately exponential time algorithms for the maximum bounded-degree-1 set problem. Discret. Appl. Math. 2018, 251, 114–125. [Google Scholar] [CrossRef]
- Kardoš, F.; Katrenič, J.; Schiermeyer, I. On computing the minimum 3-path vertex cover and dissociation number of graphs. Theor. Comput. Sci. 2011, 412, 7009–7017. [Google Scholar] [CrossRef] [Green Version]
- Xiao, M.; Kou, S. Exact algorithms for the maximum dissociation set and minimum 3-path vertex cover problems. Theor. Comput. Sci. 2017, 657, 86–97. [Google Scholar] [CrossRef]
- Boliac, R.; Cameron, K.; Lozin, V. On computing the dissociation number and the induced matching number of bipartite graphs. Ars Combin. 2004, 72, 241–253. [Google Scholar]
- Brause, C.; Krivoš-Belluš, R. On a relation between k-path partition and k-path vertex cover. Discret. Appl. Math. 2017, 223, 28–38. [Google Scholar] [CrossRef]
- Cameron, K.; Hell, P. Independent packings in structured graphs. Math. Program. Ser. B 2006, 105, 201–213. [Google Scholar] [CrossRef]
- Lozin, V.; Rautenbach, D. Some results on graphs without long induced paths. Inform. Process. Lett. 2003, 88, 167–171. [Google Scholar] [CrossRef]
- Orlovich, Y.; Dolgui, A.; Finke, G.; Gordon, V.; Werner, F. The complexity of dissociation set problems in graphs. Discret. Appl. Math. 2011, 159, 1352–1366. [Google Scholar] [CrossRef] [Green Version]
- Fomin, F.V.; Gaspers, S.; Kratsch, D.; Liedloff, M.; Saurabh, S. Iterative compression and exact algorithms. Theor. Comput. Sci. 2010, 411, 1045–1053. [Google Scholar] [CrossRef]
- Fernau, H. Parameterized algorithmics for d-hitting set. Int. J. Comput. Math. 2010, 87, 3157–3174. [Google Scholar] [CrossRef]
- Alimonti, P.; Kann, V. Some APX-completeness results for cubic graphs. Theor. Comput. Sci. 2000, 237, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Khot, S.; Regev, O. Vertex cover might be hard to approximate to within 2-ε. J. Comput. Syst. Sci. 2008, 74, 335–349. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Chen, Y.; Chen, Z.-Z.; Lin, G. Improved approximation algorithms for path vertex covers in regular graphs. Algorithmica 2020, 82, 3041–3064. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Shi, Y.; Nie, H.; Zhu, Y. PTAS for minimum k-path vertex cover in ball graph. Inform. Process. Lett. 2017, 119, 9–13. [Google Scholar] [CrossRef]
- Liu, X.; Lu, H.; Wang, W.; Wu, W. PTAS for the minimum k-path connected vertex cover problem in unit disk graphs. J. Glob. Optim. 2013, 56, 449–458. [Google Scholar] [CrossRef]
- Chen, L.; Huang, X.; Zhang, Z. A simpler PTAS for connected k-path vertex cover in homogeneous wireless sensor network. J. Combin. Optim. 2018, 36, 35–43. [Google Scholar] [CrossRef]
- Fujito, T. On approximability of connected path vertex cover. In Proceedings of the Workshop on Approximation and Online Algorithms (WAOA 2017), Vienna, Austria, 7–8 September 2017; pp. 17–25. [Google Scholar]
- Camby, E.; Cardinal, J.; Chapelle, M.; Fiorini, S.; Joret, G. A primal-dual 3-approximation algorithm for hitting 4-vertex paths. In Proceedings of the 9th International Colloquium on Graph Theory and Combinatorics (ICGT 2014), Grenoble, France, 30 June–4 July 2014; p. 61. [Google Scholar]
- Li, Y.; Tu, J. A 2-approximation algorithm for the vertex cover P4 problem in cubic graphs. Int. J. Comput. Math. 2014, 91, 2103–2108. [Google Scholar] [CrossRef]
- Tu, J.; Shi, Y. An efficient polynomial time approximation scheme for the vertex cover P3 problem on planar graphs. Discuss. Math. Graph Theory 2019, 39, 55–65. [Google Scholar]
- Liu, P.; Zhang, Z.; Li, X.; Wu, W. Approximation algorithm for minimum connected 3-path vertex cover. Discret. Appl. Math. 2020, 287, 77–84. [Google Scholar] [CrossRef]
- Ran, Y.; Zhang, Z.; Huang, X.; Li, X.; Du, D. Approximation algorithms for minimum weight connected 3-path vertex cover. Appl. Math. Comput. 2019, 347, 723–733. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Zhang, Z.; Broersma, H. A PTAS for the minimum weight connected vertex cover P3 problem on unit disk graphs. Theor. Comput. Sci. 2015, 571, 58–66. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Du, W.; Zhang, Z. A PTAS for minimum weighted connected vertex cover P3 problem in 3-dimensional wireless sensor networks. J. Combin. Optim. 2017, 33, 106–122. [Google Scholar] [CrossRef]
- Cai, L. Fixed-parameter tractability of graph modification problems for hereditary properties. Inform. Process. Lett. 1996, 58, 171–176. [Google Scholar] [CrossRef]
- Chen, J.; Kanj, I.A.; Xia, G. Improved upper bounds for vertex cover. Theor. Comput. Sci. 2010, 411, 3736–3756. [Google Scholar] [CrossRef] [Green Version]
- Tu, J. A fixed-parameter algorithm for the vertex cover P3 problem. Inform. Process. Lett. 2015, 115, 96–99. [Google Scholar] [CrossRef]
- Chang, M.-S.; Chen, L.-H.; Hung, L.-J.; Rossmanith, P.; Su, P.-C. Fixed-parameter algorithms for vertex cover P3. Discret. Optim. 2016, 19, 12–22. [Google Scholar] [CrossRef]
- Katrenič, J. A faster FPT algorithm for 3-path vertex cover. Inform. Process. Lett. 2016, 116, 273–278. [Google Scholar] [CrossRef]
- Wu, B. A measure and conquer approach for the parameterized bounded degree-one vertex deletion. In Proceedings of the 21st International Computing and Combinatorics Conference (COCOON 2015), Beijing, China, 4–6 August 2015; pp. 469–480. [Google Scholar]
- Xiao, M.; Kou, S. Kernelization and parameterized algorithms for 3-path vertex cover. In Proceedings of the 14th International Conference on Theory and Applications of Models of Computation, TAMC 2017, Bern, Switzerland, 20–22 April 2017; pp. 654–668. [Google Scholar]
- Tsur, D. Parameterized algorithm for 3-path vertex cover. Theor. Comput. Sci. 2019, 783, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Tu, J.; Jin, Z. An FPT algorithm for the vertex cover P4 problem. Discret. Appl. Math. 2016, 200, 186–190. [Google Scholar] [CrossRef]
- Tsur, D. An O*(2.619k) algorithm for 4-Path Vertex Cover. Discret. Appl. Math. 2021, 291, 1–14. [Google Scholar] [CrossRef]
- Červený, R.; Suchvý, O. Faster FPT algorithm for 5-path vertex cover. In Proceedings of the 44th Symposium on Mathematical Foundations of Computer Science (MFCS 2019), Aachen, Germany, 26–30 August 2019. [Google Scholar]
- Tsur, D. l-path vertex cover is easier than l-hitting set for small l. arXiv 2019, arXiv:1906.10523. [Google Scholar]
- Červený, R.; Suchvý, O. Generating faster algorithms for d-Path Vertex Cover. arXiv 2021, arXiv:2111.05896v1. [Google Scholar]
- Tu, J.; Wu, L.; Yuan, J.; Cui, L. On the vertex cover P3 problem parameterized by treewidth. J. Combin. Optim. 2017, 34, 414–425. [Google Scholar] [CrossRef]
- Bai, Z.; Tu, J.; Shi, Y. An improved algorithm for the vertex cover P3 problem on graphs of bounded treewidth. Discret. Math. Theor. Comput. Sci. 2019, 21, #17. [Google Scholar]
- Shachnai, H.; Zehavi, M. A Multivariate Approach for Weighted FPT Algorithms. In Proceedings of the 23rd Annual European Symposium on Algorithms (ESA 2015), Patras, Greece, 14–16 September 2015; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2015; Volume 9294. [Google Scholar]
- Abu-Khzam, F.N. A kernelization algorithm for d-hitting set. J. Comput. Syst. Sci. 2010, 76, 524–531. [Google Scholar] [CrossRef]
- Fafianie, S.; Kratsch, S. A Shortcut to (Sun)Flowers: Kernels in Logarithmic Space or Linear Time. In Proceedings of the 40th International Symposium on Mathematical Foundations of Computer Science (MFCS 2015), Milano, Italy, 24–28 August 2015; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2015; Volume 9235. [Google Scholar]
- Dell, H.; Melkebeek, D. Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. In Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC 2010), Cambridge, MA, USA, 6–8 June 2010; pp. 251–260. [Google Scholar]
- Červený, R.; Choudhary, P.; Suchvý, O. On Kernels for d-Path Vertex Cover. arXiv 2021, arXiv:2107.12245v1. [Google Scholar]
- Lampis, M. A kernel of order 2k-clogk for vertex cover. Inform. Process. Lett. 2011, 111, 1089–1091. [Google Scholar] [CrossRef]
- Nemhauser, G.; Trotter, L. Vertex packings: Structural properties and algorithms. Math. Program. 1975, 8, 232–248. [Google Scholar] [CrossRef]
- Fellows, M.R.; Guo, J.; Moser, H.; Niedermeier, R. A generalization of Nemhauser and Trotter’s local optimization theorem. J. Comput. Syst. Sci. 2011, 77, 1141–1158. [Google Scholar] [CrossRef] [Green Version]
- Xiao, M. On a Generalization of Nemhauser and Trotter’s Local Optimization Theorem. J. Comput. Syst. Sci. 2017, 84, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Brause, C.; Schiermeyer, I. Kernelization of the 3-path vertex cover problem. Discret. Math. 2016, 339, 1935–1939. [Google Scholar] [CrossRef]
- Li, Z.; Zuo, L. The k-path vertex cover in Cartesian product graphs and complete bipartite graphs. Appl. Math. Comput. 2018, 331, 69–79. [Google Scholar] [CrossRef]
- Bujtás, C.; Jakovac, M.; Tuza, Z. The k-path vertex cover: General bounds and chordal graphs. arXiv 2021, arXiv:2105.02018. [Google Scholar] [CrossRef]
- Brešar, B.; Dravec, T. On the dissociation number of Kneser graphs. arXiv 2021, arXiv:2108.10801. [Google Scholar]
- Jakovac, M. The k-path vertex cover of rooted product graphs. Discret. Appl. Math. 2015, 187, 111–119. [Google Scholar] [CrossRef]
- Zhang, W.; Tu, J.; Wu, L. A multi-start iterated greedy algorithm for the minimum weight vertex cover P3 problem. Appl. Math. Comput. 2019, 349, 359–366. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Shi, Y.; Li, X. Algorithm for Online 3-Path Vertex Cover. Theory Comput. Syst. 2020, 64, 327–338. [Google Scholar] [CrossRef]
MinVCP | General Graphs | Bipartite Graphs | Cubic Graphs | 4-Regular Graphs | Bipartite d-Regular Graphs | d-Regular Graphs | - Free Graphs |
---|---|---|---|---|---|---|---|
2 [2,3] | [37] | [37] | [6] | [37] | |||
3 [42] | 2 [18] | for any [37] | 1.852 [37] | [37] | (when d is even) [37] | 3 [19] |
MinVCP | ||||||
---|---|---|---|---|---|---|
k | 5 | 6 | 7 | 8 | 9 | 10 | 100 |
---|---|---|---|---|---|---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, J. A Survey on the k-Path Vertex Cover Problem. Axioms 2022, 11, 191. https://doi.org/10.3390/axioms11050191
Tu J. A Survey on the k-Path Vertex Cover Problem. Axioms. 2022; 11(5):191. https://doi.org/10.3390/axioms11050191
Chicago/Turabian StyleTu, Jianhua. 2022. "A Survey on the k-Path Vertex Cover Problem" Axioms 11, no. 5: 191. https://doi.org/10.3390/axioms11050191
APA StyleTu, J. (2022). A Survey on the k-Path Vertex Cover Problem. Axioms, 11(5), 191. https://doi.org/10.3390/axioms11050191