Modified Adomian Method through Efficient Inverse Integral Operators to Solve Nonlinear Initial-Value Problems for Ordinary Differential Equations
Abstract
:1. Introduction
2. Standard Adomian Decomposition Method
3. Modified Adomian Decomposition Method
3.1. First-Order IVPs
3.2. Second-Order IVPs
3.3. Second-Order Singular IVPs
3.4. Higher-Order IVPs
3.5. Nonlinear System of IVPs
4. Numerical Illustrations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adomian, G. A review of the decomposition method and some recent results for nonlinear equations. Math. Comput. Model. 1990, 13, 17–43. [Google Scholar] [CrossRef]
- Wazwaz, A.M. A reliable modification of Adomian decomposition method. Appl. Math. Comput. 1999, 102, 77–86. [Google Scholar] [CrossRef]
- Hosseini, M.M. Adomian decomposition method with Chebyshev polynomials. Appl. Math. Comput. 2006, 175, 1685–1693. [Google Scholar] [CrossRef]
- Almazmumy, M.; Hendi, F.; Bakodah, H.; Alzumi, H. Recent modifications of Adomian decomposition method for initial value problem in ordinary differential equations. Am. J. Comput. Math. 2012, 12, 23204. [Google Scholar] [CrossRef] [Green Version]
- Bakodah, H.; Banaja, M.; Alrigi, B.; Ebaid, A.; Rach, R. An efficient modification of the decomposition method with a convergence parameter for solving Korteweg de Vries equations. J. King Saud Univ.-Sci. 2019, 31, 1424–1430. [Google Scholar] [CrossRef]
- AL-Mazmumy, M.; Alsulami, A.; Bakodah, H.; Alzaid, N. Modified Adomian Method for the Generalized Inhomogeneous Lane-Emden-Type Equations. Nonlinear Anal. Differ. Equ 2022, 10, 15–35. [Google Scholar] [CrossRef]
- Alsulami, A.A.; AL-Mazmumy, M.; Bakodah, H.O.; Alzaid, N. A Method for the Solution of Coupled System of Emden–Fowler–Type Equations. Symmetry 2022, 14, 843. [Google Scholar] [CrossRef]
- Wazwaz, A.M. A new method for solving singular initial value problems in the second-order ordinary differential equations. Appl. Math. Comput. 2002, 128, 45–57. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Adomian decomposition method for a reliable treatment of the Emden–Fowler equation. Appl. Math. Comput. 2005, 161, 543–560. [Google Scholar] [CrossRef]
- Hosseini, M.M.; Nasabzadeh, H. Modified Adomian decomposition method for specific second order ordinary differential equations. Appl. Math. Comput. 2007, 186, 117–123. [Google Scholar] [CrossRef]
- Hasan, Y.Q.; Zhu, L.M. Modified Adomian decomposition method for singular initial value problems in the second-order ordinary differential equations. Surv. Math. Its Appl. 2008, 3, 183–193. [Google Scholar]
- Cherruault, Y. Convergence of Adomian’s method. Math. Comput. Model. 1990, 14, 83–86. [Google Scholar] [CrossRef]
- Wazwaz, A. Partial Differential Equations and Solitary Waves Theory; Higher Education Press: Beijing, China; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Wazwaz, A.M. A new algorithm for calculating Adomian polynomials for nonlinear operators. Appl. Math. Comput. 2000, 111, 33–51. [Google Scholar] [CrossRef]
- Abbaoui, K.; Cherruault, Y. New ideas for proving convergence of decomposition methods. Comput. Math. Appl. 1995, 29, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, M.M.; Nasabzadeh, H. On the convergence of Adomian decomposition method. Appl. Math. Comput. 2006, 182, 536–543. [Google Scholar] [CrossRef]
- Hasan, Y.Q. Solving first-order ordinary differential equations by Modified Adomian decomposition method. Adv. Intell. Transp. Syst. 2012, 1, 86–89. [Google Scholar]
- Hosseini, M.; Jafari, M. An efficient method for solving nonlinear singular initial value problems. Int. J. Comput. Math. 2009, 86, 1657–1666. [Google Scholar] [CrossRef]
- Hosseini, M.; Jafari, M. A note on the use of Adomian decomposition method for high-order and system of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 1952–1957. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AL-Mazmumy, M.; Alsulami, A.A.; Bakodah, H.O.; Alzaid, N. Modified Adomian Method through Efficient Inverse Integral Operators to Solve Nonlinear Initial-Value Problems for Ordinary Differential Equations. Axioms 2022, 11, 698. https://doi.org/10.3390/axioms11120698
AL-Mazmumy M, Alsulami AA, Bakodah HO, Alzaid N. Modified Adomian Method through Efficient Inverse Integral Operators to Solve Nonlinear Initial-Value Problems for Ordinary Differential Equations. Axioms. 2022; 11(12):698. https://doi.org/10.3390/axioms11120698
Chicago/Turabian StyleAL-Mazmumy, Mariam, Aishah A. Alsulami, Huda O. Bakodah, and Nawal Alzaid. 2022. "Modified Adomian Method through Efficient Inverse Integral Operators to Solve Nonlinear Initial-Value Problems for Ordinary Differential Equations" Axioms 11, no. 12: 698. https://doi.org/10.3390/axioms11120698
APA StyleAL-Mazmumy, M., Alsulami, A. A., Bakodah, H. O., & Alzaid, N. (2022). Modified Adomian Method through Efficient Inverse Integral Operators to Solve Nonlinear Initial-Value Problems for Ordinary Differential Equations. Axioms, 11(12), 698. https://doi.org/10.3390/axioms11120698