Frame-Related Sequences in Chains and Scales of Hilbert Spaces
Abstract
:1. Introduction
2. Known Facts, Definitions, and Notation
2.1. Frames in Hilbert Spaces
- complete (or total) if , the linear span of , is dense in ;
- a frame for if there exist and , such that:
- a lower semi-frame for if it satisfies the lower frame inequality in (1);
- a Riesz basis for if there exist an orthonormal basis for and a bounded bijective operator , such that for all .
2.2. Rigged Hilbert Spaces
2.3. Scales of Hilbert Spaces
3. Hilbert Chains
3.1. Hilbert Triplets
3.2. Duality by Pivot Spaces
3.3. Hilbert Chains
3.3.1. Different Adjoints
- 1.
- The double pivot adjoint of an operator , , is:
- 2.
- Let and , ; then Indeed, if and , by (11):
3.3.2. Putting It All Together
3.4. Generator of a Scale and Shifting of the Central Space
4. Main Results: Frame-Related Properties on Hilbert Scales
4.1. Completeness
- (i)
- If is complete in , then it is also complete in for ;
- (ii)
- If is complete in , then is a complete sequence in for any p.
4.2. Unbounded Frame-Related Operators on Hilbert Chains
4.3. Frame Properties of
- 1.
- If is a Bessel sequence in , then is a Bessel sequence in ;
- 2.
- If is a semi-frame in , then is a semi-frame in with the same bounds;
- 3.
- If is a frame in , then is a frame in with the same bounds;
- 4.
- If and are a reproducing pair, then and are a reproducing pair in with the same bounds;
- 5.
- If is a dual sequence of in , then is a dual sequence of in ;
- 6.
- If is an orthonormal basis of , then is an orthonormal basis of ;
- 7.
- If is a Riesz basis of and is the bijective operator such that , for every k with , is an orthonormal basis of , then is an orthonormal basis of ;
- 8.
- If is a Riesz basis of , then is a Riesz basis of with the same bounds.
4.4. Frame-Related Operators for the Original Sequence
4.4.1. Frames
4.4.2. Duality
4.4.3. A Negative Result
5. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Casazza, P.G.; Kutyniok, G. Finite Frames. Theory and Applications; Applied and Numerical Harmonic Analysis; Birkhäuser: Boston, MA, USA, 2013. [Google Scholar]
- Christensen, O. An Introduction to Frames and Riesz Bases; Applied and Numerical Harmonic Analysis; Birkhäuser: Boston, MA, USA, 2016. [Google Scholar]
- Heil, C. A Basis Theory Primer; Applied and Numerical Harmonic Analysis; Birkhäuser: Boston, MA, USA, 2011. [Google Scholar]
- Ali, S.T.; Antoine, J.-P.; Gazeau, J.P. Continuous frames in Hilbert space. Ann. Phys. 1993, 222, 1–37. [Google Scholar] [CrossRef]
- Cotfas, N.; Gazeau, J.P. Finite tight frames and some applications. J. Phys. A Math. Theor. 2010, 43, 193001. [Google Scholar] [CrossRef]
- Benedetto, J.J.; Li, S. The theory of multiresolution analysis frames and applications to filter banks. Appl. Comput. Harmon. Anal. 1998, 5, 389–427. [Google Scholar] [CrossRef] [Green Version]
- Bölcskei, H.; Hlawatsch, F.; Feichtinger, H.G. Frame-theoretic analysis of oversampled filter banks. IEEE Trans. Signal Process. 1998, 46, 3256–3268. [Google Scholar] [CrossRef]
- Dahlke, S.; Fornasier, M.; Raasch, T. Adaptive Frame Methods for Elliptic Operator Equations. Adv. Comput. Math. 2007, 27, 27–63. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, R. Adaptive solution of operator equations using wavelet frames. SIAM J. Numer. Anal. 2003, 41, 1074–1100. [Google Scholar] [CrossRef] [Green Version]
- Balazs, P.; Laback, B.; Eckel, G.; Deutsch, W.A. Time-frequency sparsity by removing perceptually irrelevant components using a simple model of simultaneous masking. IEEE Trans. Audio. Speech Lang. Process. 2010, 2010 18, 34–49. [Google Scholar] [CrossRef]
- Bellomonte, G. Continuous frames for unbounded operators. Adv. Oper. Theory 2021, 6, 1–28. [Google Scholar] [CrossRef]
- Casazza, P.G.; Kutyniok, G.; Li, S. Fusion frames and distributed processing. Appl. Comput. Harmon. Anal. 2008, 254, 114–132. [Google Scholar] [CrossRef] [Green Version]
- Christensen, O.; Stoeva, D. p-frames in separable Banach spaces. Adv. Comput. Math. 2003, 18, 117–126. [Google Scholar] [CrossRef]
- Găvruţa, L. Frames and operators. Appl. Comp. Harmon. Anal. 2012, 32, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Bellomonte, G.; Corso, R. Frames and weak frames for unbounded operators. Adv. Comput. Math. 2020, 46, 1–21. [Google Scholar] [CrossRef]
- Duffin, J.; Schaeffer, A.C. A class of nonharmonic Fourier series. Trans. Amer. Math. Soc. 1952, 72, 341–366. [Google Scholar] [CrossRef]
- Antoine, J.-P. Quantum mechanics beyond Hilbert space. In Irreversibility and Causality Semigroups and Rigged Hilbert Spaces. Lecture Notes in Physics; Bohm, A., Doebner, H.D., Kielanowski, P., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; Volume 504, pp. 1–33. [Google Scholar]
- Balazs, P.; Gröchenig, K.; Speckbacher, M. Kernel theorems in coorbit theory. Trans. Am. Math. Soc. Ser. B 2019, 6, 346–364. [Google Scholar] [CrossRef]
- Gröchenig, K.; Heil, C. Modulation spaces and pseudodifferential operators. Integral Equ. Oper. Theory 1999, 34, 439–457. [Google Scholar] [CrossRef]
- Ullrich, T.; Rauhut, H. Generalized coorbit space theory and inhomogeneous function spaces of Besov-Lizorkin-Triebel type. J. Funct. Anal. 2011, 11, 3299–3362. [Google Scholar]
- Bellomonte, G.; Trapani, C. Riesz-like bases in rigged Hilbert spaces. Zeitschrift Analysis Anwendung 2016, 35, 243–265. [Google Scholar] [CrossRef] [Green Version]
- Trapani, C.; Triolo, S.; Tschinke, F. Distribution Frames and Bases. J. Fourier Anal. Appl. 2019, 2019 25, 2109–2140. [Google Scholar] [CrossRef] [Green Version]
- Tschinke, F. Riesz-Fischer Maps, Semi-frames and Frames in Rigged Hilbert Spaces. In Operator Theory, Functional Analysis and Applications, 625–645; Operator Theory: Advances and Applications, 282, Bastos, M.A., Castro, L., Karlovich, A.Y., Eds.; Birkhäuser: Cham, Switzerland, 2021. [Google Scholar]
- Feichtinger, H.G. Modulation Spaces: Looking Back and Ahead. Sampl. Theory Signal Image Process. 2006, 5, 109–140. [Google Scholar] [CrossRef]
- Cordero, E.; Nicola, F. Kernel theorems for modulation spaces. J. Fourier Anal. Appl. 2017, 19, 131–144. [Google Scholar] [CrossRef] [Green Version]
- Gel’fand, I.M.; Shilov, G.E. Generalized Functions, Volume 2: Spaces of Fundamental and Generalized Functions; AMS Chelsea Publishing/American Mathematical Society: Providence, RI, USA, 1968; Volume 378. [Google Scholar]
- Gel’fand, I.M.; Vilenkin, N.Y. Generalized Functions, Volume 4: Applications of Harmonic Analysis; AMS Chelsea Publishing/American Mathematical Society: Providence, RI, USA, 1964; Volume 380. [Google Scholar]
- Ehler, M. The multiresolution structure of pairs of dual wavelet frames for a pair of Sobolev spaces. Jaen J. Approx. 2010, 2, 193–214. [Google Scholar]
- Daubechies, I. Ten Lectures on Wavelets; SIAM: Philadelphia, PA, USA, 1992. [Google Scholar]
- Albeverio, S.; Kurasov, P. Singular Perturbations of Differential Operators: Solvable Schrödinger-Type Operators; London Mathematical Society, Lecture Note Series 271; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Brenner, S.; Scott, L. The Mathematical Theory of Finite Element Methods; Springer: New York, NY, USA, 2002. [Google Scholar]
- Schneider, R. Multiskalen- und Wavelet-Matrixkompression; Vieweg/Teubner Verlag: Wiesbaden, Germany, 1998. [Google Scholar]
- Balazs, P.; Gröchenig, K. A guide to localized frames and applications to Galerkin-like representations of operators. In Novel Methods in Harmonic Analysis with Applications to Numerical Analysis and Data Processing; Applied and Numerical Harmonic Analysis Series (ANHA); Pesenson, I., Mhaskar, H., Mayeli, A., Gia, Q.T.L., Zhou, D.-X., Eds.; Birkhauser/Springer: Basel, Switzerland, 2017; pp. 47–79. [Google Scholar]
- Fornasier, M.; Gröchenig, K. Intrinsic localization of frames. Constr. Approx. 2005, 22, 395–415. [Google Scholar] [CrossRef]
- Balazs, P.; Harbrecht, H. Frames for the solution of operator equations in Hilbert spaces with fixed dual pairing. Numer. Funct. Anal. Optim. 2019, 40, 65–84. [Google Scholar] [CrossRef] [Green Version]
- Harbrecht, H.; Schneider, R.; Schwab, C. Multilevel frames for sparse tensor product spaces. Numer. Math. 2008, 110, 199–220. [Google Scholar] [CrossRef] [Green Version]
- Antoine, J.-P.; Inoue, A.; Trapani, C. Partial *-Algebras and Their Operator Realizations; Mathematics and its Applications, 553; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Schmüdgen, K. Unbounded Self-Adjoint Operators on Hilbert Space; Graduate Texts in Mathematics 265; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Antoine, J.-P.; Trapani, C. Partial Inner Product Spaces: Theory and Applications; Lecture notes in Mathematics 1986; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Grossmann, A. Elementary properties of nested Hilbert spaces. Commun. Math. Phys. 1966, 2, 1–30. [Google Scholar] [CrossRef]
- Picard, R.; McGhee, D. Partial Differential Equations. A Unified Hilbert Space Approach; De Gruyter: Berlin, Germany, 2011. [Google Scholar]
- Antoine, J.-P.; Balazs, P. Frames and semi-frames. J. Phys. A-Math. Theor. 2011, 44, 205201. [Google Scholar] [CrossRef]
- Balazs, P.; Stoeva, D.; Antoine, J.-P. Classification of General Sequences by Frame-Related Operators. Sampl. Theory Signal Image Process. 2011, 10, 151–170. [Google Scholar] [CrossRef]
- Speckbacher, M.; Balazs, P. Reproducing pairs and the continuous nonstationary Gabor transform on lca groups. J. Phys. A Math. Theor. 2015, 48, 395201. [Google Scholar] [CrossRef]
- Feichtinger, H.G.; Zimmermann, G. A Banach space of test functions for Gabor analysis. In Gabor Analysis and Algorithms—Theory and Applications; Series: Applied and Numerical Harmonic Analysis; Feichtinger, H.G., Strohmer, T., Eds.; Birkhäuser: Boston, MA, USA, 1998; pp. 123–170. [Google Scholar]
- Koshmanenko, V.; Dudkin, M.; Koshmanenko, N. The Method of Rigged Spaces in Singular Perturbation Theory of Self-Adjoint Operators; Operator Theory: Advances and Applications 253; Birkhäuser: Boston, MA, USA, 2016. [Google Scholar]
- Berezanskii, J.M. Expansions in Eigenfunctions of Selfadjoint Operators; Translations of Mathematical Monographs, 17; American Mathematical Society: Providence, RI, USA, 1968. [Google Scholar]
- Conway, J.B. A Course in Functional Analysis, 2nd ed.; Graduate Texts in Mathematics; Springer: New York, NY, USA, 1990. [Google Scholar]
- Casazza, P.; Christensen, O.; Li, S.; Lindner, A. Riesz-Fischer sequences and lower frame bounds. Zeitschrift Analysis Anwendung 2002, 21, 305–314. [Google Scholar]
- Beylkin, G.; Coifman, R.; Rokhlin, V. Fast Wavelet Transforms and Numerical Algorithms I. Comm. Pure Appl. Math. 1991, 44, 141–183. [Google Scholar] [CrossRef]
- Feichtinger, H.G.; Kozek, W. Quantization of TF lattice-invariant operators on elementary LCA groups. In Gabor Analysis and Algorithms—Theory and Applications; Series: Applied and Numerical Harmonic Analysis; Feichtinger, H.G., Strohmer, T., Eds.; Birkhäuser: Boston, MA, USA, 1998; pp. 233–266. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balazs, P.; Bellomonte, G.; Hosseinnezhad, H. Frame-Related Sequences in Chains and Scales of Hilbert Spaces. Axioms 2022, 11, 180. https://doi.org/10.3390/axioms11040180
Balazs P, Bellomonte G, Hosseinnezhad H. Frame-Related Sequences in Chains and Scales of Hilbert Spaces. Axioms. 2022; 11(4):180. https://doi.org/10.3390/axioms11040180
Chicago/Turabian StyleBalazs, Peter, Giorgia Bellomonte, and Hessam Hosseinnezhad. 2022. "Frame-Related Sequences in Chains and Scales of Hilbert Spaces" Axioms 11, no. 4: 180. https://doi.org/10.3390/axioms11040180
APA StyleBalazs, P., Bellomonte, G., & Hosseinnezhad, H. (2022). Frame-Related Sequences in Chains and Scales of Hilbert Spaces. Axioms, 11(4), 180. https://doi.org/10.3390/axioms11040180