Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial Expansion
Abstract
:1. Introduction
2. Preliminary Results
3. The Comprehensive Class
- By putting and the class reduces to the subclass of meromorphic bi-Bazilevič functions of order β and type which was considered by Jahangiri et al. [33].
- By putting and the class reduces to the subclass of meromorphic bi-starlike functions of order which was considered by Hamidi et al. [32].
- By putting the class reduces to the class in Definition 1.
4. A Set of Corollaries and Consequences
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Çağlar, M.; Deniz, E.; Srivastava, H.M. Second Hankel determinant for certain subclasses of bi-univalent functions. Turk. J. Math. 2017, 41, 694–706. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Bansal, D. Coefficient estimates for a subclass of analytic and bi-univalent functions. J. Egypt. Math. Soc. 2015, 23, 242–246. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Bulut, S.; Çağlar, M.; Yagmur, N. Coefficient estimates for a general subclass of analytic and bi-univalent functions. Filomat 2013, 27, 831–842. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficient estimates for some general subclasses of analytic and bi-univalent functions. Afrika Mat. 2017, 28, 693–706. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gaboury, S.; Ghanim, F. Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions. Acta Math. Sci. Ser. B Engl. Ed. 2016, 36, 863–871. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions. Acta Univ. Apulensis Math. Inform. 2015, 23, 153–164. [Google Scholar]
- Srivastava, H.M.; Khan, S.; Ahmad, Q.Z.; Khan, N.; Hussain, S. The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator. Stud. Univ. Babeş-Bolyai Math. 2018, 63, 419–436. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sakar, F.M.; Ö. Güney, H. Some general coefficient estimates for a new class of analytic and bi-univalent functions defined by a linear combination. Filomat 2018, 34, 1313–1322. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sivasubramanian, S.; Sivakumar, R. Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions. Tbilisi Math. J. 2014, 7, 1–10. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sümer Eker, S.; Ali, R.M. Coefficient bounds for a certain class of analytic and bi-univalent functions. Filomat 2015, 29, 1839–1845. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sümer Eker, S.; Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator. Bull. Iran. Math. Soc. 2018, 44, 149–157. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Wanas, A.K. Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination. Kyungpook Math. J. 2019, 59, 493–503. [Google Scholar]
- Srivastava, H.M.; Wanas, A.K.; Murugusundaramoorthy, G. A certain family of bi-univalent functions associated with the Pascal distribution series based upon the Horadam polynomials. Surveys Math. Appl. 2021, 16, 193–205. [Google Scholar]
- Zireh, A.; Adegani, E.A.; Bulut, S. Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions defined by subordination. Bull. Belg. Math. Soc. Simon Stevin 2016, 23, 487–504. [Google Scholar] [CrossRef]
- Zireh, A.; Adegani, E.A.; Bidkham, M. Faber polynomial coefficient estimates for subclass of bi-univalent functions defined by quasi-subordinate. Math. Slovaca 2018, 68, 369–378. [Google Scholar] [CrossRef]
- Panigrahi, T. Coefficient bounds for certain subclasses of meromorphic and bi-univalent functions. Bull. Korean Math. Soc. 2013, 50, 1531–1538. [Google Scholar] [CrossRef] [Green Version]
- Schober, G. Coefficients of inverses of meromorphic univalent functions. Proc. Am. Math. Soc. 1977, 67, 111–116. [Google Scholar] [CrossRef]
- Xiao, H.-G.; Xu, Q.-H. Coefficient estimates for three generalized classes of meromorphic and bi-univalent functions. Filomat 2015, 29, 1601–1612. [Google Scholar] [CrossRef]
- Faber, G. Über polynomische Entwickelungen. Math. Ann. 1903, 57, 389–408. [Google Scholar] [CrossRef] [Green Version]
- Airault, H.; Bouali, A. Differential calculus on the Faber polynomials. Bull. Sci. Math. 2006, 130, 179–222. [Google Scholar] [CrossRef] [Green Version]
- Airault, H.; Ren, J. An algebra of differential operators and generating functions on the set of univalent functions. Bull. Sci. Math. 2002, 126, 343–367. [Google Scholar] [CrossRef] [Green Version]
- Todorov, P.G. On the Faber polynomials of the univalent functions of class Σ. J. Math. Anal. Appl. 1991, 162, 268–276. [Google Scholar] [CrossRef] [Green Version]
- Schiffer, M. Sur un probléme déxtrémum de la représentation conforme. Bull. Soc. Math. Fr. 1938, 66, 48–55. [Google Scholar]
- Duren, P.L. Coefficients of meromorphic schlicht functions. Am. Math. Soc. 1971, 28, 169–172. [Google Scholar] [CrossRef]
- Janani, T.; Murugusundaramoorthy, G. Coefficient estimates of meromorphic bi-starlike functions of complex order. Int. J. Anal. Appl. 2014, 4, 68–77. [Google Scholar]
- Orhan, H.; Magesh, N.; Balaji, V.K. Initial coefficient bounds for certain classes of Meromorphic bi-univalent functions. Asian-Eur. J. Math. 2014, 7, 1–9. [Google Scholar] [CrossRef]
- Motamednezhad, A.; Salehian, S. Faber polynomial coefficient estimates for certain subclass of meromorphic bi-univalent functions. Commun. Korean Math. Soc. 2018, 33, 1229–1237. [Google Scholar] [CrossRef]
- Salehian, S.; Zireh, A. Coefficient estimate for certain subclass of meromorphic and bi-univalent functions. Commun. Korean Math. Soc. 2017, 32, 389–397. [Google Scholar] [CrossRef] [Green Version]
- Zireh, A.; Salehian, S. Initial coefficient bounds for certain class of meromorphic bi-univalent functions. Acta Univ. Sapient. Math. 2019, 11, 224–235. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Joshi, S.B.; Joshi, S.S.; Pawar, H. Coefficient estimates for certain subclasses of meromorphically bi-univalent functions. Palest. J. Math. 2016, 5, 250–258. [Google Scholar]
- Hamidi, S.G.; Halim, S.A.; Jahangiri, J.M. Faber polynomials coefficient estimates for meromorphic bi-starlike functions. Int. J. Math. Math. Sci. 2013, 2013, 498159. [Google Scholar] [CrossRef] [Green Version]
- Jahangiri, J.M.; Hamidi, S.G. Coefficients of meromorphic bi-Bazilevič functions. J. Complex Anal. 2014, 2014, 63917. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Motamednezhad, A.; Adegan, E.A. Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator. Mathematics 2020, 8, 172. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Murugusundaramoorthy, G.; El-Deeb, S.M. Faber polynomial coefficient estmates of bi-close-to-convex functions connected with the Borel distribution of the Mittag-Leffler type. J. Nonlinear Var. Anal. 2021, 5, 103–118. [Google Scholar]
- Bouali, A. Faber polynomials, Cayley-Hamilton equation and Newton symmetric functions. Bull. Sci. Math. 2006, 130, 49–70. [Google Scholar] [CrossRef] [Green Version]
- Pommerenke, C. Univalent Functions, 1st ed.; Vandenhoeck und Ruprecht: Göttingen, Germany, 1975. [Google Scholar]
- Hamidi, S.G.; Janani, T.; Murugusundaramoorthy, G.; Jahangiri, J.M. Coefficient estimates for certain classes of meromorphic bi-univalent functions. C. R. Acad. Sci. Paris. Ser. I 2014, 352, 277–282. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Khan, B.; Srivastava, H.M.; Tahir, M.; Darus, H.; Ahmad, Q.Z.; Khan, N. Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Math. 2021, 6, 1024–1039. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Altınkaya, S.; Yalcin, S. Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator. Filomat 2018, 32, 503–516. [Google Scholar] [CrossRef]
- Srivastava, H.M.; El-Deeb, S.M. The Faber polynomial expansion method and the Taylor–Maclaurin coefficient estimates of bi-close-to-convex functions connected with the q-convolution. AIMS Math. 2020, 5, 7087–7106. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M.; Motamednezhad, A.; Salehian, S. Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial Expansion. Axioms 2021, 10, 27. https://doi.org/10.3390/axioms10010027
Srivastava HM, Motamednezhad A, Salehian S. Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial Expansion. Axioms. 2021; 10(1):27. https://doi.org/10.3390/axioms10010027
Chicago/Turabian StyleSrivastava, Hari Mohan, Ahmad Motamednezhad, and Safa Salehian. 2021. "Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial Expansion" Axioms 10, no. 1: 27. https://doi.org/10.3390/axioms10010027
APA StyleSrivastava, H. M., Motamednezhad, A., & Salehian, S. (2021). Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial Expansion. Axioms, 10(1), 27. https://doi.org/10.3390/axioms10010027