Applications of Higher-Order q-Derivative to Meromorphic q-Starlike Function Related to Janowski Function
Abstract
:1. Introduction
- (i)
- , when .
- (ii)
- , when .
- (iii)
- , when , and . In [19], Pommerenke considered the family .
2. Main Results
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-defnite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Ahmad, B.; Khan, M.G.; Frasin, B.A.; Aouf, M.K.; Abdeljawad, T.; Mashwani, W.K.; Arif, M. On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain. AIMS Math. 2021, 6, 3037–3052. [Google Scholar] [CrossRef]
- Khan, B.; Liu, Z.-G.; Srivastava, H.M.; Khan, N.; Tahir, M. Applications of higher-order derivatives to subclasses of multivalent q-starlike functions. Maejo Int. J. Sci. Technol. 2021, 45, 61–72. [Google Scholar]
- Mahmood, S.; Raza, N.; Abujarad, E.S.A.; Srivastava, G.; Srivastava, H.M.; Malik, S.N. Geomotric properties of certain classes of analytic functions associated with a q-integral operator. Symmetry 2019, 11, 719. [Google Scholar]
- Güney, H.Ö.; Oros, G.I.; Owa, S. An application of Sălăgean operator concerning starlike functions. Axioms 2022, 11, 50. [Google Scholar] [CrossRef]
- Mahmmod, S.; Sokół, J. New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator. Results Math. 2017, 71, 1345–1357. [Google Scholar] [CrossRef]
- Raza, M.; Srivastava, H.M.; Arif, M.; Ahmad, K. Coefficient estimates for a certain family of analytic functions involving a q-derivative operator. Ramanujan J. 2021, 54, 501–519. [Google Scholar] [CrossRef]
- Rehman, M.S.U.; Ahmad, Q.Z.; Srivastava, H.M.; Khan, N.; Darus, M.; Khan, B. Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions. AIMS Math. 2021, 6, 1110–1125. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z. Coefficient inequalities for q-starlike functions associated with the Janowski functions. Hokkaido Math. J. 2019, 48, 407–425. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Raza, N.; AbuJarad, E.S.A.; Srivastava, G.; AbuJarad, M.H. Fekete-Szegö inequality f or classes of (p, q)-starlike and (p, q)-convex functions. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2019, 113, 3563–3584. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, B.; Khan, N.; Tahir, M.; Ahmad, S.; Khan, N. Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with the q-exponential function. Bull. Sci. Math. 2021, 167, 102942. [Google Scholar] [CrossRef]
- Seoudy, T.M.; Aouf, M.K. Coefficient estimates of new classes of q-starlike and q-convex functions of complex order. J. Math. Inequal. 2016, 10, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Liu, J.-L. Properties of certain multivalent analytic functions associated with the Lemmiscate of Bernoulli. Axioms 2021, 10, 160. [Google Scholar] [CrossRef]
- Yan, C.M.; Srivastava, R.; Liu, J.-L. Properties of certain subclass of meromorphic multivalent functions associated with q-difference operator. Symmetry 2021, 13, 1035. [Google Scholar] [CrossRef]
- Janowski, W. Some extremal problems for certain families of analytic functions. Ann. Pol. Math. 1973, 28, 297–326. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
- Pommerenke, C. On meromorphic starlike functions. Trans. Am. Math. Soc. 1963, 107, 300–308. [Google Scholar] [CrossRef]
- Karunakaran, V. On a class of meromorphic starlike functions in the unit disc. Math. Chron. 1976, 4, 112–121. [Google Scholar]
- Srivastava, H.M.; El-Deeb, S.M. The Faber polynomial expansion method and the Taylor-Maciaurin coefficient estimates of bi-close-to-convex functions connected with the q-convolution. AIMS Math. 2020, 5, 7087–7106. [Google Scholar] [CrossRef]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; Li, Z., Ren, F.-Y., Yang, L., Zhang, S., Eds.; International Press: Cambridge, MA, USA, 1994; pp. 157–169. [Google Scholar]
- Rogosinski, W. On the coefficients of subordinate functions. Proc. Lond. Math. Soc. 1943, 48, 48–82. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Srivastava, R.; Liu, J.-L. Applications of Higher-Order q-Derivative to Meromorphic q-Starlike Function Related to Janowski Function. Axioms 2022, 11, 509. https://doi.org/10.3390/axioms11100509
Liu L, Srivastava R, Liu J-L. Applications of Higher-Order q-Derivative to Meromorphic q-Starlike Function Related to Janowski Function. Axioms. 2022; 11(10):509. https://doi.org/10.3390/axioms11100509
Chicago/Turabian StyleLiu, Likai, Rekha Srivastava, and Jin-Lin Liu. 2022. "Applications of Higher-Order q-Derivative to Meromorphic q-Starlike Function Related to Janowski Function" Axioms 11, no. 10: 509. https://doi.org/10.3390/axioms11100509
APA StyleLiu, L., Srivastava, R., & Liu, J. -L. (2022). Applications of Higher-Order q-Derivative to Meromorphic q-Starlike Function Related to Janowski Function. Axioms, 11(10), 509. https://doi.org/10.3390/axioms11100509