Asymptotic Diffusion Analysis of Retrial Queueing System M/M/1 with Impatient Customers, Collisions and Unreliable Servers
Abstract
:1. Introduction
2. Description of the System and Solution Method
3. Investigations and Results
3.1. Theoretical Results
3.1.1. System of Kolmogorov Differential Equations
3.1.2. Obtaining the Drift Coefficient
3.1.3. Centering the Process and Obtaining the Diffusion Coefficient
3.1.4. Diffusion Approximation
3.2. Numerical Results
- For a fixed system load , as decreases, the Kolmogorov distance decreases;
- At a fixed value of the delay time parameter of the call in orbit and , with an increase in the value of system load , the Kolmogorov distance decreases for and increases for (this behavior of is typical for systems with collisions), and the Kolmogorov distance decreases.
- is the intensity of the total flow;
- is the average number of the customer’s repeating request;
- is the ratio of repeated calls in the primary flow;
- is the ratio of repeated calls in the total flow;
- is the ratio of calls leaving the orbit without service in the total flow;
- is the ratio of calls that are in collision in the flow of primary calls.
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Danilyuk, E.Y.; Moiseeva, S.P.; Sztrik, J. Asymptotic Analysis of Retrial Queueing System M/M/1 with Impatient Customers, Collisions and Unreliable Server. J. Sib. Fed. Univ. Math. Phys. 2020, 13, 218–230. [Google Scholar] [CrossRef]
- Jonin, G.L. Determination of probabilistic characteristics of single-line queues with double connections and repeated calls. In Models of Systems of Distribution of Information and Its Analysis; Nauka: Moscow, Russia, 1982. [Google Scholar]
- Falin, G.I.; Sukharev, Y.I. On Single-Line Queues with Double Connections; All-Union Institute for Scientific and Technical Information: Moscow, Russia, 1985; pp. 6582–6585. [Google Scholar]
- Choi, B.D.; Shin, Y.W.; Ahn, W.C. Retrial queues with collision arising from unslotted CSMA/CD protocol. Queueing Syst. 1992, 11, 335–356. [Google Scholar] [CrossRef]
- Artajelo, J.R.; Gomez-Corral, A. Retrial Queueing Systems: A Computational Approach; Springer: Berlin, Germany, 2008. [Google Scholar]
- Falin, G.I.; Templeton, J.G.C. Retrial Queues; Chapman & Hall: London, UK, 1997. [Google Scholar]
- Lakaour, L.; Aissani, D.; Adel-Aissanou, K.; Barkaoui, K.; Ziani, S. An unreliable single server retrial queue with collisions and transmission errors. Commun. Stat.-Theory Methods 2020, 51, 1085–1109. [Google Scholar] [CrossRef]
- Aissani, A. On the M/G/1 queueing system with repeated orders and unreliable server. J. Technol. 1988, 6, 93–123. (In French) [Google Scholar]
- Aissani, A. Unreliable queueing with repeated orders. Microelectron. Reliab. 1993, 33, 2093–2106. [Google Scholar] [CrossRef]
- Aissani, A. A retrial queue with redundancy and unreliable server. Queueuing Syst. 1994, 17, 431–449. [Google Scholar] [CrossRef]
- Kulkarni, V.G.; Choi, B.D. Retrial queues with server subject to breakdowns and repairs. Queueing Syst. 1990, 7, 191–208. [Google Scholar] [CrossRef]
- Anisimov, V.V.; Atadzhanov, K.L. Diffusion approximation of systems with repeated calls and an unreliable server. J. Math. Sci. 1994, 72, 3032–3034. [Google Scholar] [CrossRef]
- Danilyuk, E.; Fedorova, E.; Moiseeva, S. Asymptotic Analysis of an Retrial Queueing System M/M/1 with Collisions and Impatient Calls. Autom. Remote Control 2018, 79, 2136–2146. [Google Scholar] [CrossRef]
- Nazarov, A.; Lizyura, O. Stability Analysis for Retrial Queue with Collisions and r-Persistent Customers. Commun. Comput. Inf. Sci. 2022, 1605, 330–342. [Google Scholar]
- Sztrik, J.; Tóth, Á. Some Special Features of Finite-Source Retrial Queues with Collisions, an Unreliable Server and Impatient Customers in the Orbit. Commun. Comput. Inf. Sci. 2021, 1391, 1–15. [Google Scholar]
- Adan, I.; Hathaway, B.; Kulkarni, V. On first-come, first-served queues with two classes of impatient customers. Queueing Syst. 2019, 91, 113–142. [Google Scholar] [CrossRef] [Green Version]
- Artalejo, J.R.; Pla, V. On the impact of customer balking, impatience and retrials in telecommunication systems. Comput. Math. Appl. 2009, 57, 217–229. [Google Scholar]
- Kim, C.; Dudin, A.; Dudina, O.; Klimenok, V. Analysis of queueing system with non-preemptive time limited service and impatient customers. Methodol. Comput. Appl. Probab. 2020, 22, 401–432. [Google Scholar] [CrossRef]
- Chang, F.-M.; Liu, T.-H.; Ke, J.-C. On an unreliable-server retrial queue with customer feedback and impatience. Appl. Math. Model. 2018, 55, 171–182. [Google Scholar] [CrossRef]
- Phung-Duc, T. Multiserver Retrial Queues with Two Types of Nonpersistent Customers. Asia-Pac. J. Oper. Res. 2014, 31, 1440009. [Google Scholar] [CrossRef]
- Danilyuk, E.; Moiseeva, S.; Nazarov, A. Asymptotic Diffusion Analysis of an Retrial Queueing System M/M/1 with Impatient Calls. Commun. Comput. Inf. Sci. 2022, 1552, 233–246. [Google Scholar]
- Choudhury, G.; Goswami, A.; Begum, A.; Sarmah, H. Stochastic Decomposition Result of an Unreliable Queue with Two Types of Services. Math. Stat. 2020, 8, 225–232. [Google Scholar] [CrossRef]
- Singh, C.; Kaur, S. Unreliable Server Retrial Queue with Optional Service and Multi-Phase Repair. Int. J. Oper. Res. 2017, 14, 35–51. [Google Scholar]
- Kerobyan, R.; Kerobyan, K. Virtual Waiting Time in Single-Server Queueing Model M|G|1 with Unreliable Server and Catastrophes. Commun. Comput. Inf. Sci. 2021, 1391, 319–336. [Google Scholar]
- Seenivasan, M.; Ramesh, R.; Patricia, F. Markovian queueing model with catastrophe, unreliable and backup server. Int. J. Health Sci. 2022, 6, 9136–9150. [Google Scholar] [CrossRef]
- Whitt, W. A Diffusion Approximation for the G/GI/n/m Queue. Oper. Res. 2003, 52, 922–941. [Google Scholar] [CrossRef] [Green Version]
- Ward, A.R.; Glynn, P.W. A Diffusion Approximation for a GI/GI/1 Queue with Balking or Reneging. Queueing Syst. 2005, 50, 371–400. [Google Scholar] [CrossRef]
- Gromoll, H.C. Diffusion approximation for a processor sharing queue in heavy traffic. Ann. Appl. Probab. 2004, 14, 555–611. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.J. Diffusion approximations for open multiclass queueing networks: Sufficient conditions involving state space collapse. Queueing Syst. Theory Appl. 1998, 30, 27–88. [Google Scholar] [CrossRef]
- Moiseev, A.; Nazarov, A.; Paul, S. Asymptotic diffusion analysis of multi-server retrial queue with hyper-exponential service. Mathematics 2020, 8, 531. [Google Scholar] [CrossRef] [Green Version]
- Nazarov, A.; Phung-Duc, T.; Paul, S.; Lizyura, O. Asymptotic-Diffusion Analysis of Retrial Queue with Two-Way Communication and Renewal Input. In Proceedings of the 5th International Conference on Stochastic Methods, Moscow, Russia, 23–27 November 2020; pp. 339–345. [Google Scholar]
- Nazarov, A.; Phung-Duc, T.; Paul, S.; Lizyura, O. Diffusion Limit for Single-Server Retrial Queues with Renewal Input and Outgoing Calls. Mathematics 2022, 10, 948. [Google Scholar] [CrossRef]
- Nazarov, A.; Phung-Duc, T.; Izmailova, Y. Asymptotic-Diffusion Analysis of Multi-server Retrial Queueing System with Priority Customers. In Information Technologies and Mathematical Modelling. Queueing Theory and Applications. ITMM 2020; Communications in Computer and Information Science; Springer: Cham, Switzerland, 2021; pp. 88–98. [Google Scholar]
- Danilyuk, E.; Moiseeva, S.; Nazarov, A. Asymptotic Analysis of Retrial Queueing System M/GI/1 with Collisions and Impatient Calls. Commun. Comput. Inf. Sci. 2019, 1109, 230–242. [Google Scholar]
0.1610 | 0.0820 | 0.0230 | 0.0057 | 0.0160 | 0.0039 | |
0.1170 | 0.0490 | 0.0200 | 0.0041 | 0.0160 | 0.0028 | |
0.0920 | 0.0260 | 0.0210 | 0.0031 | 0.0200 | 0.0021 | |
0.0750 | 0.0190 | 0.0240 | 0.0025 | 0.0220 | 0.0017 | |
0.0550 | 0.0090 | 0.0300 | 0.0017 | 0.0290 | 0.0012 | |
0.0460 | 0.0060 | 0.0353 | 0.0012 | 0.0350 | 0.0008 |
1.202905 | 30.290522 | 0.336561 | 0.279790 | 0.673123 | 0.354839 | |
1.202867 | 60.573451 | 0.336519 | 0.279764 | 0.673038 | 0.354828 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danilyuk, E.; Plekhanov, A.; Moiseeva, S.; Sztrik, J. Asymptotic Diffusion Analysis of Retrial Queueing System M/M/1 with Impatient Customers, Collisions and Unreliable Servers. Axioms 2022, 11, 699. https://doi.org/10.3390/axioms11120699
Danilyuk E, Plekhanov A, Moiseeva S, Sztrik J. Asymptotic Diffusion Analysis of Retrial Queueing System M/M/1 with Impatient Customers, Collisions and Unreliable Servers. Axioms. 2022; 11(12):699. https://doi.org/10.3390/axioms11120699
Chicago/Turabian StyleDanilyuk, Elena, Alexander Plekhanov, Svetlana Moiseeva, and Janos Sztrik. 2022. "Asymptotic Diffusion Analysis of Retrial Queueing System M/M/1 with Impatient Customers, Collisions and Unreliable Servers" Axioms 11, no. 12: 699. https://doi.org/10.3390/axioms11120699
APA StyleDanilyuk, E., Plekhanov, A., Moiseeva, S., & Sztrik, J. (2022). Asymptotic Diffusion Analysis of Retrial Queueing System M/M/1 with Impatient Customers, Collisions and Unreliable Servers. Axioms, 11(12), 699. https://doi.org/10.3390/axioms11120699