Applications of the q-Sălăgean Differential Operator Involving Multivalent Functions
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jackson, F.H. q-Difference equations. Am.J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Srivastava, H.M. Univalent functions, fractional calculus and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA, 1989; pp. 329–354. [Google Scholar]
- Ismail, M.E.-H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Agrawal, S.; Sahoo, S.K. A generalization of starlike functions of order α. Hokkaido Math. J. 2017, 46, 15–27. [Google Scholar] [CrossRef]
- Tang, H.; Khan, S.; Hussain, S.; Khan, N. Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order α. AIMS Math. 2021, 6, 5421–5439. [Google Scholar] [CrossRef]
- Mahmood, S.; Jabeen, M.; Malik, S.N.; Srivastava, H.M.; Manzoor, R.; Riaz, S.M.J. Some coefficient inequalities of q-starlike functions associated with conic domain defined by q-derivative. J. Funct. Spaces 2018, 2018, 8492072. [Google Scholar] [CrossRef]
- Mahmood, S.; Ahmad, Q.Z.; Srivastava, H.M.; Khan, N.; Khan, B.; Tahir, M. A certain subclass of meromorphically q-starlike functions associated with the Janowski functions. J. Inequal. Appl. 2019, 2019, 88. [Google Scholar] [CrossRef]
- Shi, L.; Khan, Q.; Srivastava, G.; Liu, J.-L.; Arif, M. A study of multivalent q-starlike functions connected with circular domain. Mathematics 2019, 7, 670. [Google Scholar] [CrossRef]
- Khan, B.; Liu, Z.-G.; Srivastava, H.M.; Khan, N.; Darus, M.; Tahir, M. A Study of Some Families of Multivalent q-Starlike Functions Involving Higher-Order q-Derivatives. Mathematics 2020, 8, 1470. [Google Scholar] [CrossRef]
- Rehman, M.S.; Ahmad, Q.Z.; Srivastava, H.M.; Khan, B.; Khan, N. Partial sums of generalized q-Mittag-Leffler functions. AIMS Math. 2019, 5, 408–420. [Google Scholar] [CrossRef]
- Hadi, S.H.; Darus, M.; Park, C.; Lee, J.R. Some geometric properties of multivalent functions associated with a new generalized q-Mittag-Leffler function. AIMS Math. 2022, 7, 11772–11783. [Google Scholar] [CrossRef]
- Aouf, M.K.; Madian, S.M. Fekete–Szegö properties for classes of complex order and defined by new generalization of q-Mittag Leffler function. Afr. Mat. 2022, 33, 15. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. ASci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Selvakurmaran, K.A.; Purohit, S.D.; Secer, A.; Bayram, M. Convexity of certain q-integral operators of p-valent functions. Abstr. Appl. Anal. 2014, 2014, 925902. [Google Scholar] [CrossRef]
- Arif, M.; Srivastava, H.M.; Umar, S. Some application of a q-analogue of the Ruscheweyh type operator for multivalent functions. Rev. Real Acad. Cienc. Exactas Fis. Natur. Ser. A Mat. 2019, 113, 1121–1221. [Google Scholar] [CrossRef]
- Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. Anal. Math. 2017, 43, 475–487. [Google Scholar] [CrossRef]
- Hussain, S.; Khan, S.; Zaighum, M.A.; Darus, M. Applications of a q-Salagean type operator on multivalent functions. J. Inequal. Appl. 2018, 2018, 301. [Google Scholar] [CrossRef]
- Khan, S.; Hussain, S.; Zaighum, M.A.; Darus, M. A Subclass of uniformly convex functions and a corresponding subclass of starlike function with fixed coefficient associated with q-analogue of Ruscheweyh operator. Math. Slovaca 2019, 69, 825–832. [Google Scholar] [CrossRef]
- Zainab, S.; Raza, M.; Xin, Q.; Jabeen, M.; Malik, S.N.; Riaz, S. On q-Starlike Functions Defined by q-Ruscheweyh Differential Operator in Symmetric Conic Domain. Symmetry 2021, 13, 1947. [Google Scholar] [CrossRef]
- Naeem, M.; Hussain, S.; Mahmood, T.; Khan, S.; Darus, M. A New Subclass of Analytic Functions Defined by Using Sălăgean q-Differential Operator. Mathematics 2019, 7, 458. [Google Scholar] [CrossRef] [Green Version]
- Wongsaijai, B.; Sukantamala, N. Applications of fractional q-calculus to certain subclass of analytic p-valent functions with negative coefficients. Abstr. Appl. Anal. 2015, 2015, 273236. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mostafa, A.O.; Aouf, M.K.; Zayed, H.M. Basic and fractional q-calculus and associated Fekete-Szego problem for p-valently q-starlike functions and p-valently q-convex functions of complex order. Miskolc Math.Notes 2019, 20, 489–509. [Google Scholar] [CrossRef]
- Khan, B.; Srivastava, H.M.; Arjika, S.; Khan, S.; Khan, N.; Ahmad, Q.Z. A certain q-Ruscheweyh type derivative operator and its applications involiving multivalent functions. Adv. Differ. Equ. 2021, 2021, 279. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Second order-differential inequalities in the complex plane. J. Math. Anal.Appl. 1978, 65, 298–305. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential subordinations and univalent functions. Mich. Math. J. 1981, 28, 157–171. [Google Scholar] [CrossRef]
- Sălăgean, G.Ş. Subclasses of univalent functions. Lect. Notes Math. 1983, 1013, 362–372. [Google Scholar]
- Alb Lupaş, A. Subordination Results on the q-Analogue of the Sălăgean Differential Operator. Symmetry 2022, 14, 1744. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. On some classes of first-order differential subordinations. Mich. Math. J. 1985, 32, 185–195. [Google Scholar] [CrossRef]
- Robertson, M.S. Certain classes of starlike functions. Mich. Math. J. 1985, 32, 135–140. [Google Scholar] [CrossRef]
- Rao, G.S.; Saravanan, R. Some results concerning best uniform co-approximation. J. Inequal. Pure Appl. Math. 2002, 3, 24. [Google Scholar]
- Rao, G.S.; Chandrasekaran, K.R. Characterization of elements of best co-approximation in normed linear spaces. Pure Appl. Math. Sci. 1987, 26, 139–147. [Google Scholar]
- El-Deeb, S.M.; Bulboacă, T. Differential Sandwich-Type Results for Symmetric Functions Connected with a q-Analog Integral Operator. Mathematics 2019, 7, 1185. [Google Scholar] [CrossRef]
- Hadi, S.A.; Darus, M. Differential subordination and superordination for a q-derivative operator connected with the q-exponential function. Int. J. Nonlinear Anal. Appl. 2022, 13, 2795–2806. [Google Scholar]
- Owa, S.; Guney, H.O. New Applications of the Bernardi Integral Operator. Mathematics 2020, 8, 1180. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G.; Owa, S. Applications of Certain p-Valently Analytic Functions. Mathematics 2022, 10, 910. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alb Lupaş, A. Applications of the q-Sălăgean Differential Operator Involving Multivalent Functions. Axioms 2022, 11, 512. https://doi.org/10.3390/axioms11100512
Alb Lupaş A. Applications of the q-Sălăgean Differential Operator Involving Multivalent Functions. Axioms. 2022; 11(10):512. https://doi.org/10.3390/axioms11100512
Chicago/Turabian StyleAlb Lupaş, Alina. 2022. "Applications of the q-Sălăgean Differential Operator Involving Multivalent Functions" Axioms 11, no. 10: 512. https://doi.org/10.3390/axioms11100512
APA StyleAlb Lupaş, A. (2022). Applications of the q-Sălăgean Differential Operator Involving Multivalent Functions. Axioms, 11(10), 512. https://doi.org/10.3390/axioms11100512