Factor Prioritization for Effectively Implementing DevOps in Software Development Organizations: A SWOT-AHP Approach
Abstract
:1. Introduction
1.1. Problem Statement
1.2. Research Questions
2. Related Work
3. Research Methodology
3.1. Stage 1: Systematic Literature Review (SLR)
3.1.1. Phase 1: Review Planning
Primary Data Sources
Search Strategy
- (a)
- Develop the major keywords from population, intervention and outcomes.
- Population: implementation of DevOps in software development.
- Interventions: factors which impact DevOps practices positively/negatively.
- Outcomes: list out the identified factors.
- Experimental design: systematic literature review.
- (b)
- Find the synonyms and the words having similar meanings to the above-described keywords.
- (c)
- Develop Boolean expressions.
- (d)
- Verification of Boolean expression using digital libraries.
Inclusion Criteria
- The paper must be written in English and be available as a full-text article.
- Articles must be reported in journals, conferences, magazines and book chapters.
- Studies must be focused on the challenges/success factors in DevOps implementation.
Exclusion Criteria
- The primary studies were selected using the following exclusion criteria:
- Studies that do not relate to DevOps factors.
- Articles written in languages other than English.
- Graduation project, master thesis and Ph.D. thesis all remain unpublished.
- Civil engineering, for example, is a study that is unrelated to software development.
- Redundant manuscripts.
Quality Assessment Criteria for Study Selection
3.1.2. Phase 2: Conducting the Review
Selecting the Primary Data
Data Synthesis
3.1.3. Phase 3: Reporting Review Process
Distribution of Final Selected Articles According to Types
Temporal Distribution of the Published Paper
4. Findings from SLR
4.1. Findings Obtained from SLR
4.2. Categorization of the Identified Factors Based on SWOT Matrix
- (a)
- Strengths (S):
- (b)
- Weaknesses (W):
- (c)
- Opportunities (O):
- (d)
- Threats (T):
4.3. SWOT-AHP Based Framework for DevOps Implementation
- The SWOT analysis uses the environmental elements gathered by the qualitative examination.
- It does not evaluate relative importance between the items of SWOT categories.
- It does not focus on ambiguities raised between the items of a particular SWOT category.
- Increasing the number of factors in the particular category leads to an exponential increase in the number of strategies for decision-making.
4.3.1. Analytic Hierarchy Process (AHP)
- Create a hierarchical structure of a complex problem, as shown in Figure 6.
- Use pairwise comparisons between the factors and their categories to determine the priority weight of each component and sub-factor.
- Examine the consistency of the decisions.
Linguistic Criteria for Importance | Intensity of Importance |
---|---|
“Equally Important (EI)” | 1 |
“Nearly Important (MI)” | 3 |
“Strongly Important (SI)” | 5 |
“Very strongly Important (VSI)” | 7 |
“Absolute Important (AI)” | 9 |
“Intermediate values” | 2,4,6,8 |
4.3.2. Application of AHP for Prioritizing the Factors and Their SWOT Categories
- Compute the sum of each column in the pairwise comparison matrix.
- Divide each matrix element by its appropriate column sum.
- The priority weight is determined by taking a row-by-row average.
5. Results and Discussions
6. Limitations
7. Implications
8. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
S. No. | Reference |
---|---|
PS1 | Perera, P., Bandara, M. and Perera, I., 2016, September. Evaluating the impact of DevOps practice in Sri Lankan software development organizations. In 2016 Sixteenth International Conference on Advances in ICT for Emerging Regions (ICTer) (pp. 281–287). IEEE. |
PS2 | Kamuto, M.B. and Langerman, J.J., 2017, May. Factors inhibiting the adoption of DevOps in large organisations: South African context. In 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT) (pp. 48–51). IEEE. |
PS3 | McCarthy, M.A., Herger, L.M., Khan, S.M. and Belgodere, B.M., 2015, June. Composable DevOps: automated ontology-based DevOps maturity analysis. In 2015 IEEE international conference on services computing (pp. 600–607). IEEE. |
PS4 | Waseem, M. and Liang, P., 2017, December. Microservices architecture in DevOps. In 2017 24th Asia-Pacific Software Engineering Conference Workshops (APSECW) (pp. 13–14). IEEE. |
PS5 | Valani, A., 2018, September. Rethinking secure DevOps threat modeling: The need for a dual velocity approach. In 2018 IEEE Cybersecurity Development (SecDev) (pp. 136–136). IEEE. |
PS6 | Dyck, A., Penners, R. and Lichter, H., 2015, May. Towards definitions for release engineering and DevOps. In 2015 IEEE/ACM 3rd International Workshop on Release Engineering (p. 3). IEEE. |
PS7 | Virmani, M., 2015, May. Understanding DevOps & bridging the gap from continuous integration to continuous delivery. In Fifth international conference on the innovative computing technology (intech 2015) (pp. 78–82). IEEE. |
PS8 | Michener, J.R. and Clager, A.T., 2016, June. Mitigating an oxymoron: Compliance in a devops environments. In 2016 IEEE 40th Annual Computer Software and Applications Conference (COMPSAC) (Vol. 1, pp. 396–398). IEEE. |
PS9 | Bass, L., 2017. The software architect and DevOps. IEEE Software, 35(1), pp. 8–10. |
PS10 | Trihinas, D., Tryfonos, A., Dikaiakos, M.D. and Pallis, G., 2018. Devops as a service: Pushing the boundaries of microservice adoption. IEEE Internet Computing, 22(3), pp. 65–71. |
PS11 | Artac, M., Borovssak, T., Di Nitto, E., Guerriero, M. and Tamburri, D.A., 2017, May. DevOps: introducing infrastructure-as-code. In 2017 IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C) (pp. 497–498). IEEE. |
PS12 | Perera, P., Silva, R. and Perera, I., 2017, September. Improve software quality through practicing DevOps. In 2017 Seventeenth International Conference on Advances in ICT for Emerging Regions (ICTer) (pp. 1–6). IEEE. |
PS13 | Rong, G., Zhang, H. and Shao, D., 2016, May. CMMI guided process improvement for DevOps projects: an exploratory case study. In Proceedings of the International Conference on Software and Systems Process (pp. 76–85). |
PS14 | Domínguez-Acosta, M.F. and García-Mireles, G.A., 2021, October. Identifying Activities for Enhancing Software Quality in DevOps Settings. In 2021 10th International Conference On Software Process Improvement (CIMPS) (pp. 84–89). IEEE. |
PS15 | Diel, E., Marczak, S. and Cruzes, D.S., 2016, August. Communication challenges and strategies in distributed DevOps. In 2016 IEEE 11th International Conference on Global Software Engineering (ICGSE) (pp. 24–28). IEEE. |
PS16 | Rajkumar, M., Pole, A.K., Adige, V.S. and Mahanta, P., 2016, April. DevOps culture and its impact on cloud delivery and software development. In 2016 International Conference on Advances in computing, communication, & automation (ICACCA)(Spring) (pp. 1–6). IEEE. |
PS17 | Marijan, D., Liaaen, M. and Sen, S., 2018, July. DevOps improvements for reduced cycle times with integrated test optimizations for continuous integration. In 2018 IEEE 42nd annual computer software and applications conference (COMPSAC) (Vol. 1, pp. 22–27). IEEE. |
PS18 | Colomo-Palacios, R., Fernandes, E., Soto-Acosta, P. and Larrucea, X., 2018. A case analysis of enabling continuous software deployment through knowledge management. International Journal of Information Management, 40, pp. 186–189. |
PS19 | Laukkarinen, T., Kuusinen, K. and Mikkonen, T., 2018. Regulated software meets DevOps. Information and Software Technology, 97, pp. 176–178. |
PS20 | Plant, O.H., van Hillegersberg, J. and Aldea, A., 2022. Rethinking IT governance: Designing a framework for mitigating risk and fostering internal control in a DevOps environment. International Journal of Accounting Information Systems, p. 100560. |
PS21 | Toivakka, H., Granlund, T., Poranen, T. and Zhang, Z., 2021, November. Towards RegOps: A DevOps Pipeline for Medical Device Software. In International Conference on Product-Focused Software Process Improvement (pp. 290–306). Springer, Cham. |
PS22 | Bobbert, Y. and Chtepen, M., 2021. Problems of CI/CD and DevOps on Security Compliance. In Strategic Approaches to Digital Platform Security Assurance (pp. 256–285). IGI Global. |
PS23 | Rafi, S., Akbar, M.A., Yu, W., Alsanad, A., Gumaei, A. and Sarwar, M.U., 2022. Exploration of DevOps testing process capabilities: An ISM and fuzzy TOPSIS analysis. Applied Soft Computing, 116, p. 108377. |
PS24 | Pérez-Sánchez, J., Ros, J.N. and Gea, J.M.C.D., 2021, March. DevOps Certification in IT Industry: Preliminary Findings. In World Conference on Information Systems and Technologies (pp. 473–479). Springer, Cham. |
PS25 | Rafi, S., Akbar, M.A., AlSanad, A.A., AlSuwaidan, L., Abdulaziz AL-ALShaikh, H. and AlSagri, H.S., 2022. Decision-Making Taxonomy of DevOps Success Factors Using Preference Ranking Organization Method of Enrichment Evaluation. Mathematical Problems in Engineering, 2022. |
PS26 | Faustino, J., Adriano, D., Amaro, R., Pereira, R. and da Silva, M.M., 2022. DevOps benefits: A systematic literature review. Software: Practice and Experience. |
PS27 | Lima, J.A.P. and Vergilio, S.R., 2020. Test Case Prioritization in Continuous Integration environments: A systematic mapping study. Information and Software Technology, 121, p. 106268. |
PS28 | Gupta, V., Kapur, P.K. and Kumar, D., 2017. Modeling and measuring attributes influencing DevOps implementation in an enterprise using structural equation modeling. Information and software technology, 92, pp. 75–91. |
PS29 | Battina, D.S., 2021. AI and DevOps in Information Technology and Its Future in the United States. INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT), ISSN, pp. 2320–2882. |
PS30 | Hermawan, A. and Manik, L.P., 2021. The Effect of DevOps Implementation on Teamwork Quality in Software Development. Journal of Information Systems Engineering and Business Intelligence, 7(1), pp. 84–90. |
PS31 | Fitzgerald, B. and Stol, K.J., 2017. Continuous software engineering: A roadmap and agenda. Journal of Systems and Software, 123, pp. 176–189. |
PS32 | Elazhary, O., Werner, C., Li, Z.S., Lowlind, D., Ernst, N.A. and Storey, M.A., 2021. Uncovering the benefits and challenges of continuous integration practices. IEEE Transactions on Software Engineering. |
PS33 | Chen, L., 2017. Continuous delivery: overcoming adoption challenges. Journal of Systems and Software, 128, pp. 72–86. |
PS34 | Lwakatare, L.E., Kuvaja, P. and Oivo, M., 2015, May. Dimensions of devops. In International conference on agile software development (pp. 212–217). Springer, Cham. |
PS35 | Nagarajan, A.D. and Overbeek, S.J., 2018, October. A DevOps implementation framework for large agile-based financial organizations. In OTM Confederated International Conferences “On the Move to Meaningful Internet Systems” (pp. 172–188). Springer, Cham. |
PS36 | Bheri, S. and Vummenthala, S., 2019. An Introduction to the DevOps Tool Related Challenges. |
PS37 | Elberzhager, F., Arif, T., Naab, M., Süß, I. and Koban, S., 2017, January. From agile development to devops: going towards faster releases at high quality–experiences from an industrial context. In International conference on software quality (pp. 33–44). Springer, Cham. |
PS38 | Lwakatare, L.E., Kilamo, T., Karvonen, T., Sauvola, T., Heikkilä, V., Itkonen, J., Kuvaja, P., Mikkonen, T., Oivo, M. and Lassenius, C., 2019. DevOps in practice: A multiple case study of five companies. Information and Software Technology, 114, pp. 217–230. |
PS39 | Forsgren, N., Tremblay, M.C., VanderMeer, D. and Humble, J., 2017, May. DORA platform: DevOps assessment and benchmarking. In International Conference on Design Science Research in Information System and Technology (pp. 436–440). Springer, Cham. |
PS40 | Dinner, A., 2020. Factors that Influence the Synergy between Development and IT Operations in a DevOps Environment (Master’s thesis, Faculty of Commerce). |
PS41 | Bruel, J.M., Mazzara, M. and Meyer, B., 2019. Software Engineering Aspects of Continuous Development and New Paradigms of Software Production and Deployment. France, Cham: Springer International Publishing. |
PS42 | Wettinger, J., Andrikopoulos, V. and Leymann, F., 2015, October. Enabling DevOps collaboration and continuous delivery using diverse application environments. In OTM Confederated International Conferences “On the Move to Meaningful Internet Systems” (pp. 348–358). Springer, Cham. |
PS43 | Düllmann, T.F., Paule, C. and van Hoorn, A., 2018, May. Exploiting devops practices for dependable and secure continuous delivery pipelines. In 2018 IEEE/ACM 4th International Workshop on Rapid Continuous Software Engineering (RCoSE) (pp. 27–30). IEEE. |
PS44 | Capizzi, A., Distefano, S. and Mazzara, M., 2019, May. From devops to devdataops: Data management in devops processes. In International Workshop on Software Engineering Aspects of Continuous Development and New Paradigms of Software Production and Deployment (pp. 52–62). Springer, Cham. |
PS45 | Joby, P.P., 2019. Exploring devops: challenges and benefits. Journal of Information Technology, 1(01), pp. 27–37. |
PS46 | Saito, H., Lee, H.C.C. and Wu, C.Y., 2019. DevOps with Kubernetes: accelerating software delivery with container orchestrators. Packt Publishing Ltd. |
PS47 | Poniszewska-Marańda, A. and Czechowska, E., 2021. Kubernetes cluster for automating software production environment. Sensors, 21(5), p. 1910. |
PS48 | Díaz, J., López-Fernández, D., Pérez, J. and González-Prieto, Á., 2021. Why are many businesses instilling a DevOps culture into their organization?. Empirical Software Engineering, 26(2), pp. 1–50. |
PS49 | López-Fernández, D., Diaz, J., Garcia-Martin, J., Pérez, J. and Gonzalez-Prieto, A., 2021. DevOps Team Structures: Characterization and Implications. IEEE Transactions on Software Engineering. |
PS50 | Amaro, R.M.D., Pereira, R. and da Silva, M.M., 2022. Capabilities and Practices in DevOps: A Multivocal Literature Review. IEEE Transactions on Software Engineering. |
PS51 | Shameem, M., 2022. A Systematic Literature Review of Challenges Factors for Implementing DevOps Practices in Software Development Organizations: A Development and Operation Teams Perspective. Evolving Software Processes: Trends and Future Directions, pp. 187–199. |
PS52 | Mishra, A. and Otaiwi, Z., 2020. DevOps and software quality: A systematic mapping. Computer Science Review, 38, p. 100308. |
PS53 | Benjamin, J. and Mathew, J., 2021, February. Enhancing the efficiency of continuous integration environment in DevOps. In IOP Conference Series: Materials Science and Engineering (Vol. 1085, No. 1, p. 012025). IOP Publishing. |
Reference | QA-1 | QA-2 | QA-3 | QA-4 | QA-5 | Total |
---|---|---|---|---|---|---|
PS1 | 0.5 | 1 | 1 | 0.5 | 1 | 4 |
PS2 | 0.5 | 1 | 0.5 | 0.5 | 1 | 3.5 |
PS3 | 0.5 | 1 | 1 | 0.5 | 1 | 4 |
PS4 | 1 | 1 | 1 | 0.5 | 1 | 4.5 |
PS5 | 1 | 1 | 0.5 | 0.5 | 0.5 | 3.5 |
PS6 | 1 | 1 | 1 | 0.5 | 1 | 4.5 |
PS7 | 1 | 1 | 0.5 | 0.5 | 1 | 4 |
PS8 | 1 | 1 | 1 | 0.5 | 1 | 4.5 |
PS9 | 1 | 1 | 1 | 0.5 | 1 | 4.5 |
PS10 | 1 | 1 | 1 | 0.5 | 1 | 4.5 |
PS11 | 1 | 1 | 1 | 1 | 1 | 5 |
PS12 | 1 | 1 | 1 | 1 | 1 | 5 |
PS13 | 1 | 0.5 | 1 | 0.5 | 1 | 4 |
PS14 | 1 | 1 | 1 | 0.5 | 0.5 | 4 |
PS15 | 1 | 1 | 1 | 0.5 | 0.5 | 4 |
PS16 | 1 | 1 | 1 | 0.5 | 0 | 3.5 |
PS17 | 1 | 1 | 1 | 0.5 | 0.5 | 4 |
PS18 | 1 | 1 | 1 | 0.5 | 1 | 4.5 |
PS19 | 1 | 1 | 1 | 1 | 1 | 5 |
PS20 | 1 | 1 | 1 | 1 | 1 | 5 |
PS21 | 1 | 0.5 | 1 | 0.5 | 1 | 4 |
PS22 | 1 | 0.5 | 1 | 0.5 | 0.5 | 3.5 |
PS23 | 1 | 1 | 1 | 1 | 1 | 5 |
PS24 | 0.5 | 1 | 1 | 0.5 | 0.5 | 3.5 |
PS25 | 1 | 1 | 1 | 0.5 | 1 | 4.5 |
PS26 | 1 | 1 | 1 | 1 | 1 | 5 |
PS27 | 1 | 1 | 1 | 1 | 1 | 5 |
PS28 | 1 | 1 | 1 | 1 | 1 | 5 |
PS29 | 0.5 | 1 | 0.5 | 1 | 0.5 | 3.5 |
PS30 | 1 | 1 | 1 | 0.5 | 0.5 | 4 |
PS31 | 1 | 1 | 1 | 0.5 | 0.5 | 4 |
PS32 | 1 | 1 | 1 | 1 | 1 | 5 |
PS33 | 1 | 1 | 1 | 1 | 1 | 5 |
PS34 | 0.5 | 1 | 0.5 | 1 | 0 | 3 |
PS35 | 0.5 | 1 | 0.5 | 1 | 0 | 3 |
PS36 | 1 | 1 | 1 | 0.5 | 0 | 3.5 |
PS37 | 0.5 | 1 | 0.5 | 1 | 0 | 3 |
PS38 | 1 | 1 | 1 | 1 | 1 | 5 |
PS39 | 1 | 1 | 1 | 1 | 1 | 5 |
PS40 | 1 | 1 | 1 | 1 | 1 | 5 |
PS41 | 0.5 | 1 | 1 | 1 | 0 | 3.5 |
PS42 | 0.5 | 1 | 1 | 1 | 0 | 3.5 |
PS43 | 0.5 | 1 | 1 | 0.5 | 0.5 | 3.5 |
PS44 | 0.5 | 1 | 1 | 0.5 | 0.5 | 3.5 |
PS45 | 1 | 1 | 1 | 1 | 1 | 5 |
PS46 | 0.5 | 1 | 1 | 1 | 0 | 3.5 |
PS47 | 0.5 | 1 | 1 | 0.5 | 0.5 | 3.5 |
PS48 | 1 | 1 | 1 | 1 | 1 | 5 |
PS49 | 1 | 1 | 1 | 1 | 1 | 5 |
PS50 | 1 | 1 | 1 | 1 | 1 | 5 |
PS51 | 1 | 1 | 1 | 1 | 1 | 5 |
PS52 | 1 | 1 | 1 | 1 | 1 | 5 |
PS53 | 1 | 1 | 1 | 1 | 1 | 5 |
Appendix B
Linguistic Criteria | Value |
Equally Important (EI) | 1 |
Nearly Important (NI) | 3 |
Strongly Important (SI) | 5 |
Very Strongly Important (VSI) | 7 |
Absolute Important (AI) | 9 |
Intermediate Values | 2, 4, 6, 8 |
Pairwise Comparison between Factors of “Strengths” Category | ||||||||||||||||||
More Important | Equal | More Important | ||||||||||||||||
Scale Value | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Scale Value |
S1 | S1 | |||||||||||||||||
S1 | S2 | |||||||||||||||||
S1 | S3 | |||||||||||||||||
S1 | S4 | |||||||||||||||||
S1 | S5 | |||||||||||||||||
S1 | S6 | |||||||||||||||||
S1 | S7 | |||||||||||||||||
S2 | S2 | |||||||||||||||||
S2 | S3 | |||||||||||||||||
S2 | S4 | |||||||||||||||||
S2 | S5 | |||||||||||||||||
S2 | S6 | |||||||||||||||||
S2 | S7 | |||||||||||||||||
S3 | S3 | |||||||||||||||||
S3 | S4 | |||||||||||||||||
S3 | S5 | |||||||||||||||||
S3 | S6 | |||||||||||||||||
S3 | S7 | |||||||||||||||||
S3 | S6 | |||||||||||||||||
S4 | S4 | |||||||||||||||||
S4 | S5 | |||||||||||||||||
S4 | S6 | |||||||||||||||||
S4 | S7 | |||||||||||||||||
S5 | S5 | |||||||||||||||||
S5 | S6 | |||||||||||||||||
S5 | S7 | |||||||||||||||||
S6 | S6 | |||||||||||||||||
S6 | S7 | |||||||||||||||||
S7 | S7 | |||||||||||||||||
Pairwise Comparison between Factors of “Weaknesses” Category | ||||||||||||||||||
More Important | Equal | More Important | ||||||||||||||||
Scale Value | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Scale Value |
W1 | W1 | |||||||||||||||||
W1 | W2 | |||||||||||||||||
W1 | W3 | |||||||||||||||||
W1 | W4 | |||||||||||||||||
W1 | W5 | |||||||||||||||||
W1 | W6 | |||||||||||||||||
W1 | W7 | |||||||||||||||||
W2 | W2 | |||||||||||||||||
W2 | W3 | |||||||||||||||||
W2 | W4 | |||||||||||||||||
W2 | W5 | |||||||||||||||||
W2 | W6 | |||||||||||||||||
W2 | W7 | |||||||||||||||||
W3 | W3 | |||||||||||||||||
W3 | W4 | |||||||||||||||||
W3 | W5 | |||||||||||||||||
W3 | W6 | |||||||||||||||||
W3 | W7 | |||||||||||||||||
W3 | W6 | |||||||||||||||||
W4 | W4 | |||||||||||||||||
W4 | W5 | |||||||||||||||||
W4 | W6 | |||||||||||||||||
W4 | W7 | |||||||||||||||||
W5 | W5 | |||||||||||||||||
W5 | W6 | |||||||||||||||||
W5 | W7 | |||||||||||||||||
W6 | W6 | |||||||||||||||||
W6 | W7 | |||||||||||||||||
W7 | W7 | |||||||||||||||||
Pairwise Comparison between Factors of “Opportunities” Category | ||||||||||||||||||
More Important | Equal | More Important | ||||||||||||||||
Scale Value | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Scale Value |
O1 | O1 | |||||||||||||||||
O1 | O2 | |||||||||||||||||
O1 | O3 | |||||||||||||||||
O1 | O4 | |||||||||||||||||
O1 | O5 | |||||||||||||||||
O2 | O2 | |||||||||||||||||
O2 | O3 | |||||||||||||||||
O2 | O4 | |||||||||||||||||
O2 | O5 | |||||||||||||||||
O3 | O3 | |||||||||||||||||
O3 | O4 | |||||||||||||||||
O3 | O5 | |||||||||||||||||
O4 | O4 | |||||||||||||||||
O4 | O5 | |||||||||||||||||
O5 | O5 | |||||||||||||||||
Pairwise Comparison between Factors of “Threats” Category | ||||||||||||||||||
More Important | Equal | More Important | ||||||||||||||||
Scale Value | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Scale Value |
T1 | T1 | |||||||||||||||||
T1 | T2 | |||||||||||||||||
T1 | T3 | |||||||||||||||||
T1 | T4 | |||||||||||||||||
T2 | T2 | |||||||||||||||||
T2 | T3 | |||||||||||||||||
T2 | T4 | |||||||||||||||||
T3 | T3 | |||||||||||||||||
T3 | T4 | |||||||||||||||||
T4 | T4 |
References
- Stahl, D.; Martensson, T.; Bosch, J. Continuous practices and devops: Beyond the buzz, what does it all mean? In Proceedings of the 2017 43rd Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Vienna, Austria, 30 August–1 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 440–448. [Google Scholar]
- Akbar, M.A.; Mahmood, S.; Shafiq, M.; AlSanad, A.; AlSanad, A.A.-A.; Gumaei, A. Identification and prioritization of DevOps success factors using fuzzy-AHP approach. Soft Comput. 2020, 1–25. [Google Scholar] [CrossRef]
- Lwakatare, L.E.; Kuvaja, P.; Oivo, M. An exploratory study of devops extending the dimensions of devops with practices. In Proceedings of the ICSEA 2016: The Eleventh International Conference on Software Engineering Advances, Rome, Italy, 21–25 August 2016; Volume 104, p. 2016. [Google Scholar]
- Khan, A.A.; Shameem, M. Multicriteria decision-making taxonomy for DevOps challenging factors using analytical hierarchy process. J. Softw. Evol. Process 2020, 32, e2263. [Google Scholar] [CrossRef]
- Forsgren, N.; Smith, D.; Humble, J.; Frazelle, J. 2019 Accelerate State of Devops Report; Google: Mountain View, CA, USA, 2019. [Google Scholar]
- Ravichandran, A.; Taylor, K.; Waterhouse, P. Devops for Digital Leaders: Reignite Business with a Modern Devops-Enabled Software Factory; Springer Nature: Berlin, Germany, 2016; p. 173. [Google Scholar]
- Riungu-Kalliosaari, L.; Mäkinen, S.; Lwakatare, L.E.; Tiihonen, J.; Männistö, T. November. DevOps adoption benefits and challenges in practice: A case study. In International Conference on Product-Focused Software Process Improvement; Springer: Cham, Switzerland, 2016; pp. 590–597. [Google Scholar]
- Forsgren, N.; Tremblay, M.C.; VanderMeer, D.; Humble, J. DORA platform: DevOps assessment and benchmarking. In International Conference on Design Science Research in Information System and Technology; Springer: Cham, Switzerland, 2017; pp. 436–440. [Google Scholar]
- Leite, L.; Rocha, C.; Kon, F.; Milojicic, D.; Meirelles, P. A Survey of DevOps Concepts and Challenges. ACM Comput. Surv. 2019, 52, 1–35. [Google Scholar] [CrossRef]
- Kerzazi, N.; Adams, B. Who needs release and devops engineers, and why? In Proceedings of the International Workshop on Continuous Software Evolution and Delivery, Austin, TX, USA, 14–15 May 2016; pp. 77–83. [Google Scholar]
- Rafi, S.; Yu, W.; Akbar, M.A.; Mahmood, S.; Alsanad, A.; Gumaei, A. Readiness model for DevOps implementation in software organizations. J. Softw. Evol. Process 2021, 33, e2323. [Google Scholar] [CrossRef]
- Kim, G.; Humble, J.; Debois, P.; Willis, J.; Forsgren, N. The DevOps Handbook: How to Create World-Class Agility, Reliability, & Security in Technology Organizations; IT Revolution: Melbourne, Australia, 2021. [Google Scholar]
- Gillies, A. Software Quality: Theory and Management. 2011. Available online: https://lulu.com (accessed on 20 July 2022).
- Tumyrkin, R.; Mazzara, M.; Kassab, M.; Succi, G.; Lee, J. Quality attributes in practice: Contemporary data. In Agent and Multi-Agent Systems: Technology and Applications; Springer: Cham, Switzerland, 2016; pp. 281–290. [Google Scholar]
- Bazzana, G.; Andersen, O.; Jokela, T. ISO 9126 and ISO 9000: Friends or Foes? In Proceedings of the 1993 Software Engineering Standards Symposium, Brighton, UK, 30 August–3 September 1993; IEEE: Piscataway, NJ, USA, 1993; pp. 79–88. [Google Scholar]
- Chung, L.; Nixon, B.A.; Yu, E. Using quality requirements to systematically develop quality software. In Proceedings of the Fourth International Conference on Software Quality, Basel, Switzerland, 17–20 October 1994. [Google Scholar]
- Perera, P.; Bandara, M.; Perera, I. Evaluating the impact of DevOps practice in Sri Lankan software development organizations. In Proceedings of the 2016 Sixteenth International Conference on Advances in ICT for Emerging Regions (ICTer), Negombo, Sri Lanka, 1–3 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 281–287. [Google Scholar]
- Shameem, M.; Kumar, C.; Chandra, B.; Khan, A.A. Systematic review of success factors for scaling agile methods in global software development environment: A client-vendor perspective. In Proceedings of the 2017 24th Asia-Pacific Software Engineering Conference Workshops (APSECW), Nanjing, China, 4–8 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 17–24. [Google Scholar]
- Akbar, M.A.; Khan, A.A.; Huang, Z. Multicriteria decision making taxonomy of code recommendation system challenges: A fuzzy-AHP analysis. Inf. Technol. Manag. 2022, 1–17. [Google Scholar] [CrossRef]
- Kamuto, M.B.; Langerman, J.J. Factors inhibiting the adoption of DevOps in large organisations: South African context. In Proceedings of the 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 19–20 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 48–51. [Google Scholar]
- McCarthy, M.A.; Herger, L.M.; Khan, S.M.; Belgodere, B.M. Composable DevOps: Automated ontology-based DevOps maturity analysis. In Proceedings of the 2015 IEEE International Conference on Services Computing, New York, NY, USA, 27 June–2 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 600–607. [Google Scholar]
- Waseem, M.; Liang, P. Microservices architecture in DevOps. In Proceedings of the 2017 24th Asia-Pacific Software Engineering Conference Workshops (APSECW), Nanjing, China, 4–8 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 13–14. [Google Scholar]
- Trihinas, D.; Tryfonos, A.; Dikaiakos, M.D.; Pallis, G. DevOps as a Service: Pushing the Boundaries of Microservice Adoption. IEEE Internet Comput. 2018, 22, 65–71. [Google Scholar] [CrossRef]
- Rong, G.; Zhang, H.; Shao, D. CMMI guided process improvement for DevOps projects: An exploratory case study. In Proceedings of the International Conference on Software and Systems Process, Pittsburgh, PA, USA, 19–20 May 2022; pp. 76–85. [Google Scholar]
- Colomo-Palacios, R.; Fernandes, E.; Soto-Acosta, P.; Larrucea, X. A case analysis of enabling continuous software deployment through knowledge management. Int. J. Inf. Manag. 2018, 40, 186–189. [Google Scholar] [CrossRef]
- Toivakka, H.; Granlund, T.; Poranen, T.; Zhang, Z. Towards RegOps: A DevOps Pipeline for Medical Device Software. In International Conference on Product-Focused Software Process Improvement; Springer: Cham, Switzerland, 2021; pp. 290–306. [Google Scholar]
- Heine, K.M. Predicting DevOps Effectiveness in Information Technology (IT) Projects. Ph.D. Thesis, The George Washington University, Washington, DC, USA, 2022. [Google Scholar]
- Smeds, J.; Nybom, K.; Porres, I. DevOps: A definition and perceived adoption impediments. In International Conference on Agile Software Development; Springer: Cham, Switzerland, 2015; pp. 166–177. [Google Scholar]
- Luz, W.P.; Pinto, G.; Bonifácio, R. Adopting DevOps in the real world: A theory, a model, and a case study. J. Syst. Softw. 2019, 157, 110384. [Google Scholar] [CrossRef]
- Humble, J.; Kim, G. Accelerate: The Science of Lean Software and Devops: Building and Scaling High Performing Technology Organizations; IT Revolution: Melbourne, Australia, 2018. [Google Scholar]
- Bite, D.; Janmere, L. Social Research Methods. Available online: https://lais.llu.lv/pls/pub/!pub_switcher.main?au=G&page=course_description_pub/GSOC5046/2/1 (accessed on 20 July 2022).
- Bryman, A. Social Research Methods; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Bobbert, Y.; Chtepen, M. Problems of CI/CD and DevOps on Security Compliance. In Strategic Approaches to Digital Platform Security Assurance; IGI Global: Hershey, PA, USA, 2021; pp. 256–285. [Google Scholar]
- Khan, A.A.; Keung, J.; Niazi, M.; Hussain, S.; Ahmad, A. Systematic literature review and empirical investigation of barriers to process improvement in global software development: Client–vendor perspective. Inf. Softw. Technol. 2017, 87, 180–205. [Google Scholar] [CrossRef]
- Watson, R. Quantitative research. Nurs. Stand. 2015, 29, 44. [Google Scholar] [CrossRef]
- Brannen, J.; Coram, T. (Eds.) Mixing Methods: Qualitative and Quantitative Research; Aldershot: Avebury, UK, 1992; Volume 5. [Google Scholar]
- Gregar, J. Research Design (Qualitative, Quantitative and Mixed Methods Approaches); SAGE: Thousand Oaks, CA, USA, 1994; p. 228. [Google Scholar]
- Walker, R.J.; Briand, L.C.; Notkin, D.; Seaman, C.B.; Tichy, W.F. Panel: Empirical validation-what, why, when, and how. In Proceedings of the 25th International Conference on Software Engineering, Portland, OR, USA, 3–10 May 2003; IEEE Computer Society: Washington, DC, USA, 2003; p. 721. [Google Scholar]
- Niazi, M.; Mahmood, S.; Alshayeb, M.; Riaz, M.R.; Faisal, K.; Cerpa, N.; Khan, S.U.; Richardson, I. Challenges of project management in global software development: A client-vendor analysis. Inf. Softw. Technol. 2016, 80, 1–19. [Google Scholar] [CrossRef]
- Kitchenham, B. Procedures for Performing Systematic Reviews; Keele University: Keele, UK, 2004; Volume 33, pp. 1–26. [Google Scholar]
- Keele, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering; Technical Report, Ver. 2.3 EBSE Technical Report; EBSE: Goyang-si, Korea, 2007. [Google Scholar]
- Soomro, A.B.; Salleh, N.; Mendes, E.; Grundy, J.; Burch, G.; Nordin, A. The effect of software engineers’ personality traits on team climate and performance: A Systematic Literature Review. Inf. Softw. Technol. 2016, 73, 52–65. [Google Scholar] [CrossRef]
- Vilela, J.; Castro, J.; Martins, L.E.G.; Gorschek, T. Integration between requirements engineering and safety analysis: A systematic literature review. J. Syst. Softw. 2017, 125, 68–92. [Google Scholar] [CrossRef]
- Khan, S.U.; Azeem, M.I. Intercultural challenges in offshore software development outsourcing relationships: An exploratory study using a systematic literature review. IET Softw. 2014, 8, 161–173. [Google Scholar] [CrossRef]
- Sinha, R.; Shameem, M.; Kumar, C. SWOT: Strength, weaknesses, opportunities, and threats for scaling agile methods in global software development. In Proceedings of the 13th Innovations in Software Engineering Conference on Formerly Known as India Software Engineering Conference, Jabalpur, India, 27 February 2020; pp. 1–10. [Google Scholar]
- Helms, M.M.; Nixon, J. Exploring SWOT analysis–where are we now? A review of academic research from the last decade. J. Strategy Manag. 2010, 3, 215–251. [Google Scholar] [CrossRef]
- Lee, J.; Kim, I.; Kim, H.; Kang, J. SWOT-AHP analysis of the Korean satellite and space industry: Strategy recommendations for development. Technol. Forecast. Soc. Change 2020, 164, 120515. [Google Scholar] [CrossRef]
- Elavarasan, R.M.; Afridhis, S.; Vijayaraghavan, R.R.; Subramaniam, U.; Nurunnabi, M. SWOT analysis: A framework for comprehensive evaluation of drivers and barriers for renewable energy development in significant countries. Energy Rep. 2020, 6, 1838–1864. [Google Scholar] [CrossRef]
- Longhurst, G.J.; Stone, D.M.; Dulohery, K.; Scully, D.; Campbell, T.; Smith, C.F. Strength, weakness, opportunity, threat (SWOT) analysis of the adaptations to anatomical education in the United Kingdom and Republic of Ireland in response to the COVID-19 pandemic. Anat. Sci. Educ. 2020, 13, 301–311. [Google Scholar] [CrossRef]
- Veličkovska, I. Implementation of a SWOT-AHP methodology for strategic development of a district heating plant in fuzzy environment. Strateg. Manag. 2022, 27, 43–56. [Google Scholar] [CrossRef]
- Saaty, T.L. What is the analytic hierarchy process? In Mathematical Models for Decision Support; Springer: Berlin/Heidelberg, Germany, 1988; pp. 109–121. [Google Scholar]
- Kabra, G.; Ramesh, A.; Arshinder, K. Identification and prioritization of coordination barriers in humanitarian supply chain management. Int. J. Disaster Risk Reduct. 2015, 13, 128–138. [Google Scholar] [CrossRef]
- Albayrak, E.; Erensal, Y.C. Using analytic hierarchy process (AHP) to improve human performance: An application of multiple criteria decision making problem. J. Intell. Manuf. 2004, 15, 491–503. [Google Scholar] [CrossRef]
- Bozbura, F.; Beskese, A.; Kahraman, C. Prioritization of human capital measurement indicators using fuzzy AHP. Expert Syst. Appl. 2007, 32, 1100–1112. [Google Scholar] [CrossRef]
- Barbosa, P.I.; Szklo, A.; Gurgel, A. Sugarcane ethanol companies in Brazil: Growth challenges and strategy perspectives using Delphi and SWOT-AHP methods. Biomass Bioenergy 2022, 158, 106368. [Google Scholar] [CrossRef]
- Akbar, M.A.; Nasrullah; Shameem, M.; Ahmad, J.; Maqbool, A.; Abbas, K. Investigation of Project Administration related challenging factors of Requirements Change Management in global software development: A systematic literature review. In Proceedings of the 2018 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube), Quetta, Pakistan, 12–13 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Solangi, Y.A.; Longsheng, C.; Shah, S.A.A.; AlSanad, A.; Ahmad, M.; Akbar, M.A.; Gumaei, A.; Ali, S. Analyzing Renewable Energy Sources of a Developing Country for Sustainable Development: An Integrated Fuzzy Based-Decision Methodology. Processes 2020, 8, 825. [Google Scholar] [CrossRef]
- Akbar, M.A.; Naveed, W.; Mahmood, S.; Alsanad, A.A.; Alsanad, A.; Gumaei, A.; Mateen, A. Prioritization Based Taxonomy of DevOps Challenges Using Fuzzy AHP Analysis. IEEE Access 2020, 8, 202487–202507. [Google Scholar] [CrossRef]
- Kamal, T.; Zhang, Q.; Akbar, M.A. Toward successful agile requirements change management process in global software development: A client–vendor analysis. IET Softw. 2020, 14, 265–274. [Google Scholar] [CrossRef]
- Khan, A.A.; Shameem, M.; Nadeem, M.; Akbar, M.A. Agile trends in Chinese global software development industry: Fuzzy AHP based conceptual mapping. Appl. Soft Comput. 2021, 102, 107090. [Google Scholar] [CrossRef]
- Shameem, M.; Khan, A.A.; Hasan, M.G.; Akbar, M.A. Analytic hierarchy process based prioritisation and taxonomy of success factors for scaling agile methods in global software development. IET Softw. 2020, 14, 389–401. [Google Scholar]
- Shameem, M.; Kumar, C.; Chandra, B. A proposed framework for effective software team performance: A mapping study between the team members' personality and team climate. In Proceedings of the 2017 International Conference on Computing, Communication and Automation (ICCCA), Greater Noida, India, 5–6 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 912–917. [Google Scholar]
- Kieu, P.T.; Nguyen, V.T.; Nguyen, V.T.; Ho, T.P. A spherical fuzzy analytic hierarchy process (SF-AHP) and combined compromise solution (CoCoSo) algorithm in distribution center location selection: A case study in agricultural supply chain. Axioms 2021, 10, 53. [Google Scholar] [CrossRef]
- Rafi, S.; Akbar, M.A.; Manzoor, A. DevOps Business Model: Work from Home Environment. In Proceedings of the International Conference on Evaluation and Assessment in Software Engineering 2022, Gothenburg, Sweden, 13–15 June 2022; pp. 408–412. [Google Scholar]
- Rafi, S.; Akbar, M.A.; Yu, W.; Alsanad, A.; Gumaei, A.; Sarwar, M.U. Exploration of DevOps testing process capabilities: An ISM and fuzzy TOPSIS analysis. Appl. Soft Comput. 2022, 116, 108377. [Google Scholar]
- Rafi, S.; Akbar, M.A.; AlSanad, A.A.; AlSuwaidan, L.; AL-ALShaikh, H.A.; AlSagri, H.S. Decision-making taxonomy of devops success factors using preference ranking organization method of enrichment evaluation. Math. Probl. Eng. 2022, 2022, 2600160. [Google Scholar]
- Zarour, M.; Alhammad, N.; Alenzi, M.; Alsarayrah, K. Devops Process Model Adoption in Saudi Arabia: An Empirical Study. Jordanian J. Comput. Inf. Technol. 2020, 6, 234–246. [Google Scholar] [CrossRef]
- Zarour, M.; Alhammad, N.; Alenezi, M.; Alsarayrah, K. A research on DevOps maturity models. Int. J. Recent Technol. Eng. 2019, 8, 4854–4862. [Google Scholar] [CrossRef]
Digital Library | URL |
---|---|
“ACM Digital Library” | “http://dl.acm.org” |
“IEEE Explorer” | “http://ieeexplore.ieee.org” |
“John Wiley” | “https://onlinelibrary.wiley.com” |
“Science Direct” | “https://www.sciencedirect.com” |
“Springer Link” | “https://link.springer.com” |
“Google Scholar” | “https://scholar.google.com” |
Questions for QA | Score |
---|---|
Are there readers able to understand the motive of research? | No = 0, Partial = 0.5, Yes = 1, |
Do the findings of the study clearly discusses about the DevOps? | No = 0, Partial = 0.5, Yes = 1, |
Does the study discuss any challenge/success factor in the DevOps? | No = 0, Partial = 0.5, Yes = 1, |
Are the logical arguments well-presented and justified in the articles? | No = 0, Partial = 0.5, Yes = 1, |
Are the results related to the research questions? | No = 0, Partial = 0.5, Yes = 1, |
Digital Libraries | 1st Phase | 2nd Phase | 3rd Phase | 4th (Final Phase) | Percentage of Final Selected Papers |
---|---|---|---|---|---|
ACM | 95 | 58 | 19 | 02 | 04 |
IEEE | 396 | 102 | 31 | 21 | 40 |
John Wiley | 93 | 51 | 12 | 02 | 04 |
Science Direct | 314 | 157 | 14 | 07 | 13 |
Springer | 412 | 98 | 21 | 10 | 19 |
Google Scholar | 756 | 141 | 10 | 11 | 20 |
Total | 2066 | 607 | 107 | 53 | 100 % |
Identified Factors | Frequency (53) | % |
---|---|---|
Clashes between Dev and Ops mentality | 45 | 85 |
Lack of microservice architecture understanding | 34 | 64 |
Automation testing | 46 | 87 |
Lack of communication strategies | 46 | 87 |
Too much focus on tools | 44 | 83 |
Lack of knowledge about DevOps tools | 25 | 47 |
Lack of team ownership | 23 | 43 |
Resistance to change | 37 | 70 |
Lack of metrics monitoring | 32 | 60 |
Continuous learning | 43 | 81 |
Lack of expertise in human resources | 38 | 72 |
Lack of visibility | 37 | 70 |
Managing multiple environments | 34 | 64 |
High implementation cost | 29 | 55 |
Cross-functional team | 43 | 81 |
Continuous delivery mode | 45 | 85 |
High security | 41 | 77 |
Product owner role | 39 | 74 |
Early project release | 45 | 85 |
Requirement trackability | 38 | 72 |
Effective configuration management | 33 | 62 |
Continuous management support | 46 | 87 |
Continuous delivery | 47 | 89 |
Strengths (S) | Weaknesses (W) |
---|---|
Effective configuration management | Lack of team ownership |
Early project release | Resistance to change |
Automation testing | Lack of metrics monitoring |
Continuous delivery mode | Lack of communication strategies |
Cross-functional team | Lack of expertise in human resources |
High security | Lack of microservice architecture understanding |
Managing multiple environments | Clashes between Dev and Ops mentality |
Opportunities (O) | Threats (T) |
Requirement traceability | Too much focus on tools |
Product owner role | High implementation cost |
Continuous management support | Lack of knowledge about DevOps tools |
Continuous learning | Lack of visibility |
Continuous delivery |
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
RI | 0 | 0 | 0.58 | 0.9 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 |
Categories | S | W | O | T |
---|---|---|---|---|
S | 1 | 2 | 2 | 2 |
W | 0.5 | 1 | 0.5 | 0.5 |
O | 0.5 | 2 | 1 | 2 |
T | 0.5 | 2 | 0.5 | 1 |
Column Sum | 2.5 | 7 | 4 | 5.5 |
Categories | S | W | O | T | Average (Weight) |
---|---|---|---|---|---|
S | 0.4 | 0.29 | 0.5 | 0.36 | 0.388 |
W | 0.2 | 0.14 | 0.125 | 0.09 | 0.139 |
O | 0.2 | 0.29 | 0.25 | 0.36 | 0.275 |
T | 0.2 | 0.29 | 0.125 | 0.18 | 0.199 |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | Local Weight | |
---|---|---|---|---|---|---|---|---|
S1 | 1 | 1 | 0.142857 | 0.5 | 3 | 1 | 0.5 | 0.124 |
S2 | 1 | 1 | 0.5 | 0.5 | 1 | 1 | 0.5 | 0.104 |
S3 | 2 | 2 | 1 | 1 | 3 | 1 | 0.25 | 0.163 |
S4 | 2 | 2 | 1 | 1 | 1 | 0.5 | 0.2 | 0.125 |
S5 | 0.111111 | 1 | 0.333333 | 1 | 1 | 1 | 0.142857 | 0.076 |
S6 | 1 | 1 | 1 | 2 | 0.142857 | 1 | 0.111111 | 0.103 |
S7 | 2 | 2 | 4 | 4 | 2 | 2 | 1 | 0.305 |
Column Sum | 9.11 | 10 | 7.98 | 10 | 11.14 | 7.5 | 2.7 | Ʃ = 1.000 |
λmax = 7.16, CI = 0.027, CR = 0.020 < 0.10 |
W1 | W2 | W3 | W4 | W5 | W6 | W7 | Local Weight | |
---|---|---|---|---|---|---|---|---|
W1 | 1 | 0.5 | 0.333333 | 0.111111 | 2 | 2 | 0.142857 | 0.093 |
W2 | 2 | 1 | 0.5 | 0.333333 | 0.5 | 3 | 0.142857 | 0.111 |
W3 | 3 | 2 | 1 | 2 | 2 | 2 | 0.111111 | 0.18 |
W4 | 0.142857 | 3 | 0.5 | 1 | 1 | 0.166667 | 0.142857 | 0.097 |
W5 | 1 | 2 | 0.111111 | 1 | 1 | 1 | 0.2 | 0.098 |
W6 | 3 | 0.142857 | 1 | 2 | 1 | 1 | 0.142857 | 0.131 |
λmax = 7.25, CI = 0.041, CR = 0.031 < 0.10 |
O1 | O2 | O3 | O4 | O5 | Local Weight | |
---|---|---|---|---|---|---|
O1 | 1 | 0.2 | 0.2 | 0.333333 | 3 | 0.124 |
O2 | 0.2 | 1 | 0.111111 | 0.142857 | 0.333333 | 0.046 |
O3 | 5 | 6 | 1 | 3 | 5 | 0.547 |
O4 | 3 | 5 | 0.333333 | 1 | 0.2 | 0.228 |
O5 | 0.333 | 0.2 | 0.142857 | 0.2 | 1 | 0.056 |
Column Sum | 9.53 | 12.4 | 1.79 | 4.68 | 9.53 | Ʃ = 1.000 |
λmax = 4.331, CI = 0.082, CR = 0.074 < 0.10 |
T1 | T2 | T3 | T4 | Local Weight | |
---|---|---|---|---|---|
T1 | 1 | 3 | 2 | 0.2 | 0.252 |
T2 | 0.2 | 1 | 0.5 | 0.5 | 0.1 |
T3 | 2 | 2 | 1 | 2 | 0.371 |
T4 | 0.5 | 2 | 3 | 1 | 0.28 |
Column Sum | 3.7 | 8 | 6.5 | 3.7 | Ʃ = 1.000 |
λmax = 4.247, CI = 0.082, CR = 0.091 < 0.10 |
Category Weight | Factors | Local Weight (LW) | Local Rank (LR) | Global Weight (GW) | Global Rank (GR) | |
---|---|---|---|---|---|---|
Strengths | 0.388 | S1 | 0.124 | 4 | 0.0481 | 9 |
S2 | 0.104 | 5 | 0.04 | 11 | ||
S3 | 0.163 | 2 | 0.063 | 4.5 | ||
S4 | 0.125 | 3 | 0.049 | 8 | ||
S5 | 0.076 | 7 | 0.029 | 13 | ||
S6 | 0.103 | 6 | 0.04 | 11 | ||
S7 | 0.305 | 1 | 0.118 | 2 | ||
Weaknesses | 0.139 | W1 | 0.093 | 7 | 0.013 | 20.5 |
W2 | 0.111 | 4 | 0.015 | 17.5 | ||
W3 | 0.18 | 2 | 0.025 | 14 | ||
W4 | 0.097 | 6 | 0.013 | 20.5 | ||
W5 | 0.098 | 5 | 0.014 | 18.5 | ||
W6 | 0.131 | 3 | 0.018 | 16 | ||
W7 | 0.291 | 1 | 0.04 | 11 | ||
Opportunities | 0.275 | O1 | 0.124 | 3 | 0.034 | 12 |
O2 | 0.046 | 5 | 0.013 | 20.5 | ||
O3 | 0.547 | 1 | 0.15 | 1 | ||
O4 | 0.228 | 2 | 0.063 | 4.5 | ||
O5 | 0.056 | 4 | 0.015 | 17.5 | ||
Threats | 0.199 | T1 | 0.252 | 3 | 0.05 | 7 |
T2 | 0.1 | 4 | 0.02 | 15 | ||
T3 | 0.371 | 1 | 0.074 | 3 | ||
T4 | 0.28 | 2 | 0.056 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noorani, N.M.; Zamani, A.T.; Alenezi, M.; Shameem, M.; Singh, P. Factor Prioritization for Effectively Implementing DevOps in Software Development Organizations: A SWOT-AHP Approach. Axioms 2022, 11, 498. https://doi.org/10.3390/axioms11100498
Noorani NM, Zamani AT, Alenezi M, Shameem M, Singh P. Factor Prioritization for Effectively Implementing DevOps in Software Development Organizations: A SWOT-AHP Approach. Axioms. 2022; 11(10):498. https://doi.org/10.3390/axioms11100498
Chicago/Turabian StyleNoorani, Noor Mohammed, Abu Taha Zamani, Mamdouh Alenezi, Mohammad Shameem, and Priyanka Singh. 2022. "Factor Prioritization for Effectively Implementing DevOps in Software Development Organizations: A SWOT-AHP Approach" Axioms 11, no. 10: 498. https://doi.org/10.3390/axioms11100498
APA StyleNoorani, N. M., Zamani, A. T., Alenezi, M., Shameem, M., & Singh, P. (2022). Factor Prioritization for Effectively Implementing DevOps in Software Development Organizations: A SWOT-AHP Approach. Axioms, 11(10), 498. https://doi.org/10.3390/axioms11100498