Fekete-Szegö Inequalities for Some Certain Subclass of Analytic Functions Defined with Ruscheweyh Derivative Operator
Abstract
:1. Introduction
2. Main Results
3. Coefficient Bounds and the Fekete-Szegö Inequality for l (r, )
4. Coefficient Inequalities for l−1
5. Functions Described by the Poisson Distribution
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Series on Monographs and Textbooks in Pure and Applied Mathematics; CRC Press: Boca Raton, FL, USA, 2000; Volume 225. [Google Scholar]
- Nasr, M.A.; Aouf, M.K. Starlike function of complex order. J. Natur. Sci. Math. 1985, 25, 1–12. [Google Scholar]
- Wiatrowski, P. The coefficients of a certain family of holomorphic functions. Zeszyty Nauk. Uniw. Lodz. Nauki. Mat. Przyrod. Ser. II 1971, 75, 85. [Google Scholar]
- Nasr, M.A.; Aouf, M.K. On convex functions of complex order. Mansoura Sci. Bull. 1982, 154, 565–582. [Google Scholar]
- De Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Ma, W.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; International Press: Vienna, Austria, 1992. [Google Scholar]
- Janowski, W. Extremal problems for a family of functions with positive real part and for some related families, Annales Polonici Mathematici. Inst. Math. Pol. Acad. Sci. 1970, 23, 159–177. [Google Scholar]
- Robertson, M.S. Certain classes of starlike functions. Mich. Math. J. 1985, 32, 135–140. [Google Scholar] [CrossRef]
- Ronning, F. Uniformly convex functions and a corresponding class of starlike functions. Proc. Am. Math. Soc. 1993, 118, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Mohsin, M.; Malik, S.N. Upper bound of third hankel determinant for class of analytic functions related with lemniscate of Bernoulli. J. Ineq. Appl. 2013, 412. [Google Scholar] [CrossRef] [Green Version]
- Sokol, J. Radius problem in the class . Appl. Math. Comp. 2009, 214, 569–573. [Google Scholar] [CrossRef]
- Raina, R.K.; Sokol, J. On coefficient estimates for a certain class of starlike functions. Hacet. J. Math. Stat. 2015, 44, 1427–1433. [Google Scholar] [CrossRef]
- Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with a cardioid. Afr. Math. 2016, 27, 923–939. [Google Scholar] [CrossRef]
- Shi, L.; Ali, I.; Arif, M.; Cho, N.E.; Hussain, S.; Khan, H. A study of third Hankel determinant problem for certain subfamilies of analytic functions involving cardioid domain. Mathematics 2019, 7, 418. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Srivastava, H.M.; Arif, M.; Hussain, S.; Khan, H. An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function. Symmetry 2019, 11, 598. [Google Scholar] [CrossRef] [Green Version]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Alotaibi, A.; Arif, M.; Alghamdi, M.A.; Hussain, S. Starlikeness associated with cosine hyperbolic function. Mathematics 2020, 8, 1118. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, V.; Kumar, S.S.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Arif, M.; Raza, M.; Tang, H.; Hussain, S.; Khan, H. Hankel determinant of order three for familiar subsets of analytic functions related with sine function. Open Math. 2019, 17, 1615–1630. [Google Scholar] [CrossRef]
- Bano, K.; Raza, M. Starlike functions associated with cosine functions. Bull. Iran. Math. Soc. 2021, 47, 1513–1532. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, S.; Kumar, V.; Ravichandran, V.; Srivasatava, H.M. Starlike functions related to the Bell numbers. Symmetry 2019, 11, 219. [Google Scholar] [CrossRef] [Green Version]
- Dziok, J.; Raina, R.K.; Sokol, J. On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers. Math. Comp. Model. 2013, 57, 1203–1211. [Google Scholar] [CrossRef]
- Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Fekete, M.; Szegö, G. Eine Bemerkung über ungerade schlichte Funktionen. J. Lond. Math. Soc. 1933, 8, 85–89. [Google Scholar] [CrossRef]
- Pfluger, A. The Fekete-Szegö inequality by a variational method. Ann. Acad. Sci. Fenn. Ser. AI 1984, 10, 447–454. [Google Scholar] [CrossRef]
- Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain class of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
- Orhan, H.; Deniz, E.; Răducanu, D. The Fekete-Szegö problem for subclasses of analytic functions defined by a differential operator related to conic domains. Comp. Math. Appl. 2010, 59, 283–295. [Google Scholar] [CrossRef] [Green Version]
- Al-Hawary, T.; Amourah, A.; Frasin, B.A. Fekete–Szegö inequality for bi-univalent functions by means of Horadam polynomials. Bol. Soc. Mat. Mex. 2021, 27, 1–12. [Google Scholar] [CrossRef]
- Amourah, A.; Al-Hawary, T.; Frasin, B.A. Application of Chebyshev polynomials to certain class of bi-Bazilevic functions of order α+iβ. Afr. Math. 2021, 32, 1059–1066. [Google Scholar] [CrossRef]
- Deniz, E.; Çağlar, M.; Orhan, H. The Fekete-Szegö problem for a class of analytic functions defined by Dziok-Srivastava operator. Kodai Math. J. 2012, 35, 439–462. [Google Scholar] [CrossRef]
- Kanas, S.; Darwish, H.E. Fekete-Szegö problem for starlike and convex functions of complex order. Appl. Math. Lett. 2010, 23, 777–782. [Google Scholar] [CrossRef] [Green Version]
- Ruscheweyh, S. New criteria for univalent functions. Proc. Am. Math. Soc. 1975, 49, 109–115. [Google Scholar] [CrossRef]
- Tang, H.; Murugusundaramoorthy, G.; Li, S.H.; Ma, L.N. Fekete-Szegö and Hankel inequalities for certain class of analytic functions related to the sine function. AIMS Math. 2022, 7, 6365–6380. [Google Scholar] [CrossRef]
- Pommerenke, Ch. Univalent Functions. In Studia Mathematica Mathematische Lehrbucher; Vandenhoeck and Ruprecht: Gottingen, Germany, 1975. [Google Scholar]
- Libera, R.J.; Złotkiewicz, E.J. Coefficient bounds for the inverse of a function with derivative in P. Proc. Am. Math. Soc. 1983, 87, 251–257. [Google Scholar] [CrossRef]
- Porwal, S. An application of a Poisson distribution series on certain analytic functions. J. Complex Anal. 2014, 2014, 984135. [Google Scholar] [CrossRef]
- Porwal, S.; Kumar, M. A unified study on starlike and convex functions associated with Poisson distribution series. Afr. Mat. 2016, 27, 1021–1027. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orhan, H.; Cotîrlă, L.-I. Fekete-Szegö Inequalities for Some Certain Subclass of Analytic Functions Defined with Ruscheweyh Derivative Operator. Axioms 2022, 11, 560. https://doi.org/10.3390/axioms11100560
Orhan H, Cotîrlă L-I. Fekete-Szegö Inequalities for Some Certain Subclass of Analytic Functions Defined with Ruscheweyh Derivative Operator. Axioms. 2022; 11(10):560. https://doi.org/10.3390/axioms11100560
Chicago/Turabian StyleOrhan, Halit, and Luminiţa-Ioana Cotîrlă. 2022. "Fekete-Szegö Inequalities for Some Certain Subclass of Analytic Functions Defined with Ruscheweyh Derivative Operator" Axioms 11, no. 10: 560. https://doi.org/10.3390/axioms11100560
APA StyleOrhan, H., & Cotîrlă, L. -I. (2022). Fekete-Szegö Inequalities for Some Certain Subclass of Analytic Functions Defined with Ruscheweyh Derivative Operator. Axioms, 11(10), 560. https://doi.org/10.3390/axioms11100560