Approximation of the Fixed Point for Unified Three-Step Iterative Algorithm with Convergence Analysis in Busemann Spaces
Abstract
:1. Introduction
- (1)
- , , , in the standard three-step iteration scheme, we obtain the Noor iterative scheme [27].
- (2)
- , , and in the standard three-step iteration scheme, we obtain the SP iterative scheme [28].
- (3)
- , , and in the standard three-step iteration scheme, we obtain the Picard-S iterative scheme [29].
- (4)
- and , and in the standard three-step iteration scheme, we obtain the iterative scheme [30].
- (5)
- , , in the standard three-step iteration scheme, we obtain the Abbas and Nazir iterative scheme [31].
- (6)
- , , and in the standard three-step iteration scheme, we obtain the P iterative scheme [32].
- (7)
- , , and in the standard three-step iteration scheme, we obtain the D iterative scheme [33].
- (8)
- , in the standard three-step iteration scheme, we obtain the Mann iterative scheme [34].
- (9)
- , and in the standard three-step iteration scheme, we obtain the Ishikawa iterative scheme [35].
2. Preliminaries
- (i)
- Contraction if there is so that
- (ii)
- Nonexpansive if
- (iii)
- Quasi-nonexpansive if and denote the set
- (iv)
- Satisfy Condition if
- (v)
- Suzuki generalized nonexpansive if it verifies Condition .
3. Main Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Babu, G.V.R.; Prasad, K. Mann iteration converges faster than Ishikawa iteration for the class of zamfirescu operators. Fixed Point Theory Appl. 2006, 2006, 49615. [Google Scholar] [CrossRef] [Green Version]
- Busemann, H. Spaces with nonpositive curvature. Acta Math. 1948, 80, 259–310. [Google Scholar] [CrossRef]
- Sosov, E.N. On analogues of weak convergence in a special metric space. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika 2004, 5, 84–89. [Google Scholar]
- Lawaong, W.; Panyanak, B. Approximating fixed points of nonexpansive nonself-mappings in CAT(0) spaces. Fixed Point Theory Appl. 2010, 2010, 367274. [Google Scholar] [CrossRef] [Green Version]
- Dhompongsa, S.; Inthakon, W.; Kaewkhao, A. Edelstien’s method and Fixed point theorems for some generalized nonexpansive mappings. J. Math. Anal. Appl. 2009, 350, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Falset, J.; Llorens-Fuster, E.; Suzuki, T. Fixed point theory for a class of generalized nonexpansive mappings. J. Math. Anal. Appl. 2011, 375, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Ðukić, D.; Paunović, L.; Radenović, S. Convergence of iterates with errors of uniformly quasi-Lipschitzian mappings in cone metric spaces. Kragujev. J. Math. 2011, 35, 399–410. [Google Scholar]
- Todorčević, V. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Xu, H.-K.; Altwaijry, N.; Chebbi, S. Strong convergence of mann’s iteration process in Banach Spaces. Mathematics 2020, 8, 954. [Google Scholar] [CrossRef]
- Ivanov, S.I. General local convergence theorems about the Picard iteration in arbitrary normed fields with applications to Super-Halley method for multiple polynomial zeros. Mathematics 2020, 8, 1599. [Google Scholar] [CrossRef]
- Berinde, V. Iterative Approximation of Fixed Points. In Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Ansari, Q.H.; Islam, M.; Yao, J.C. Nonsmooth variational inequalities on Hadamard manifolds. Appl. Anal. 2020, 99, 340–358. [Google Scholar] [CrossRef]
- Hammad, H.A.; ur Rehman, H.; De la Sen, M. Advanced Algorithms and common solutions to variational inequalities. Symmetry 2020, 12, 1198. [Google Scholar] [CrossRef]
- Dang, Y.; Sun, J.; Xu, H. Inertial accelerated algorithms for solving a split feasibility problem. J. Ind. Manag. Optim. 2017, 13, 1383–1394. [Google Scholar] [CrossRef] [Green Version]
- Hammad, H.A.; ur Rehman, H.; De la Sen, M. Shrinking projection methods for accelerating relaxed inertial Tseng-type algorithm with applications. Math. Probl. Eng. 2020, 2020, 7487383. [Google Scholar] [CrossRef]
- Tuyen, T.M.; Hammad, H.A. Effect of Shrinking Projection and CQ-Methods on Two Inertial Forward-Backward Algorithms for Solving Variational Inclusion Problems. In Rendiconti del Circolo Matematico di Palermo Series 2; Available online: https://doi.org/10.1007/s12215-020-00581-8 (accessed on 27 February 2021).
- Papadopoulos, A. Metric Spaces, Convexity and Nonpositive Curvature. In IRMA Lectures in Mathematics and Theoretical Physics; European Mathematical Society: Strasbourg, France, 2005. [Google Scholar]
- Sharma, N.; Mishra, L.N.; Mishra, V.N.; Almusawa, H. End point approximation of standard three-step multivalued iteration algorithm for nonexpansive mappings. Appl. Math. Inf. Sci. 2021, 15, 73–81. [Google Scholar]
- Khamsi, M.A.; Kirk, W.A. An Introduction to Metric Spaces and Fixed Point Theory; John Wiley: New York, NY, USA, 2011. [Google Scholar]
- Bridson, M.; Haefliger, A. Metric Spaces of Non-Positive Curvature; Springer: Berlin, Germany, 1999. [Google Scholar]
- Kirk, W.A.; Panyanak, B. A concept of convergence in geodesic spaces. Nonlinear Anal. 2008, 68, 3689–3696. [Google Scholar] [CrossRef]
- Kirk, W.A. Geodesic geometry and fixed point theory. In Seminar of Mathematical Analysis; Colecc. Abierta: Malaga, Spain, 2003. [Google Scholar]
- Foertsch, T.; Lytchak, A.; Schroeder, V. Non-positive curvature and the Ptolemy inequality. Int. Math. Res. Not. 2007, 2007, rnm100. [Google Scholar]
- Kirk, W.A. Geodesic geometry and fixed point theory II. In International Conference on Fixed Point Theory and Applications; Yokohama Publ.: Yokohama, Japan, 2004; pp. 113–142. [Google Scholar]
- Bagherboum, M. Approximating fixed points of mappings satisfying condition (E) in Busemann space. Numer. Algorithms 2016, 71, 25–39. [Google Scholar] [CrossRef]
- Kohlenbach, U. Some Logical theorems with applications in functional analysis. Tran. Am. Math. Soc. 2005, 357, 89–128. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.A. New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 2000, 251, 217–229. [Google Scholar] [CrossRef] [Green Version]
- Phuengrattana, W.; Suantai, S. On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval. J. Comput. Appl. Math. 2011, 235, 3006–3014. [Google Scholar] [CrossRef] [Green Version]
- Gursoy, F.; Karakaya, V. A Picard-S hybrid type iteration method for solving a differential equation with retarded argument. arXiv 2014, arXiv:1403.25-46. [Google Scholar]
- Chugh, R.; Kumar, V.; Kumar, S. Strong Convergence of a new three step iterative scheme in Banach spaces. Am. J. Comput. Math. 2012, 2, 345–357. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.; Nazir, T. A new faster iteration process applied to constrained minimization and feasibility problems. Mat. Vesn. 2014, 66, 223–234. [Google Scholar]
- Sainuan, P. Rate of convergence of P-iteration and S-iteration for continuous functions on closed intervals. Thai J. Math. 2015, 13, 449–457. [Google Scholar]
- Daengsaen, J.; Khemphet, A. On the Rate of Convergence of P-Iteration, SP-Iteration, and D-Iteration Methods for Continuous Non-decreasing Functions on Closed Intervals. Abstr. Appl. Anal. 2018, 2018, 7345401. [Google Scholar] [CrossRef] [Green Version]
- Mann, W.R. Mean value methods in iteration. Proc. Am. Math. Soc. 1953, 4, 506–510. [Google Scholar] [CrossRef]
- Ishikawa, S. Fixed points by a new iteration method. Proc. Am. Math. Soc. 1974, 44, 147–150. [Google Scholar] [CrossRef]
- Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 1984. [Google Scholar]
- Dhompongsa, S.; Kirk, W.A.; Sims, B. Fixed points of uniformly lipschitzian mappings. Nonlinear Anal. 2006, 65, 762–772. [Google Scholar] [CrossRef]
- Kirk, W.; Shahzad, N. Fixed Point Theory in Distance Spaces; Springer: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2014. [Google Scholar]
- Ullah, K.; Khan, B.A.; Ozer, O.; Nisar, Z. Some Convergence Results Using K* Iteration Process in Busemann Spaces. Malays. J. Math. Sci. 2019, 13, 231–249. [Google Scholar]
- Takahashi, T. A convexity in metric spaces and nonexpansive mappings. Kodai Math. Semin. Rep. 1970, 22, 142–149. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almusawa, H.; Hammad, H.A.; Sharma, N. Approximation of the Fixed Point for Unified Three-Step Iterative Algorithm with Convergence Analysis in Busemann Spaces. Axioms 2021, 10, 26. https://doi.org/10.3390/axioms10010026
Almusawa H, Hammad HA, Sharma N. Approximation of the Fixed Point for Unified Three-Step Iterative Algorithm with Convergence Analysis in Busemann Spaces. Axioms. 2021; 10(1):26. https://doi.org/10.3390/axioms10010026
Chicago/Turabian StyleAlmusawa, Hassan, Hasanen A. Hammad, and Nisha Sharma. 2021. "Approximation of the Fixed Point for Unified Three-Step Iterative Algorithm with Convergence Analysis in Busemann Spaces" Axioms 10, no. 1: 26. https://doi.org/10.3390/axioms10010026
APA StyleAlmusawa, H., Hammad, H. A., & Sharma, N. (2021). Approximation of the Fixed Point for Unified Three-Step Iterative Algorithm with Convergence Analysis in Busemann Spaces. Axioms, 10(1), 26. https://doi.org/10.3390/axioms10010026