Wilson Bases and Ultradistributions
Abstract
1. Introduction
Notation
2. Preliminaries
2.1. Wilson Bases
2.2. Weight Functions
2.3. Coorbit Spaces
- (a)
- if and only if
- (b)
- if and only if
- (a)
- The Wilson basis of exponential decay is an unconditional basis for the coorbit spaces and .
- (b)
- Every function has the unique expansionand
- (c)
- Every function has the unique expansion of the form (18) and
2.4. Gelfand–Shilov Spaces
- (a)
- ();
- (b)
- There exists (for every )
- (c)
- There exists (for every ) such that
- (a)
- (), if and only iffor some (for every ).
- (b)
- (), if and only iffor every (for some ).
3. Main Results
- (a)
- If () thenwith the unconditional convergence in (in ) andwhere ,
- (b)
- Conversely, if is a (double) sequence such thatfor some (for all) , then there exists a function () such that (27) holds with ,
- (a)
- Every () has a unique expansionin (in ) andfor every (for some) , where
- (b)
- Conversely, if (29) holds for some sequence and for every (for some) , then there exists () such thatin (in ).
4. Alternative Proof via Modulation Spaces
5. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Daubechies, I.; Jaffard, S.; Journé, J. A Simple Wilson Orthonormal Basis With Exponential Decay. SIAM J. Math. Anal. 1991, 22, 554–572. [Google Scholar] [CrossRef]
- Feichtinger, H.G.; Gröchenig, K.; Walnut, D. Wilson Bases and Modulation Spaces. Math. Nachr. 1992, 155, 7–17. [Google Scholar] [CrossRef]
- Pilipović, S.; Teofanov, N. Pseudodifferential operators on ultra-modulation spaces. J. Funct. Anal. 2004, 208, 194–228. [Google Scholar] [CrossRef]
- Tachizawa, K. The boundedness of pseudodifferential operators on modulation spaces. Math. Nachr. 1994, 168, 263–277. [Google Scholar] [CrossRef]
- Chassande–Mottin, E.; Jaffard, S.; Meyer, Y. Des ondelettes pour détecter les ondes gravitationnelle. Gaz. Math. 2016, 148, 61–64. [Google Scholar]
- Necula, V.; Klimenko, S.; Mitselmakher, G. Transient analysis with fast Wilson-Daubechies time-frequency transform. J. Phys. Conf. Ser. 2012, 363, 012032. [Google Scholar] [CrossRef]
- Bownik, M.; Jakobsen, M.S.; Lemvig, J.; Okoudjou, K.A. On Wilson bases in L2(Rd). SIAM J. Math. Anal. 2017, 49, 3999–4023. [Google Scholar] [CrossRef][Green Version]
- Tachizawa, K. The pseudodifferential operators and Wilson bases. J. Math. Pures Appl. 1996, 75, 509–529. [Google Scholar]
- Gelfand, I.M.; Shilov, G.E. Generalized Functions, II; Academic Press: New York, NY, USA, 1968. [Google Scholar]
- Gramchev, T. Gelfand-Shilov Spaces: Structural Properties and Applications to Pseudodifferential Operators in Rn, in Quantization, PDEs, and Geometry, 1–68, Oper. Theory Adv. Appl. 251; Birkhäuser/Springer: Cham, Switzerland, 2016. [Google Scholar]
- Toft, J. Images of function and distribution spaces under the Bargmann transform. J. Pseudo-Differ. Oper. Appl. 2017, 8, 83–139. [Google Scholar] [CrossRef]
- Langenbruch, M. Hermite functions and weighted spaces of generalized functions. Manuscripta Math. 2006, 119, 269–285. [Google Scholar] [CrossRef]
- Pilipović, S. Tempered Ultradistributions. Boll. Un. Mat. Ital. 1988, 7, 235–251. [Google Scholar]
- Pilipović, S.; Teofanov, N. Wilson bases and ultramodulation spaces. Math. Nach. 2002, 242, 179–196. [Google Scholar] [CrossRef]
- Feichtinger, H.G.; Gröchenig, K. Banach Spaces Related to Integrable Group Representations and Their Atomic Decompositions, I. J. Funct. Anal. 1989, 86, 307–340. [Google Scholar] [CrossRef]
- Feichtinger, H.G.; Gröchenig, K. Banach Spaces Related to Integrable Group Representations and Their Atomic Decompositions. Part II. Mon Hefte Math. 1989, 108, 129–148. [Google Scholar] [CrossRef]
- Gröchenig, K. Foundations of Time-Frequency Analysis; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar]
- Cordero, E.; Rodino, L. Time-Frequency Analysis of Operators; Studies in Mathematics, 75; De Gruyter: Berlin, Germany, 2020. [Google Scholar]
- Wilson, K.G. Generalized Wannier Functions; 1987; Unpublished Manuscript. [Google Scholar]
- Gröchenig, K. Weight functions in time-frequency analysis. In Pseudodifferential Operators: Partial Differential Equations and Time-Frequency Analysis; AMS: Providence, RI, USA, 2007; pp. 343–366. [Google Scholar]
- Toft, J. The Bargmann transform on modulation and Gelfand-Shilov spaces, with applications to Toeplitz and pseudo-differential operators. J. Pseudo-Differ. Oper. Appl. 2012, 3, 145–227. [Google Scholar] [CrossRef]
- Dahlke, S.; Häuser, S.; Teschke, G.S.G. Shearlet Coorbit Theory. In Harmonic and Applied Analysis; Applied and Numerical Harmonic Analysis; Dahlke, S., Mari, F.D., Grohs, P., Labate, D., Eds.; Birkhäuser: Cham, Switzerland, 2015; Volume 68, pp. 83–147. [Google Scholar]
- Teofanov, N. Gelfand-Shilov spaces and localization operators. Funct. Anal. Approx. Comput. 2015, 2, 135–158. [Google Scholar]
- Gröchenig, K.; Zimmermann, G. Spaces of test functions via the STFT. J. Funct. Spaces Appl. 2004, 2, 25–53. [Google Scholar] [CrossRef]
- Kamiński, A.; Perišić, D.; Pilipović, S. On Various Integral Transformations of Tempered Ultradistributions. Demonstr. Math. 2000, XXXIII, 641–655. [Google Scholar] [CrossRef][Green Version]
- Cordero, E.; Pilipović, S.; Rodino, L.; Teofanov, N. Quasianalytic Gelfand-Shilov spaces with applications to localization operators. Rocky Mt. J. Math. 2010, 40, 1123–1147. [Google Scholar] [CrossRef]
- Zemanian, A.H. Generalized Integral Transformations; John Wiley and Sons: New York, NY, USA, 1968. [Google Scholar]
- Teofanov, N. Ultramodulation Spaces and Pseudodifferential Operators; Endowment Andrejević: Belgrade, Serbia, 2003. [Google Scholar]
- Feichtinger, H.G. Modulation Spaces on Locally Compact Abelian Groups; Technical Report; University of Vienna: Vienna, Austria, 1983; Also in Wavelets and Their Applications, 99–140; Allied Publishers Private Limited: New Dehli, India, 2003. [Google Scholar]
- Bényi, A.; Okoudjou, K. Modulation Spaces With Applications to Pseudodifferential Operators and Nonlinear Schrödinger Equations; Springer Science+Business Media, LLC: New York, NY, USA, 2020. [Google Scholar]
- Toft, J. Continuity of Gevrey-Hörmander pseudo-differential operators on modulation spaces. J. Pseudo-Differ. Oper. Appl. 2019, 10, 337–358. [Google Scholar] [CrossRef]
- Teofanov, N. Modulation spaces, Gelfand-Shilov spaces and pseudodifferential operators. Sampl. Theory Signal Image Process. 2006, 5, 225–242. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teofanov, N. Wilson Bases and Ultradistributions. Axioms 2021, 10, 241. https://doi.org/10.3390/axioms10040241
Teofanov N. Wilson Bases and Ultradistributions. Axioms. 2021; 10(4):241. https://doi.org/10.3390/axioms10040241
Chicago/Turabian StyleTeofanov, Nenad. 2021. "Wilson Bases and Ultradistributions" Axioms 10, no. 4: 241. https://doi.org/10.3390/axioms10040241
APA StyleTeofanov, N. (2021). Wilson Bases and Ultradistributions. Axioms, 10(4), 241. https://doi.org/10.3390/axioms10040241
