Spinels in Meteorites: Observation Using Mössbauer Spectroscopy
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Chromite in Ordinary Chondrites
3.2. Chromite in Seymchan Main Group Pallasite
3.3. Daubréelite in Troilite Extracted from the Sikhote-Alin Iron Meteorite
3.4. Magnesioferrite in the Fusion Crust of Chelyabinsk LL5 Fragment
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Weisberg, M.K.; McCoy, T.J.; Krot, A.N. Systematics and evaluation of meteorite classification. In Meteorites and the Early Solar System II; Lauretta, D.S., McSween, H.Y., Jr., Binzel, R.P., Eds.; University of Arizona Press: Tucson, AZ, USA, 2006; pp. 19–52. ISBN 9780816525621. [Google Scholar]
- Jarosewich, E. Chemical analysis of meteorites: A compilation of stony and iron meteorites analyses. Meteoritics 1990, 25, 323–337. [Google Scholar] [CrossRef]
- Rubin, A.E. Mineralogy of meteorite groups. Meteorit. Planet. Sci. 1997, 32, 231–247. [Google Scholar] [CrossRef]
- Sprenkel-Segel, E.L.; Hanna, S.S. Mössbauer analysis of iron in stone meteorites. Geochim. Cosmochim. Acta 1964, 28, 1913–1931. [Google Scholar] [CrossRef]
- Dos Santos, E.; Gattacceca, J.; Rochette, P.; Scorzelli, R.B.; Fillion, G. Magnetic hysteresis properties and 57Fe Mössbauer spectroscopy of iron and stony-iron meteorites: Implications for mineralogy and thermal history. Phys. Earth Planet. Inter. 2015, 242, 50–64. [Google Scholar] [CrossRef]
- Sato, W.; Nakagawa, M.; Shirai, N.; Ebihara, M. Mössbauer spectroscopic study on the composition of Fe-containing minerals in ordinary chondrites, Miller Range 07710 and Yamato 790272. Hyperfine Interact. 2018, 239. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Grokhovsky, V.I.; Petrova, E.V.; Larionov, M.Y.; Goryunov, M.V.; Semionkin, V.A. Mössbauer spectroscopy with a high velocity resolution applied for the study of meteoritic iron-bearing minerals. J. Mol. Struct. 2013, 1044, 268–278. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Maksimova, A.A.; Goryunov, M.V.; Yakovlev, G.A.; Petrova, E.V.; Larionov, M.Y.; Grokhovsky, V.I.; Semionkin, V.A. Mössbauer spectroscopy with a high velocity resolution: Advances in the study of meteoritic iron-bearing minerals. In Proceedings of the Workshop on The Modern Analytical Methods Applied to Earth and Planetary Sciences; Gucsik, A., Ed.; The MicroMatLab Kft Hungary: Sopron, Hungary, 2015; pp. 43–86. ISBN 978-963-12-1410-9. [Google Scholar]
- Maksimova, A.A.; Chukin, A.V.; Oshtrakh, M.I. Revealing of the minor iron-bearing phases in the Mössbauer spectra of Chelyabinsk LL5 ordinary chondrite fragment. In Mössbauer Spectroscopy in Materials Science 2016, Proceedings of the International Conference of American Institute of Physics; Tuček, J., Miglierini, M., Eds.; AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2016; Volume 1781, p. 020016. [Google Scholar] [CrossRef]
- Maksimova, A.A.; Oshtrakh, M.I.; Petrova, E.V.; Grokhovsky, V.I.; Semionkin, V.A. Study of Chelyabinsk LL5 meteorite fragment with light lithology and its fusion crust using Mössbauer spectroscopy with a high velocity resolution. In Mössbauer Spectroscopy in Materials Science 2014, Proceedings of the International Conference of American Institute of Physics; Tuček, J., Miglierini, M., Eds.; AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2014; Volume 1622, pp. 24–29. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Klencsár, Z.; Petrova, E.V.; Grokhovsky, V.I.; Chukin, A.V.; Shtoltz, A.K.; Maksimova, A.A.; Felner, I.; Kuzmann, E.; Homonnay, Z.; et al. Iron sulfide (troilite) inclusion extracted from Sikhote-Alin iron meteorite: Composition, structure and magnetic properties. Mat. Chem. Phys. 2016, 174, 100–111. [Google Scholar] [CrossRef]
- Kohout, T.; Haloda, J.; Halodová, P.; Meier, M.M.M.; Maden, C.; Busemann, H.; Laubenstein, M.; Caffee, M.W.; Welten, K.C.; Hopp, J.; et al. Annama H chondrite-mineralogy, physical properties, cosmic ray exposure, and parent body history. Meteorit. Planet. Sci. 2017, 52, 1525–1541. [Google Scholar] [CrossRef]
- Maksimova, A.A.; Oshtrakh, M.I.; Chukin, A.V.; Felner, I.; Yakovlev, G.A.; Semionkin, V.A. Characterization of Northwest Africa 6286 and 7857 ordinary chondrites using X-ray diffraction, magnetization measurements and Mössbauer spectroscopy. Spectrochim. Acta Part A Molec. Biomolec. Spectrosc. 2018, 192, 275–284. [Google Scholar] [CrossRef]
- Maksimova, A.A.; Kamalov, R.V.; Chukin, A.V.; Felner, I.; Oshtrakh, M.I. An analysis of orthopyroxene from Tsarev L5 meteorite using X-ray diffraction, magnetization measurement and Mössbauer spectroscopy. J. Mol. Struct. 2018, 1174, 6–11. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Maksimova, A.A.; Goryunov, M.V.; Petrova, E.V.; Felner, I.; Chukin, A.V.; Grokhovsky, V.I. Study of metallic Fe-Ni-Co alloy and stony part isolated from Seymchan meteorite using X-ray diffraction, magnetization measurement and Mössbauer spectroscopy. J. Mol. Struct. 2018, 1174, 112–121. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Semionkin, V.A. Mössbauer Spectroscopy with a high velocity resolution: Advances in biomedical, pharmaceutical, cosmochemical and nanotechnological research. Spectrochim. Acta Part A Molec. Biomolec. Spectrosc. 2013, 100, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Oshtrakh, M.I.; Semionkin, V.A. Mössbauer Spectroscopy with a high velocity resolution: Principles and applications. In Mössbauer Spectroscopy in Materials Science 2016, Proceedings of the International Conference of American Institute of Physics; Tuček, J., Miglierini, M., Eds.; AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2016; Volume 1781, p. 020019. [Google Scholar] [CrossRef]
- Maksimova, A.A.; Klencsár, Z.; Oshtrakh, M.I.; Petrova, E.V.; Grokhovsky, V.I.; Kuzmann, E.; Homonnay, Z.; Semionkin, V.A. Mössbauer parameters of ordinary chondrites influenced by the fit accuracy of the troilite component: An example of Chelyabinsk LL5 meteorite. Hyperfine Interact. 2016, 237, 33. [Google Scholar] [CrossRef]
- Maksimova, A.A.; Oshtrakh, M.I.; Petrova, E.V.; Grokhovsky, V.I.; Semionkin, V.A. Comparison of iron-bearing minerals in ordinary chondrites from H, L and LL groups using Mössbauer spectroscopy with a high velocity resolution. Spectrochim. Acta Part A Molec. Biomolec. Spectrosc. 2017, 172, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Gattacceca, J.; Rochette, P.; Lagroix, F.; Mathé, P.E.; Zanda, B. Low temperature magnetic transition of chromite in ordinary chondrites. Geophys. Res. Lett. 2011, 38, L10203. [Google Scholar] [CrossRef]
- Maksimova, A.A.; Oshtrakh, M.I.; Grokhovsky, V.I.; Petrova, E.V.; Semionkin, V.A. Mössbauer spectroscopy of H, L and LL ordinary chondrites. Hyperfine Interact. 2016, 237, 134. [Google Scholar] [CrossRef]
- Dézsi, I.; Szûcs, I.; Sváb, E. Mössbauer spectroscopy of spinels. J. Radioanal. Nucl. Chem. 2000, 246, 15–19. [Google Scholar] [CrossRef]
- Lenaz, D.; Skogby, H.; Princivalle, F.; Hålenius, U. Structural changes and valence states in the MgCr2O4–FeCr2O4 solid solution series. Phys. Chem. Mineral. 2004, 31, 633–642. [Google Scholar] [CrossRef]
- Osborne, M.D.; Fleet, M.E.; Bancroft, G.M. Fe2+–Fe3+ ordering in chromite and Cr-bearing spinels. Contrib. Mineral. Petrol. 1981, 77, 251–255. [Google Scholar] [CrossRef]
- Schmidbauer, E. 57Fe Mössbauer spectroscopy and magnetization of cation-deficient Fe2TiO4 and FeCr2O4. Part I: 57Fe Mössbauer spectroscopy. Phys. Chem. Mineral. 1987, 14, 533–641. [Google Scholar]
- Quintiliani, M.; Andreozzi, G.B.; Skogby, H. Synthesis and Mössbauer characterization of Fe1+xCr2-xO4 (0 ≤ x ≤ 2/3) spinel single crystals. Period. Mineral. 2011, 80, 39–55. [Google Scholar] [CrossRef]
- Lenaz, D.; Skogby, H. Structural changes in the FeAl2O4–FeCr2O4 solid solution series and their consequences on natural Cr-bearing spinels. Phys. Chem. Mineral. 2013, 40, 587–595. [Google Scholar] [CrossRef]
- De Grave, E.; Govaert, A.; Chambaere, D.; Robbrecht, G. A Mössbauer effect study of MgFe2O4. Physica B+C 1979, 96, 103–110. [Google Scholar] [CrossRef]
- Lenaz, D.; Skogby, H.; Princivalle, F.; Hålenius, U. The MgCr2O4–MgFe2O4 solid solution series: Effects of octahedrally coordinated Fe3+ on T–O bond lengths. Phys. Chem. Miner. 2006, 33, 465–474. [Google Scholar] [CrossRef]
- Park, J.Y.; Kim, K.J. Magnetotransport and magnetic properties of sulfospinels ZnxFe1–xCr2S4. Hyperfine Interact. 2006, 169, 1267–1272. [Google Scholar] [CrossRef]
- Dey, K.; Indra, A.; Giri, S. Critical behavior of multiferroic sulpho spinel compounds: MCr2S4 (M j Co & Fe). J. Alloys Comp. 2017, 726, 74–80. [Google Scholar] [CrossRef]
- Mertinat, M.; Tsurkan, V.; Samusi, D.; Tidecks, R.; Haider, F. Low-temperature structural transition in FeCr2S4. Phys. Rev. B 2005, 71, 100408(R). [Google Scholar] [CrossRef]
- Čuda, J.; Kohout, T.; Tuček, J.; Filip, J.; Medřík, I.; Mashlan, M.; Zbořil, R. Mössbauer study and magnetic measurement of troilite extract from Natan iron meteorite. In Mössbauer Spectroscopy in Materials Science 2012, Proceedings of the International Conference of American Institute of Physics; Tuček, J., Machala, L., Eds.; AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2012; Volume 1489, pp. 145–153. [Google Scholar] [CrossRef]
- Klencsár, Z.; Kuzmann, E.; Homonnay, Z.; Vertes, A.; Simopoulos, A.; Devlin, E.; Kallias, G. Interplay between magnetic order and the vibrational state of Fe in FeCr2S4. J. Phys. Chem. Solids 2003, 64, 325–331. [Google Scholar] [CrossRef]
- Chen, Z.; Tan, S.; Yang, Z.; Zhang, Y. Evidence for a non-double-exchange mechanism in FeCr2S4. Phys. Rev. B 1999, 59, 11172–11174. [Google Scholar] [CrossRef]
- Van Diepen, A.M.; Lotgering, F.K.; Olijhoek, J.F. Effect of small variations of the Fe/Cr ratio on the 57Fe Mössbauer spectra of FeCr2S4. J. Magn. Magn. Mater. 1976, 3, 117–119. [Google Scholar] [CrossRef]
- Riedel, E.; Karl, R. Mössbauer Studies of Thiospinels. III. The System FeCr2S4–Feln2S4. J. Solid State Chem. 1981, 38, 40–47. [Google Scholar] [CrossRef]
- Genge, M.J.; Grady, M.M. The fusion crusts of stony meteorites: Implications for the atmospheric reprocessing of extraterrestrial materials. Meteorit. Planet. Sci. 1999, 34, 341–356. [Google Scholar] [CrossRef]
- Thaisen, K.G.; Taylor, L.A. Meteorite fusion crust variability. Meteorit. Planet. Sci. 2009, 44, 871–878. [Google Scholar] [CrossRef]
- Antic, B.; Jovic, N.; Pavlovic, M.B.; Kremenovic, A.; Manojlović, D.; Vucinic-Vasic, M.; Nikolić, A.S. Magnetization enhancement in nanostructured random type MgFe2O4 spinel prepared by soft mechanochemical route. J. App. Phys. 2010, 107, 043525. [Google Scholar] [CrossRef]
Metal | Chelyabinsk LL5 No 1a | Chelyabinsk LL5 No 2 | NWA 6286 LL6 | NWA 7857 LL6 | Tsarev L5 | Annama H5 |
---|---|---|---|---|---|---|
Fe | 13.2 | 13.1 | 12.2–13.5 | 10.2–16.1 | 10.7 | 8.0–8.4 |
Cr | 21.2 | 21.0 | 19.9–21.6 | 17.5–28.4 | 21.1 | 15.2–16.1 |
Al | 3.5 | 3.9 | 3.1–3.8 | 3.3–4.8 | 3.2 | 2.8–3.0 |
Mg | 1.5 | 1.3 | 1.5–1.9 | 1.2–2.0 | 3.7 | 1.8–1.4 |
Ti | 1.0 | 0.6 | 0.9–1.6 | 0.2–1.1 | 1.0 | 0.4 |
Phase/Mineral | Chelyabinsk LL5 No 1a 1 | Chelyabinsk LL5 No 2 2 | NWA 6286 LL6 3 | NWA 7857 LL6 3 | Tsarev L5 4 | Annama H5 5 |
---|---|---|---|---|---|---|
Olivine | 50.6 | 48.6 | 57.3 | 59.2 | 43.1 | 38.6 |
Anorthite | 8.2 | 8.2 | 11.8 | 9.4 | 9.7 | 4.7 |
Orthopyroxene | 31.9 | 25.2 | 18.9 | 19.9 | 28.6 | 36.6 |
Clinopyroxene | 5.5 | 6.9 | 3.7 | 3.6 | 6.2 | 1.4 |
Troilite | 6.7 | 6.2 | 4.8 | 3.6 | 7.2 | 5.6 |
α-Fe(Ni, Co) | 1.4 | 1.8 | 0.2 | 1.8 | 0.6 | 9.0 |
γ-Fe(Ni, Co) | 0.9 | 0.8 | 1.2 | 0.5 | 1.3 | |
Chromite | 1.5 | 1.5 | 1.7 | 1.7 | 3.5 | 2.7 |
Hercynite | 0.4 | 0.8 | 0.4 | 0.3 | 0.7 | 0.2 |
Parameter | Chelyabinsk LL5 No 1a 1 | Chelyabinsk LL5 No 2 2 | NWA 6286 LL6 3 | NWA 7857 LL6 4 | Tsarev L5 3 | Annama H5 5 | Synthetic Spinels 6 |
---|---|---|---|---|---|---|---|
Chromite | |||||||
Γ, mm/s | 0.776 ± 0.107 | 0.776 ± 0.034 | 0.700 ± 0.028 | 0.776 ± 0.028 | 0.568 ± 0.030 | 0.498 ± 0.028 | 0.33 |
δ, mm/s | 0.855 ± 0.026 | 0.777 ± 0.017 | 0.776 ± 0.014 | 0.662 ± 0.014 | 0.909 ± 0.015 | 0.748 ± 0.014 | 0.90 |
A, % | ~1.6(2) | ~2.7(3) | ~3.1(3) | ~2.9(3) | ~2.3(2) | ~2.4(2) | 100 |
Hercynite and/or mixed Fe(Al1–xCrx)2O4 spinel | |||||||
Γ, mm/s | 0.234 ± 0.033 | 0.238 ± 0.033 | 0.235 ± 0.028 | 0.237 ± 0.028 | 0.246 ± 0.030 | 0.260 ± 0.028 | 0.75 |
δ, mm/s | 0.883 ± 0.027 | 0.997 ± 0.017 | 0.987 ± 0.014 | 0.959 ± 0.014 | 0.843 ± 0.015 | 0.852 ± 0.014 | 0.91 |
ΔEQ, mm/s | 1.499 ± 0.469 | 1.480 ± 0.017 | 1.434 ± 0.014 | 1.504 ± 0.014 | 1.414 ± 0.018 | 1.465 ± 0.014 | 1.57 |
A, % | ~0.7(1) | ~1.7(2) | ~0.9(1) | ~1.6(2) | ~1.0(1) | ~0.9(1) | 100 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maksimova, A.A.; Chukin, A.V.; Felner, I.; Oshtrakh, M.I. Spinels in Meteorites: Observation Using Mössbauer Spectroscopy. Minerals 2019, 9, 42. https://doi.org/10.3390/min9010042
Maksimova AA, Chukin AV, Felner I, Oshtrakh MI. Spinels in Meteorites: Observation Using Mössbauer Spectroscopy. Minerals. 2019; 9(1):42. https://doi.org/10.3390/min9010042
Chicago/Turabian StyleMaksimova, Alevtina A., Andrey V. Chukin, Israel Felner, and Michael I. Oshtrakh. 2019. "Spinels in Meteorites: Observation Using Mössbauer Spectroscopy" Minerals 9, no. 1: 42. https://doi.org/10.3390/min9010042
APA StyleMaksimova, A. A., Chukin, A. V., Felner, I., & Oshtrakh, M. I. (2019). Spinels in Meteorites: Observation Using Mössbauer Spectroscopy. Minerals, 9(1), 42. https://doi.org/10.3390/min9010042