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Abstract: The present manuscript examines different forms of Initial-Value Problems (IVPs) featuring
various types of Ordinary Differential Equations (ODEs) by proposing a proficient modification to
the famous standard Adomian decomposition method (ADM). The present paper collected different
forms of inverse integral operators and further successfully demonstrated their applicability on
dissimilar nonlinear singular and nonsingular ODEs. Furthermore, we surveyed most cases in this
very new method, and it was found to have a fast convergence rate and, on the other hand, have high
precision whenever exact analytical solutions are reachable.
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1. Introduction

Many real-life problems are modeled mathematically using Initial-Value Problems
(IVPs) featuring various types of Ordinary Differential Equations (ODEs). Solutions to
these problems are very important as they improve human lives. Thus, this importance is
what necessitates various researchers to devise different mathematical methods to tackle
countless models arising in, for instance, physics, chemistry, engineering, biology, eco-
nomics, and social sciences, to mention a few. In particular, the literature is full of diverse
studies of the competent method called the Adomian decomposition method (ADM) and
its various modifications and extensions [1–3]. In [4,5] some modifications of the Ado-
mian decomposition method are presented for solving initial value problems in Ordinary
Differential Equations. However, in [6], a dependable semi-analytical method via the
application of a modified Adomian decomposition method (ADM) to tackle the coupled
system of Emden–Fowler-type equations has been proposed, and an effective differential
operator together with its corresponding inverse is successfully constructed. The present
study [7] investigates certain singular Initial-Value Problems (IVPs) featuring the classical
and generalized inhomogeneous LaneEmden-type equations. This study proposes different
forms of inverse integral operators that are based on the Adomian method to accelerate the
convergence rate of the standard Adomian decomposition method (ADM), which includes
some cases from the survey that we present in this work. This method and its variants
have been comprehensively utilized to treat different forms of linear and nonlinear ODEs,
including integral equations and together with the combination of the two [8–11].

However, it is the aim of the present study to examine different forms of IVPs portray-
ing different types of ODEs by proposing a proficient modification to the famous standards
of ADM. The method devises different forms of inverse integral operators based on the
available literature and further successfully demonstrates their applicability to a class of
ODEs of physical relevance. Furthermore, we will assess this new method by establishing
a comparative examination with the standard ADM and, on the other hand, with the exact
analytical solutions whenever they are reachable.
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2. Standard Adomian Decomposition Method

To present the standard ADM methodology, we take into consideration the following
generalized ODE

Lw(t) + Rw(t) + Fw(t) = g(t), (1)

where L and R are linear operators with R < L, L is the highest linear operator, and R is an
operator with a degree less than L, while F is a nonlinear operator from a Hilbert H. g(t) is
a given function in H, and we are looking for w ∈ H satisfying (1). We assume that (1) has
a unique solution for g ∈ H [12], and g(t) is an inhomogeneous or source term. Next, we
rewrite the above equation as follows

Lw(t) = g(t)− Rw(t)− Fw(t), (2)

such that when the inverse operator L−1 of L is applied to both sides of the later equation
it yields

w(t) = ψ(t) + L−1g(t)− L−1Rw(t)− L−1Fw(t), (3)

where function ψ(t) emanates from the prescribed initial data.
Therefore, the ADM decomposes the solution w(x) and the nonlinear term F(w) as

series forms as follows

w(t) =
∞

∑
n=0

wn(t), Fw(t) =
∞

∑
n=0

An, (4)

where An is the Adomian polynomials that are recurrently computed using the following
relation [13,14]

An =
1
n!

dn

dλn

[
F

(
n

∑
i=0

λiwi

)]
λ=0

, n = 0, 1, 2, ... (5)

Additionally, from the above Adomian polynomials relation, we express some of these
components as follows

A0 = F(w0),
A1 = F′(w0)w1,
A2 = F′(w0)w2 +

1
2 F′′(w0)w2

1,
A3 = F′(w0)w3 + F′′(w0)w1w2 +

1
3! F′′′(w0)w3

1,
...

(6)

Therefore, substituting Equation (4) into Equation (3) yields the following

∞

∑
n=0

wn(t) = ψ(t) + L−1g(t)− L−1R
∞

∑
n=0

wn(t)− L−1
∞

∑
n=0

An. (7)

Hence, from the above equation, the recurrent solution is thus obtained via the ADM
process as follows {

w0 = ψ(t) + L−1g(t),
wk+1 = −L−1Rwk − L−1 Ak, k ≥ 0,

(8)

such that the n-term approximation takes the form

Φn =
n−1

∑
k=0

wk, (9)

where the closed-form solution is finally revealed as

w(t) = lim
n→∞

Φn(t) =
∞

∑
k=0

wk(t). (10)
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The theoretical treatment of the convergence of ADM has been considered in [12,15,16].
Cherruault [12] has given the first proof of convergence of the Adomian decomposition
method, and he used fixed-point theorems for abstract functional equations. Abbaoui and
Cherruault [15] have given new formulae that easily calculate the Adomian’s polynomials
used in the decomposition methods. A simple proof of convergence of Adomian’s technique
is presented in [16].

3. Modified Adomian Decomposition Method

Let us now present a modification methodology based on the standard ADM to solve
certain classes of nonsingular and singular ODEs featuring IVPs, including, for instance,
low- and high-order and systems of inhomogeneous ODEs.

3.1. First-Order IVPs

To present this procedure on ODEs of the first order, let us consider the following
first-order IVP [17] {

w′ + p(t)w + F(t, w) = g(t),
w(0) = A,

(11)

where g(t) and p(t) are given functions, F(t, w) is the general nonlinear real term, and A is
a supplied real constant.

Next, we rewrite Equation (11) using the operator denotation as follows

Lw = g(t)− F(t, w), (12)

where L is the linear differential operator, together with its corresponding one-fold inverse
integral operator L−1 defined as follows

L(.) = e−
∫

p(t)dt d
dt

(
e
∫

p(t)dt(.)
)

, L−1(.) = e−
∫

p(t)dt
∫ t

0
e
∫

p(t)dt(.)dt. (13)

Now, we apply the inverse operator L−1 expressed in Equation (13) to the first two
terms of Equation (11) as follows

L−1(w′ + p(t)w) = e−
∫

p(t)dt
∫ t

0
e
∫

p(t)dt(w′ + p(t)w)dt, (14)

= w− w(0)ψ(0)e−
∫

p(t)dt, (15)

where ψ(t) = e
∫

p(t)dt. Furthermore, applying the inverse operator L−1 to Equation (12)
yields the following

w(t) = w(0)ψ(0)e−
∫

p(t)dt + L−1g(t)− L−1F(t, w). (16)

Therefore, we make use of the modification of ADM by first decomposing w(t) and
F(t, w) as suggested in Equation (4), and then we obtain

∞

∑
n=0

wn(t) = w(0)ψ(0)e−
∫

p(t)dt + L−1g(t)− L−1
∞

∑
n=0

An, (17)

such that the overall recursive relation is acquired as follows{
w0 = w(0)ψ(0)e−

∫
p(t)dt + L−1g(t),

wk+1 = −L−1 Ak, k ≥ 0.
(18)

Lastly, on using Equation (18) via Equation (4), the closed-form solution is finally
revealed for computational purposes as follows
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Φn =
n−1

∑
k=0

wk,

where the closed-form solution is finally revealed as

w(t) = lim
n→∞

Φn(t) =
∞

∑
k=0

wk(t).

3.2. Second-Order IVPs

To present an efficient method based on the standard ADM to solve IVPs featuring
singular ODEs of the second-order we refer to the well-known modification of ADM
as suggested in [10]. In doing so, we take into consideration the following generalized
second-order IVP {

w′′ + p(t)w′ + F(t, w) = g(t),
w(0) = A1, w′(0) = A2,

(19)

where g(t) and p(t) are given functions, F(t, w) is the general nonlinear real term, and A1
and A2 are supplied real constants.

What is more, we rewrite the ODE given in Equation (19) using the operator denotation
as given in Equation (12) and further employ the following differential linear operator L
together with its corresponding two-fold integral inverse L−1 as [10]

L(.) = e−
∫

p(t)dt d
dt

(
e
∫

p(t)dt d(.)
dt

)
, L−1(.) =

∫ t

0
e−
∫

p(t)dt
∫ t

0
e
∫

p(t)dt(.)dtdt. (20)

Therefore, applying the inverse operator L−1 given above to the resulting operator
equation gives

w(t) = ψ(t) + L−1g(t)− L−1F(t, w), (21)

such that
Lψ(t) = 0.

Hence, on decomposing the solution w(t) and the nonlinear term F(t, w) via infinite
series earlier defined in Equation (4), the recurrent solution is thus given as follows{

w0 = ψ(t) + L−1g(t),
wn+1 = −L−1 An, n ≥ 0,

(22)

such that the n-term approximation takes the form

Φn =
n−1

∑
k=0

wk,

where the closed-form solution is finally revealed as

w(t) = lim
n→∞

Φn(t) =
∞

∑
k=0

wk(t).

3.3. Second-Order Singular IVPs

More importantly, we mention here that the method presented in the above subsection
for the second-order IVPs was generalized by Hosseini and Jafari [18] for singular IVPs.
This generalization is very powerful as it tackles different forms of second-order IVPs,
including, for instance, linear, nonlinear, singular, and nonsingular ODEs.

However, considering a nonlinear singular second-order IVP of the form given in
Equation (19), we suppose that the function p(t) is of the following singular form
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p(t) =
1

t− a
h(t), (23)

where Taylor’s series expansion of h(t) exists at t = a. Now, having already considered the
differential linear operator and its inverse in Equation (20) based on the suggestion in [10],
it will be very difficult to obtain a closed-form solution in the presence of such a singularity
in the above equation. Thus, it is pertinent to make use of polynomials to approximate
e
∫

p(t)dt and e−
∫

p(t)dt in order to swiftly obtain the components wi’s. Therefore, we further
obtain Taylor’s series expansion of h(t) at t = a (for m ∈ N) and re-express Equation (23)
as follows

p(t) =
1

t− a

m

∑
k=0

(t− a)k

k!
h(k)(a). (24)

Thus, we have∫
p(t)dt = ln(t− a)h(a) + (t− a)h′(a) + ... +

(t− a)m

m×m!
h(m)(a), (25)

and
e
∫

p(t)dt = (t− a)h(a)S(t), (26)

where

S(t) = e
(t−a)h′(a)+···+

(t− a)m

m×m!
h(m)(a)

.

Additionally, for any v ∈ N, we substitute Taylor’s series expansion of S(t) into (26)
to yield

e
∫

p(t)dt = (t− a)h(a)
(

S(a) + (t− a)S
′
(a) + · · ·+ (t− a)v

v!
S(v)(a)

)
, (27)

such that in the same manner, we obtain

e−
∫

p(t)dt = (t− a)−h(a)
(

S̄(a) + (t− a)S̄
′
(a) + · · ·+ (t− a)v

v!
S̄(v)(a)

)
, (28)

where

S̄(t) = e
−(t−a)h′(a)−···−

(t− a)m

m×m!
h(m)(a)

. (29)

Finally, the difficulty associated with the singular function p(t) with regards to the op-
erators given in Equation (20) is thus solved in line with the present development presented
above. Thus, the recurrent solution follows by easily computing the components wi’s.

3.4. Higher-Order IVPs

As higher-order IVPs arise in many real-life applications, we present here a promising
technique based on the standard ADM to solve higher-order IVPs, as asserted in [19]. Thus,
we take into consideration the following generalized n-order IVP [19]{

w(n) + p(t)w(n−1) + F(w) = g(t),
w(0) = β0, w′(0) = β1, · · · , w(n−1)(0) = βn−1,

(30)

where g(t) and p(t) are given functions, F is a nonlinear differential operator of the order
less than (n− 1), and β0, β1, · · · , βn−1 are prescribed real constants.

Furthermore, we equally express the ODE in the above system using differential
operator denotation as follows

Lw = g(t)− F(w), (31)
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such that the differential operator L and its corresponding n-fold inverse integral operator
L−1 are defined by

L(.) = e−
∫

p(t)dt d
dt

(
e
∫

p(t)dt dn−1(.)
dtn−1

)
,

L−1(.) =
∫ t

0

∫ t

0
· · ·

∫ t

0
e−
∫

p(t)dt
∫ t

0
e
∫

p(t)dt(.)dt · · · dt.
(32)

Thus, the application L−1 on Equation (31) transforms the equation to the following

w(t) = ψ(t) + L−1g(t)− L−1F(w), (33)

such that
Lψ(t) = 0.

As we proceed through the use of the ADM procedure, we receive the following
equation

∞

∑
n=0

wn = ψ(t) + L−1g(t)− L−1
∞

∑
n=0

An, (34)

which yields the following recurrent solution{
w0 = ψ(t) + L−1g(t),
wk+1 = −L−1 Ak, k ≥ 0,

(35)

and a closed-form solution of

w(t) = lim
n→∞

Φn(t) =
∞

∑
k=0

wk(t), Φn =
n−1

∑
k=0

wk.

3.5. Nonlinear System of IVPs

Let us take into consideration the following generalized system of nonlinear IVPs
of ODEs,

w(n)
1 + p(t)w(n−1)

1 + F1(t, w1, · · · , w(n−2)
1 , w2, · · · , w(n−2)

2 , wn, · · · , w(n−2)
n ) = g1(t),

w(n)
2 + p(t)w(n−1)

2 + F2(t, w1, · · · , w(n−2)
1 , w2, · · · , w(n−2)

2 , wn, · · · , w(n−2)
n ) = g2(t),

...
w(n)

n + p(t)w(n−1)
n + Fn(t, w1, · · · , w(n−2)

1 , w2, · · · , w(n−2)
2 , wn, · · · , w(n−2)

n ) = gn(t),
w1(0) = β1, w2(0) = β2, · · · , wn(0) = βn,

(36)

where g(t) and p(t) are prescribed nice functions, F1, F2, . . . , Fn are nonlinear real functions,
and β1, β2, . . . , βn are supplied real constants.

Thus, without a loss of generalization, the modification of ADM personated in the
above subsections can be equally extended to successfully tackle the system of nonlin-
ear IVPs given above. This is, of course, can be performed by suitably constructing a
generalized differential operator, L, together with its corresponding n-fold-generalized
integral operator.

4. Numerical Illustrations

The present section demonstrates the application of the proposed methods on a
number of test problems featuring different forms of ODEs.
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Example 1. Let us consider the following inhomogeneous first-order nonlinear IVP [17]{
w′ + 2tw = 1 + t2 + w2,

w(0) = 1.
(37)

Standard Adomian decomposition method
First, we define a differential operator L together with its corresponding one-fold

inverse integral operator L−1 as follows

L =
d
dt

, L−1(.) =
∫ t

0
(.)dt. (38)

Next, we express Equation (37) in operator form as follows

Lw = −2tw + 1 + t2 + w2, (39)

such that after applying L−1 to both sides of Equation (39) yields

w = w(0)− 2L−1(tw) + L−1(1 + t2) + L−1(w2). (40)

Therefore, without a loss in generality, we obtain the following recurrent relation{
w0 = w(0) + L−1(1 + t2),
wn+1 = −2L−1(twn) + L−1(An), n ≥ 0,

(41)

where An is the Adomian polynomial corresponding to the nonlinear term w2 with a few
components as follows 

A0 = w2
0,

A1 = 2w0w1,
A2 = w2

1 + 2w0w2,
A3 = 2w1w2 + 2w0w3,
...

(42)

Therefore, substituting the above polynomial components into the recurrent relation
determined in Equation (41) gives

w0 = w(0) + L−1(1 + t2) = 1 + t + 1
3 t3,

w1 = −2L−1(tw0) + L−1(A0) = t− 1
3 t3 + 1

6 t4 + 1
63 t7,

w2 = −2L−1(tw1) + L−1(A1) = t2 − 1
6 t4 + 1

5 t5 − 2
63 t7 + · · · ,

...

(43)

Finally, from the above iterates, we obtain the following series solution

w(t) = 1 + 2t + t2 + t3 + t4 + t5 + · · · , (44)

whose closed-form solution is
w(t) = t +

1
1− t

. (45)

Modified Adomian decomposition method
Let us define a differential operator L together with its corresponding one-fold inverse

integral operator L−1 as follows

L(.) = e−t2 d
dt
(et2

(.)), L−1(.) = e−t2
∫ t

0
et2

(.)dt. (46)
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Then, Equation (37) in operator form becomes

Lw = 1 + t2 + w2, (47)

such that after operating L−1 in the later equation reveals Equation (47)

w(t) = e−t2
+ L−1(1 + t2) + L−1(w2), (48)

with

w0(t) = e−t2
+ e−t2

∫ t

0
et2

(1 + t2)dt. (49)

Therefore, on making use of Taylor’s series expansion on e−t2
and et2

of order 6, the
following solution iterates are obtained

w0 = 1 + t− t2 − t3

3 + t4

2 + · · · ,
w1 = t + t2 − t3 − 7t4

6 + · · · ,
w2 = t2 + 4t3

3 − t4 + · · · ,
...

(50)

Hence, we obtain the following series solution of the form given by

w(t) = 1 + 2t + t2 + t3 + t4 + t5 + · · · , (51)

whose closed-form solution is
w(t) = t +

1
1− t

. (52)

Example 2. Let us consider the following inhomogeneous second-order linear singular IVP [10]{
w′′ + cos t

sin t w′ = −2 cos t,
w(0) = 1, w′(0) = 0.

(53)

Standard Adomian decomposition method
We define a differential operator L together with its corresponding two-fold inverse

integral operator L−1 as follows

L(.) =
d2(.)
dt2 , L−1(.) =

∫ t

0

∫ t

0
(.)dtdt. (54)

Expressing Equation (53) in an operator form becomes

Lw = −cos t
sin t

w′ − 2 cos t, (55)

such that after taking L−1 of the later equation yields

w = w(0) + tw′(0)− L−1
(

cos t
sin t

w′
)
− L−1(2 cos t). (56)

Accordingly, we obtain the following recurrent relation{
w0 = w(0) + tw′(0)− L−1(2 cos t)

wn+1 = −L−1( cos t
sin t w′n), n ≥ 0,

(57)

where some of its iterates are expressed as follows
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w0 = 2 cos t− 1,
w1 = −2 cos t + 2,
w2 = 2 cos t− 2,
w3 = −2 cos t + 2,
...

(58)

We, therefore, conclude from the above components that the standard ADM fails as
the obtained series solution is divergent.

Modified Adomian decomposition method
Let us define a differential operator L together with its corresponding two-fold inverse

integral operator L−1 as follows

L(.) =
1

sin t
d(.)
dt

sin t
d
dt
(.), L−1(.) =

∫ t

0

1
sin t

∫ t

0
sin t(.)dtdt. (59)

Expressing Equation (53) in an operator form becomes

Lw = −2 cos t, (60)

while making use of L−1 on the above equations gives

L−1Lw = −2
∫ t

0

1
sin t

∫ t

0
sin t(cos t)dtdt. (61)

Without a loss in generality, the proposed modified ADM reveals the following exact
solution

w(t) = w(0) + tw′(0) + cos t− 1 = cos t. (62)

In fact, this shows the power of the proposed method over the standard ADM.

Example 3. Let us consider the following inhomogeneous second-order nonlinear IVP [10]{
w′′ + tw′ + t2w3 = (2 + 6t2)et2

+ t2e3t2
,

w(0) = 1, w′(0) = 0,
(63)

with the exact solution
w(t) = et2

.

Standard Adomian decomposition method
Let us define a differential operator L together with its corresponding two-fold inverse

integral operator L−1 as follows

L(.) =
d2

dt2 , L−1(.) =
∫ t

0

∫ t

0
(.)dtdt. (64)

Accordingly, we obtain the following recurrent relation{
w0 = w(0) + tw′(0) + L−1(g(t)),

wn+1 = −L−1(tw
′
n)− L−1(An), n ≥ 0,

(65)

where
g(t) = (2 + 6t2)et2

+ t2e3t2
,

and the Adomian polynomials, An, of nonlinear term t2w3 are given as follows
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A0 = t2w3
0,

A1 = t2(3w2
0w1),

A2 = t2(3w2
0w2 + 3w0w2

1),
A3 = t2(3w2

0w3 + 6w0w1w2 + w3
1),

...

(66)

We mention here that Taylor’s series of order 10 was utilized on g(t) for the computa-
tion of w0. Thus, the solution becomes

w0 = 1 + t
2
+ 3

4 t4 + 1
3 t6 + · · · ,

w0 + w1 = 1 + t2 + 1
2 t4 + 2

15 t6 + 1
96 t8 + · · · ,

w0 + w1 + w2 = 1 + t2 + 1
2 t4 + 1

6 t6 + 19
420 t8 + · · · ,

w0 + w1 + w2 + w3 = 1 + t2 + 1
2 t4 + 1

6 t6 + 1
24 t8 + 101

12600 t10 + · · · ,
...

(67)

Clearly, this solution converges to the exact solution w(t) = et2
, as Taylor’s series

expansion of order 10 of et2
is expressed as

et2
= 1 + t2 +

1
2

t4 +
1
6

t6 +
1

24
t8 + · · ·

Modified Adomian decomposition method
Let us define a differential operator L together with its corresponding two-fold inverse

integral operator L−1 as follows

L(.) = e−t2/2 d
dt

et2/2 d(.)
dt

, L−1(.) =
∫ t

0
e−t2/2

∫ t

0
et2/2(.)dtdt. (68)

Without a loss in generality, we obtain the following recurrent relation

{ w0 = w(0) + tw′(0) + L−1(g(t)),
wn+1 = −L−1(An), n ≥ 0.

(69)

Further, making use of Taylor’s series expansion of order 10 on g(t), et2/2 and e−t2/2,
and coupling with obtaining the Adomian polynomials of the given nonlinearity terms in
the original equation expressed in Equation (63), we receive the following solution

w0 = 1 + t
2
+ 7

12 t4 + 23
90 t6 + · · · ,

w0 + w1 = 1 + t2 + 1
2 t4 + 1

6 t6 + 25
672 t8 + · · · ,

w0 + w1 + w2 = 1 + t2 + 1
2 t4 + 1

6 t6 + 1
24 t8 + 1

120 t10 + · · · ,
...

(70)

It is also obvious that the proposed modified ADM converges faster than the standard
ADM; this can clearly be observed by comparing the two solutions.

Example 4. Consider the following inhomogeneous second-order nonlinear singular IVP [18]{
w′′ + 1+5t

2t(t+1)w′ + w3 = 5t + 11t2 + 8
27 t9 + 2

3 t10 + 1
2 t11 + 1

8 t12,
w(0) = 0 = w′(0),

(71)

which admits the following exact solution

w(t) =
2
3

t3 +
1
2

t4. (72)
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Standard Adomian decomposition method
Let us define a differential operator L together with its corresponding two-fold inverse

integral operator L−1 as follows

L(.) =
d2(.)
dt2 , L−1(.) =

∫ t

0

∫ t

0
(.)dtdt. (73)

As preceded, the following recurrent relation is obtained{
w0 = w(0) + tw′(0) + L−1(g(t)),

wn+1 = −L−1( f (t)w′n)− L−1(An), n ≥ 0,
(74)

where
g(t) = 5t + 11t2 +

8
27

t9 +
2
3

t10 +
1
2

t11 +
1
8

t12,

f (t) is determined through the application of Taylor’s series by expanding 1+5t
2t(t+1) at

t = 0 with order 9 to yield

f (t) =
1
t

(
1
2
+ 2t− 2t2 + 2t3 + · · · − 2t8

)
, (75)

while the Adomian polynomials, An, of the nonlinear term w3 are expressed for some terms
as follows 

A0 = w3
0,

A1 = 3w2
0w1,

A2 = 3w2
0w2 + 3w0w2

1,
A3 = 3w2

0w3 + 6w0w1w2 + w3
1,

...

(76)

In this case, we obtain

w0 = 5
6 t3 + 11

12 t4 + 4
1485 t11 + · · ·

w0 + w1 = 5
8 t3 + 25

72 t4 − 7
60 t5 + · · ·

...
w0 + w1 + w2 + · · ·+ w5 = 1365

2048 t3 + 372575
746496 t4 − 41797

19906560 t5 + · · ·

(77)

It is easy to see that the standard Adomian decomposition method converges to the
exact solution (72) very slowly.

Modified Adomian decomposition method
We consider the following differential operator L together with its corresponding

two-fold inverse integral operator L−1 as follows

L(.) = e−
∫

p(t)dt d
dt

(
e
∫

p(t)dt d(.)
dt

)
, L−1(.) =

∫ t

0
e−
∫

p(t)dt
∫ t

0
e
∫

p(t)dt(.)dtdt, (78)

such that ∫
p(t)dt =

∫ 1 + 5t
2t(t + 1)

dt = ln
(√

t(1 + t)2
)

, (79)

and
e
∫

p(t)dt =
√

t(1 + t)2 = t
1
2 + 2t

3
2 + t

5
2 , e−

∫
p(t)dt =

1√
t(1 + t)2

. (80)

Therefore, with the application of Taylor’s series expansion on 1
(1+t)2 of order 9 with

regards to Equation (80), we acquire

e−
∫

p(t)dt = t−
1
2

(
1− 2t + 3t2 + · · ·+ 9t8

)
, (81)
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of which the recurrent relation is finally obtained as follows{
w0 = L−1(g(t)),

wn+1 = −L−1 An, n ≥ 0.
(82)

Thus, through substituting Equations (79) and (80) into Equation (78), we have{
w0 = 2

3 t3 + 1
2 t4 + 16

6237 t11 + · · · ,
w0 + w1 = 2

3 t3 + 1
2 t4 + O(t12),

(83)

where w ≈ w0 + w1 is pretty close to the exact analytical solution earlier stated.

Example 5. Let us consider the following inhomogeneous third-order nonlinear IVP [19]{
w′′′ + etw′′ + 4t2w′ + t2w3 = g(t),

w(0) = w′(0) = w′′(0) = 0,
(84)

where g(t) is compatible with the following exact solution

w(t) = t3et.

What is more, expressing function g(t) using Taylor’s series expansion of order 9 yields

g(t) = 6 + 30t + 48t2 + 45t3 +
171

4
t4 +

164
5

t5 +
529
30

t6 +
243
35

t7 +
2881
1344

t8. (85)

Standard Adomian decomposition method
We consider the following differential operator L together with its corresponding

three-fold inverse integral operator L−1 as follows

L(.) =
d3(.)

dt3 , L−1(.) =
∫ t

0

∫ t

0

∫ t

0
(.)dtdtdt. (86)

As preceded, the following recurrent relation is obtained{
w0 = L−1(g(t)),

wn+1 = −L−1( f (t)w′′n)− 4L−1(t2w′n)− L−1(t2 An), n ≥ 0,
(87)

where f (t) is determined through the application of Taylor’s series by expanding et at t = 0
as follows

f (t) ≈ 1 + t +
t2

2
+ · · ·+ t8

8!
, (88)

while the Adomian polynomials, An, corresponding to the nonlinear term w3 are given for
some components as follows 

A0 = w3
0,

A1 = 3w1w2
0,

A2 = 3w2w2
0 + 3w0w2

1,
...

(89)

Hence, substituting Equations (88) and (89) into Equation (87) gives

w0 = t3 + 5
4 t4 + · · · ,

w0 + w1 = t3 + t4 + · · · ,
...
w0 + w1 + w2 + · · ·+ w7 = t3 + t4 + 1

2 t5 + 1
6 t6 + · · · ,

(90)
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Additionally, we further affirm the obtained series solution in the above equation by
applying Taylor’s series expansion of order 9 to the exact solution as follows

w(t) = t3 + t4 +
1
2

t5 +
1
6

t6 + · · · (91)

Certainly, the obtained series solution gradually progresses to the exact closed-form
solution, but slowly. Thus, the convergence rate of standard ADM is slow; this can clearly
be seen in the proposed scheme.

Modified Adomian decomposition method
Accordingly, we consider the following differential operator L together with its corre-

sponding three-fold inverse integral operator L−1 as follows

L(.) = e−
∫

p(t)dt d
dt

(
e
∫

p(t)dt d2(.)
dt2

)
, L−1(.) =

∫ t

0

∫ t

0
e−
∫

p(t)dt
∫ t

0
e
∫

p(t)dt(.)dtdtdt

(92)
such that ∫

p(t)dt =
∫

etdt = et (93)

and
e−
∫

p(t)dt = e−et
, e

∫
p(t)dt = eet

. (94)

Therefore, with the application of Taylor’s series expansion of order 9 on eet
and e−et

with regards to Equation (92), we obtain

a = e−et
= e−1

(
1− t +

1
6

t3 + · · ·+ 5
4032

t8
)

,

b = eet
= e
(

1 + t + t2 +
5
6

t3 + · · ·+ 23
224

t8
)

.
(95)

In addition, we rewrite the above inverse operator in terms of a and b as follows

L−1(.) =
∫ t

0

∫ t

0
(a)

∫ t

0
(b)(.)dtdtdt. (96)

Thus, the resulting recurrent relation is obtained based on Equation (35) as follows{
w0 = L−1g(t),

wn+1 = −L−1(t2 An), n ≥ 0,
(97)

such that some of its component sums are as follows{
w0 = t3 + t4 + 1

2 t5 + 1
6 t6 + 83

840 t7 + · · · ,
w0 + w1 = t3 + t4 + 1

2 t5 + 1
6 t6 + · · · (98)

Therefore, it is obvious that the proposed modified ADM converges faster than the
standard ADM, as earlier demonstrated; this can clearly be seen by comparing the two
series solutions in Equations (90) and (98), respectively. The modified ADM solution of Φ2
equals the standard ADM solution of Φ8; in fact, the convergence rate of this method is
higher by far.

Example 6. Consider the following nonlinear system of inhomogeneous second-order IVPs [19]
u′′ + tan(t)u′ + v2 = g(t),

u(0) = 0, u′(0) = 0,

v′′ + 100v′ + u2 = h(t),
v(0) = 0, v′(0) = 0,

(99)
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where g(t) and h(t) are compatible with the following exact solution set

u(t) = t sin t, v(t) = t tan t.

More so, expressing functions g(t) and h(t) using Taylor’s series expansion order 9 yields

g(t) = 2 +
5
4

t4 +
3
4

t6 + · · · ,

h(t) = 2 + 200t + 4t2 +
400

3
t3 + 5t4 − 80t5 +

121
45

t6 + · · · .
(100)

Standard Adomian decomposition method
Without a loss in generality, the system admits the following recurrent relation{

u0 = L−1(g(t)) = t2 + 1
24 t6 + 3

224 t8,
v0 = L−1(h(t)) = t2 + 100

3 t3 + 1
3 t4 + 20

3 t5 + 1
6 t6 − 40

21 t7 + 121
2520 t8 + · · · ,

(101)

and {
un+1 = −L−1( f (t)u′n)− L−1 An, n ≥ 0,
vn+1 = −L−1(100v′n)− L−1Bn, n ≥ 0,

(102)

where An and Bn are the Adomian polynomials corresponding to the nonlinear terms v2

and u2, respectively. Additionally, function f (t) represents Taylor’s series expansion of
tan t of order 9. Thus, by considering Equation (101) and (102), we obtain

u0 = t2 +
1

24
t6 +

3
224

t8

u0 + u1 = t2 − 1
6

t4 − 1
72

t6 + · · · ,
...

u0 + u1 + u2 + · · ·+ u6 = t2 − 1
6

t4 +
1

120
t6 + · · · ,

(103)

and 

v0 = t2 +
100

3
t3 +

1
3

t4 + · · · ,

v0 + v1 = t2 − 883t4 − 4994
45

t6 + · · · ,
...

v0 + v1 + v2 + · · ·+ v6 = t2 +
1
3

t4 +
2

15
t6 + · · ·

(104)

Therefore, the obtained standard ADM solution converges to the exact solution; this
could be seen clearly by expanding the exact solution using Taylor’s expansion and there-
after comparing the two solutions.

Modified Adomian decomposition method
Accordingly, we consider the following differential operator L together with its corre-

sponding two-fold inverse integral operator L−1 as follows

L(.) = e−
∫

p(t)dt d
dt

(
e
∫

p(t)dt d(.)
dt

)
, L−1(.) =

∫ t

0
e−
∫

p(t)dt
∫ t

0
e
∫

p(t)dt(.)dtdt (105)

such that
e−
∫

p(t)dt = cos(t), e
∫

p(t)dt =
1

cos(t)
. (106)

Therefore, with the application of Taylor’s series expansion of order 9 on cos(t) and
1

cos(t) with regards to Equation (105), we obtain
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a = cos(t) = 1− 1
2

t2 +
1

24
t4 + · · ·+ 1

40320
t8,

b =
1

cos(t)
= 1 +

1
2

t2 +
5

24
t4 + · · ·+ 277

8064
t8.

(107)

In addition, we rewrite the above inverse operator in terms of a and b as follows

L−1(.) =
∫ t

0
(a)

∫ t

0
(b)(.)dtdt. (108)

Thus, the resulting recurrent relation is obtained as follows u0 = L−1(g(t)) = t2 − 1
6

t4 +
1
24

t6 + · · · ,

un+1 = −L−1 An, n ≥ 0,
(109)

Now, we consider the second differential operator L together with its corresponding
two-fold inverse integral operator L−1 as follows

L(.) = e−
∫

p(t)dt d
dt

(
e
∫

p(t)dt d(.)
dt

)
, L−1(.) =

∫ t

0
e−
∫

p(t)dt
∫ t

0
e
∫

p(t)dt(.)dtdt (110)

such that
e−
∫

p(t)dt = e−
∫

100dt = e−100t, e
∫

p(t)dt = e
∫

100dt = e100t. (111)

Therefore, with the application of Taylor’s series expansion of order 9 on e−100t and
e100t with regards to Equation (105), we obtain

c = e−100t = 1− 100t + 5000t2 + · · ·+ 15625000000000
63

t8,

d = e100t = 1 + 100t + 5000t2 + · · ·+ 15625000000000
63

t8.
(112)

In addition, we rewrite the above inverse operator in terms of c and d as follows

L−1(.) =
∫ t

0
(c)

∫ t

0
(d)(.)dtdt. (113)

Thus, the resulting recurrent relation is obtained as follows v0 = L−1(h(t)) = t2 +
1
3

t4 +
1
6

t6 + · · ·
vn+1 = −L−1Bn, n ≥ 0,

(114)

such that some components are expressed as follows
u0 = t2 − 1

6
t4 +

1
24

t6 + · · · ,

u0 + u1 = t2 − 1
6

t4 +
1

120
t6 + · · · ,

(115)

and 
v0 = t2 +

1
3

t4 +
1
6

t6 + · · · ,

v0 + v1 = t2 +
1
3

t4 +
2

15
t6 + · · · ,

(116)

where the present method also outperforms the standard ADM. This could undoubtedly
be noted by comparing the two solutions where the modified ADM solution of Φ2 matches
the standard ADM solution of Φ7. This further affirms the higher convergence rate of the
proposed method.
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5. Conclusions

In conclusion, the present manuscript examined various forms of IVPs by proposing
a proficient modification to the famous standard ADM. The proposed method collected
different forms of inverse integral operators and successfully applied them to dissimilar
inhomogeneous nonlinear singular and nonsingular ODEs. The efficiency of the method
was further assessed, taking into account its faster convergence rate and, on the other
hand, its higher precision with the available exact analytical solutions. Thus, we finally
recommend that the proposed method should be utilized to solve physical models arising
in different nonlinear sciences.
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