Correlation of Hydrocarbon Reservoir Sandstones Using Heavy Mineral Provenance Signatures: Examples from the North Sea and Adjacent Areas
Abstract
:1. Introduction
2. Background
- weathering at source, prior to incorporation in the transport system
- mechanical breakdown during transport
- weathering during periods of alluvial storage on the floodplain
- hydraulic processes during transport and final deposition
- diagenesis during deep burial
- weathering at outcrop
3. History of Application
4. Correlation Using Conventional Heavy Mineral Assemblages: Strathmore Field, West of Shetland
5. Correlation Using Heavy Mineral Morphology: Culzean Field Area, Central North Sea
6. Correlation Using Garnet Geochemistry: Oseberg Field, Northern North Sea
7. Correlation Using Rutile Geochemistry and Zircon Geochronology: Magnus Field, Northern North Sea
8. Application of Heavy Mineral Stratigraphy at the Well Site: Clair Field, West of Shetland
9. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jones, R.W.; Simmons, M.D. (Eds.) Biostratigraphy in Production and Development Geology; Geological Society, Special Publication: London, UK, 1999; p. 152. [Google Scholar]
- Dunay, R.E.; Hailwood, E.A. (Eds.) Non-Biostratigraphical Methods of Dating and Correlation; Geological Society, Special Publication: London, UK, 1995; p. 89. [Google Scholar]
- Ratcliffe, K.T.; Zaitlin, B.A. (Eds.) Application of Modern Stratigraphic Techniques: Theory and Case Histories; SEPM Special Publication: Broken Arrow, OK, USA, 2010; p. 94. [Google Scholar]
- Pearce, T.J.; Besly, B.M.; Wray, D.S.; Wright, D.K. Chemostratigraphy: A method to improve interwell correlation in barren sequences—A case study using onshore Duckmantian/Stephanian sequences (West Midlands, U.K.). Sediment. Geol. 1999, 124, 197–220. [Google Scholar] [CrossRef]
- Ratcliffe, K.T.; Wilson, A.; Payenberg, T.; Rittersbacher, A.; Hildred, G.V.; Flint, S.S. Ground truthing chemostratigraphic correlations in fluvial systems. Bull. Am. Assoc. Pet. Geol. 2015, 99, 155–180. [Google Scholar]
- Mearns, E.W.; Knarud, R.; Raestad, N.; Stanley, K.O.; Stockbridge, C.P. Samarium-neodymium isotope stratigraphy of the Lunde and Statfjord Formations of Snorre oil field, northern North Sea. J. Geol. Soc. 1989, 146, 217–228. [Google Scholar] [CrossRef]
- Dalland, A.; Mearns, E.W.; McBride, J.J. The application of samarium-neodymium (Sm-Nd) provenance ages to correlation of biostratigraphically barren strata: A case study of the Statfjord Formation in the Gullfaks oilfield, Norwegian North Sea. In Non-Biostratigraphical Methods of Dating and Correlation; Dunay, R.E., Hailwood, E.A., Eds.; Geological Society, Special Publications: London, UK, 1995; Volume 89, pp. 201–222. [Google Scholar]
- Jeans, C.V. Clay mineral stratigraphy in Palaeozoic and Mesozoic red bed facies, onshore and offshore UK. In Non-Biostratigraphical Methods of Dating and Correlation; Dunay, R.E., Hailwood, E.A., Eds.; Geological Society of London Special Publications: London, UK, 1995; Volume 89, pp. 31–55. [Google Scholar]
- Pay, M.D.; Astin, T.R.; Parker, A. Clay mineral distribution in the Devonian-Carboniferous sandstones of the Clair Field, west of Shetland, and its significance for reservoir quality. Clay Miner. 2000, 35, 151–162. [Google Scholar] [CrossRef]
- Morton, A.C. Value of heavy minerals in sediments and sedimentary rocks for provenance, transport history and stratigraphic correlation. In Quantitative Mineralogy and Microanalysis of Sediments and Sedimentary Rocks; Mineralogical Association of Canada Short Course Series; Sylvester, P., Ed.; Mineralogical Association of Canada: Québec, QC, Canada, 2012; Volume 42, pp. 133–165. [Google Scholar]
- Hurst, A.; Morton, A. Provenance models: The role of sandstone mineral-chemical stratigraphy. In Sediment Provenance Studies in Hydrocarbon Exploration and Production; Scott, R.A., Smyth, H., Morton, A., Richardson, N., Eds.; Geological Society of London, Special Publications: London, UK, 2014; Volume 386, pp. 7–26. [Google Scholar]
- Garzanti, E.; Andò, S.; Vezzoli, G.; Lustrino, M.; Boni, M.; Vermeesch, P. Petrology of the Namib Sand Sea: Long-distance transport and compositional variability in the wind-displaced Orange Delta. Earth-Sci. Rev. 2012, 112, 173–189. [Google Scholar] [CrossRef]
- Artini, E. Intorno alla composizione mineralogica delle sabbie di alcuni fiumi del Veneto, con applicazione ai terreni di transporto. Riv. Miner. Cristal. Ital. 1898, 19, 33–94. (In Italian) [Google Scholar]
- Thomas, H.H. A contribution to the petrography of the New Red Sandstone in the west of England. Q. J. Geol. Soc. Lond. 1909, 65, 229–244. [Google Scholar] [CrossRef]
- Gilligan, A. The petrography of the Millstone Grit of Yorkshire. Q. J. Geol. Soc. Lond. 1920, 75, 251–293. [Google Scholar] [CrossRef]
- Reed, R.D. Role of heavy minerals in the Coalinga Tertiary formations. Econ. Geol. 1924, 19, 730–749. [Google Scholar] [CrossRef]
- Reed, R.D.; Bailey, J.P. Subsurface correlation by means of heavy minerals. Bull. Am. Assoc. Pet. Geol. 1927, 11, 359–368. [Google Scholar]
- Hedberg, H.D. Some aspects of sedimentary petrography in relation to stratigraphy in the Bolivar Coast fields of the Maracaibo Basin, Venezuela. J. Paleontol. 1928, 2, 32–42. [Google Scholar]
- Edson, F.C. Heavy minerals as a guide in stratigraphic studies. Am. Mineral. 1932, 17, 429–436. [Google Scholar]
- Bornhauser, M. Heavy mineral associations in Quaternary and late Tertiary sediments of the Gulf Coast of Louisiana and Texas. J. Sediment. Petrol. 1940, 10, 125–135. [Google Scholar] [CrossRef]
- Cogen, W.M. Heavy-mineral zones of Louisiana and Texas Gulf coast sediments. Bull. Am. Assoc. Pet. Geol. 1940, 24, 2069–2101. [Google Scholar]
- Edelman, C.H.; Doeglas, D.J. Reliktstructuren detritischer pyroxene und amphibole. Tschermaks Mineral. Petrogr. Mitteil. 1932, 42, 482–490. (In German) [Google Scholar]
- Edelman, C.H.; Doeglas, D.J. Über umwandlungserscheinungen an detritischem staurolith und anderen mineralien. Tschermaks Mineral. Petrogr. Mitteil. 1934, 44, 225–234. (In German) [Google Scholar] [CrossRef]
- Bramlette, M.N. The stability of minerals in sandstone. J. Sediment. Petrol. 1941, 11, 32–36. [Google Scholar] [CrossRef]
- Pettijohn, F.J. Persistence of heavy minerals and geologic age. J. Geol. 1941, 49, 610–625. [Google Scholar] [CrossRef]
- Smithson, F. The alteration of detrital minerals in the Mesozoic rocks of Yorkshire. Geol. Mag. 1941, 78, 97–112. [Google Scholar] [CrossRef]
- Boswell, P.G.H. The stability of minerals in sedimentary rocks (Presidential Address). Q. J. Geol. Soc. Lond. 1942, 97, lvi–lxxv. [Google Scholar]
- Feo-Codecido, G. Heavy mineral techniques and their application to Venezuelan stratigraphy. Bull. Am. Assoc. Pet. Geol. 1956, 40, 984–1000. [Google Scholar]
- Morton, A.C. Stability of detrital heavy minerals in Tertiary sandstones of the North Sea Basin. Clay Miner. 1984, 19, 287–308. [Google Scholar] [CrossRef]
- Milliken, K.L. Loss of provenance information through subsurface diagenesis in Plio-Pleistocene sediments, northern Gulf of Mexico. J. Sediment. Petrol. 1988, 58, 992–1002. [Google Scholar]
- Milliken, K.L.; Mack, L.E. Subsurface dissolution of heavy minerals, Frio Formation sandstones of the ancestral Rio Grande Province, South Texas. Sediment. Geol. 1990, 68, 187–199. [Google Scholar] [CrossRef]
- Mange, M.A.; Maurer, H.F.W. Heavy Minerals in Colour; Chapman and Hall: London, UK, 1992; p. 147. [Google Scholar]
- Morton, A.C.; Hallsworth, C.R. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sediment. Geol. 1994, 90, 241–256. [Google Scholar] [CrossRef]
- Mange-Rajetzky, M.A. Subdivision and correlation of monotonous sandstone sequences using high resolution heavy mineral analysis, a case study: The Triassic of the Central Graben. In Non-Biostratigraphical Methods of Dating and Correlation; Dunay, R.E., Hailwood, E.A., Eds.; Geological Society of London Special Publications: London, UK, 1995; Volume 89, pp. 23–30. [Google Scholar]
- Morton, A.C. A new approach to provenance studies: Electron microprobe analysis of detrital garnets from Middle Jurassic sandstones of the northern North Sea. Sedimentology 1985, 32, 553–566. [Google Scholar] [CrossRef]
- Henry, D.J.; Guidotti, C.V. Tourmaline as a petrogenetic indicator mineral: An example from the staurolite-grade metapelites of NW Maine. Am. Mineral. 1985, 70, 1–15. [Google Scholar]
- Allen, P.A.; Mange-Rajetzky, M.A. Sedimentary evolution of the Devonian-Carboniferous Clair Field, offshore northwestern UK: Impact of changing provenance. Mar. Pet. Geol. 1992, 9, 29–52. [Google Scholar] [CrossRef]
- Mange, M.; Turner, P.; Ince, D.; Pugh, J.; Wright, D. A new perspective on the zonation and correlation of barren strata: An integrated heavy mineral and palaeomagnetic study of the Sherwood Sandstone Group, East Irish Sea Basin and surrounding areas. J. Pet. Geol. 1999, 22, 325–348. [Google Scholar] [CrossRef]
- Morton, A.C.; Yaxley, G. Detrital apatite geochemistry and its application in provenance studies. In Sediment Provenance and Petrogenesis: Perspectives from Petrography and Geochemistry; Special Paper; Arribas, J., Critelli, S., Johnsson, M.J., Eds.; Geological Society of America: Boulder, CO, USA, 2007; Volume 420, pp. 319–344. [Google Scholar]
- Zack, T.; von Eynatten, H.; Kronz, A. Rutile geochemistry and its potential use in quantitative provenance studies. Sediment. Geol. 2004, 171, 37–58. [Google Scholar] [CrossRef]
- Morton, A.C.; Claoué-Long, J.; Berge, C. Factors influencing heavy mineral suites in the Statfjord Formation, Brent Field, North Sea: Constraints provided by SHRIMP U-Pb dating of detrital zircons. J. Geol. Soc. Lond. 1996, 153, 911–929. [Google Scholar]
- Blum, M.D.; Milliken, K.T.; Pecha, M.A.; Snedden, J.W.; Frederick, B.C.; Galloway, W.E. Detrital-zircon records of Cenomanian, Paleocene, and Oligocene Gulf of Mexico drainage integration and sediment routing: Implications for scales of basin-floor fans. Geosphere 2017, 13, 1–37. [Google Scholar] [CrossRef]
- Fisher, M.J.; Mudge, D.C. Triassic. In Petroleum Geology of the North Sea: Basic Concepts and Recent Advances; Glennie, K.W., Ed.; Blackwell Science Ltd.: Oxford, UK, 1998; pp. 212–244. [Google Scholar]
- Herries, R.; Poddubiuk, R.; Wilcockson, P. Solan, Strathmore and the back basin play, west of Shetland. In Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference; Fleet, A.J., Boldy, S.A.R., Eds.; Geological Society: London, UK, 1999; pp. 693–712. [Google Scholar]
- Swiecicki, T.; Wilcockson, P.; Canham, A.; Whelan, G.; Homann, H. Dating, correlation and stratigraphy of the Triassic sediments in the West Shetlands area. In Permian and Triassic Rifting in Northwest Europe; Boldy, S.A.R., Ed.; Geological Society, Special Publications: London, UK, 1995; Volume 91, pp. 57–85. [Google Scholar]
- Goldsmith, P.J.; Hudson, G.; Van Veen, P. Triassic. In The Millenium Atlas: Petroleum Geology of the Central and Northern North Sea; Evans, D., Graham, C., Armour, A., Bathurst, P., Eds.; Geological Society: London, UK, 2003; pp. 105–127. [Google Scholar]
- Goldsmith, P.J.; Rich, B.; Standring, J. Triassic correlation and stratigraphy in the southern Central Graben, UK North Sea. In Permian and Triassic Rifting in Northwest Europe; Boldy, S.A.R., Ed.; Geological Society, Special Publications: London, UK, 1995; Volume 91, pp. 123–143. [Google Scholar]
- Mouritzen, C.; Farris, M.A.; Morton, A.; Matthews, S. Integrated Triassic stratigraphy of the greater Culzean area, UK central North Sea. Pet. Geosci. 2017, 24, 197–207. [Google Scholar] [CrossRef]
- Morton, A.C.; Herries, R.; Fanning, C.M. Correlation of Triassic sandstones in the Strathmore Field, west of Shetland, using heavy mineral provenance signatures. In Heavy Minerals in Use, Developments in Sedimentology; Mange, M., Wright, D.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 58, pp. 1037–1072. [Google Scholar]
- McKie, T.; Jolley, S.J.; Kristensen, M.B. Stratigraphic and structural compartmentalization of dryland fluvial reservoirs: Triassic Heron Cluster, Central North Sea. In Reservoir Compartmentalization; Jolley, S.J., Fisher, Q.J., Ainsworth, R.B., Vrolijk, P.J., Delisle, S., Eds.; Geological Society, Special Publications: London, UK, 2010; Volume 347, pp. 165–198. [Google Scholar]
- Jeans, C.V.; Reed, S.J.B.; Xing, M. Heavy mineral stratigraphy in the UK Trias: Western Approaches, onshore England and the Central North Sea. In Petroleum Geology of Northern Europe: Proceedings of the 4th Conference; Parker, J.R., Ed.; Geological Society: London, UK, 1993; pp. 609–624. [Google Scholar]
- McKie, T.; Audretsch, P. Depositional and structural controls on Triassicreservoir performance in the Heron Cluster, ETAP, Central North Sea. In Petroleum Geology: North-West Europe and Global Perspectives–Proceedings of the 6th Petroleum Geology Conference; Doré, A.G., Vining, B.A., Eds.; Geological Society: London, UK, 2005; pp. 285–298. [Google Scholar]
- Hurst, A.R.; Morton, A.C. An application of heavy-mineral analysis to lithostratigraphy and reservoir modelling in the Oseberg Field, northern North Sea. Mar. Pet. Geol. 1988, 5, 157–169. [Google Scholar] [CrossRef]
- Graue, E.; Helland-Hansen, W.; Johnsen, J.; Lømo, L.; Nøttvedt, A.; Rønning, K.; Ryseth, A.; Steel, R.J. Advance and retreat of Brent delta system, Norwegian North Sea. In Petroleum Geology of North West Europe; Brooks, J., Glennie, K.W., Eds.; Graham and Trotman: London, UK, 1987; pp. 915–937. [Google Scholar]
- Johnsen, J.R.; Rutledal, H.; Nilsen, D.E. Jurassic Reservoirs Field Examples from the Oseberg and Troll Fields: Horda Platform Area; Norwegian Petroleum Society Special Publications; Elsevier: Amsterdam, The Netherlands, 1995; Volume 4, pp. 199–234. [Google Scholar]
- Morton, A.C.; Hallsworth, C.R.; Chalton, B. Garnet compositions in Scottish and Norwegian basement terrains: A framework for interpretation of North Sea sandstone provenance. Mar. Pet. Geol. 2004, 21, 393–410. [Google Scholar] [CrossRef]
- Mange, M.A.; Morton, A.C. Geochemistry of heavy minerals. In Heavy Minerals in Use, Developments in Sedimentology; Mange, M., Wright, D.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 58, pp. 345–391. [Google Scholar]
- Morton, A.C.; Stiberg, J.P.; Hurst, A.; Qvale, H. Use of heavy minerals in lithostratigraphic correlation, with examples from the Brent sandstones of the northern North Sea. In Correlation in Hydrocarbon Exploration; Collinson, J., Ed.; Graham and Trotman: London, UK, 1989; pp. 217–230. [Google Scholar]
- Morris, P.H.; Payne, S.N.J.; Richards, D.P.J. Micropalaeontological biostratigraphy of the Magnus Sandstone Member (Kimmeridgian-Early Volgian), Magnus Field, UK North Sea. In Biostratigraphy in Production and Development Geology; Jones, R.W., Simmons, M.D., Eds.; Geological Society, Special Publications: London, UK, 1999; Volume 152, pp. 55–73. [Google Scholar]
- Fraser, S.; Robinson, A.M.; Johnson, H.D.; Underhill, J.R.; Kadolsky, D.G.A.; Connell, R.; Johannessen, P.; Ravnås, R. Upper Jurassic. In The Millenium Atlas: Petroleum Geology of the Central and Northern North Sea; Evans, D., Graham, C., Armour, A., Bathurst, P., Eds.; Geological Society: London, UK, 2003; pp. 157–189. [Google Scholar]
- De’ath, N.G.; Schuyleman, S.F. The geology of the Magnus oilfield. In Petroleum Geology of the Continental Shelf of Northwest Europe; Illing, L.V., Hobson, G.D., Eds.; Heyden: London, UK, 1981; pp. 342–351. [Google Scholar]
- Shepherd, M. The Magnus Field, Blocks 211/7a, 12a, UK North Sea. In United Kingdom Oil and Gas Fields, 25 Years Commemorative Volume; Abbotts, I.L., Ed.; Geological Society, Memoir: London, UK, 1991; Volume 14, pp. 153–157. [Google Scholar]
- Meinhold, G.; Anders, B.; Kostopoulos, D.; Reischmann, T. Rutile chemistry and thermometry as provenance indicator: An example from Chios Island, Greece. Sediment. Geol. 2008, 203, 98–111. [Google Scholar] [CrossRef]
- Watson, E.B.; Wark, D.A.; Thomas, J.B. Crystallization thermometers for zircon and rutile. Contrib. Miner. Petrol. 2006, 151, 413–433. [Google Scholar] [CrossRef]
- Stephenson, D. Introduction. In Caledonian Igneous Rocks of Great Britain; Geological Conservation Review Series; Stephenson, D., Bevins, R.E., Millward, D., Stone, P., Parsons, I., Highton, A.J., Wadsworth, W.J., Eds.; Joint Nature Conservation Committee: Peterborough, UK, 2000; Volume 17, pp. 3–26. [Google Scholar]
- Chew, D.M.; Strachan, R.A. The Laurentian Caledonides of Scotland and Ireland. In New Perspectives on the Caledonides of Scandinavia and Related Areas; Corfu, F., Gasser, D., Chew, D.M., Eds.; Geological Society, Special Publications: London, UK, 2014; Volume 390, pp. 45–91. [Google Scholar]
- Schmidt, A.S.; Morton, A.C.; Nichols, G.J.; Fanning, C.M. Interplay of proximal and distal sources in Devonian-Carboniferous sandstones of the Clair Basin, West of Shetland, revealed by detrital zircon U-Pb ages. J. Geol. Soc. Lond. 2012, 169, 691–702. [Google Scholar] [CrossRef]
- Cutts, K.A.; Hand, M.; Kelsey, D.E.; Wade, B.; Strachan, R.A.; Clark, C.; Netting, A. Evidence for 930 Ma metamorphism in the Shetland Islands, Scottish Caledonides: Implications for Neoproterozoic tectonics in the Laurentian-Baltica sector of Rodinia. J. Geol. Soc. Lond. 2009, 166, 1033–1047. [Google Scholar] [CrossRef]
- Strachan, R.A.; Prave, A.R.; Kirkland, C.L.; Storey, C.D. U-Pb detrital zircon geochronology of the Dalradian Supergroup, Shetland Islands, Scotland: Implications for regional correlations and Neoproterozoic–Palaeozoic basin development. J. Geol. Soc. Lond. 2013, 170, 905–916. [Google Scholar] [CrossRef]
- Prichard, H.M.; Lord, R.A. The Shetland Ophiolite: Evidence for a supra-subduction zone origin and implications for platinum-group element mineralization. In Mineral Deposits within the European Community; Boissonnas, L., Omenetto, P., Eds.; Springer: Berlin, Germany, 1988; pp. 289–302. [Google Scholar]
- Morton, A.C. The role of heavy mineral analysis during drilling of high angle wells. In Heavy Minerals in Use, Developments in Sedimentology; Mange, M., Wright, D.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 58, pp. 1123–1142. [Google Scholar]
- Morton, A.C.; Spicer, P.J.; Ewen, D.F. Geosteering of high-angle wells using heavy mineral analysis: The Clair Field, West of Shetland. In Horizontal Wells: Focus on the Reservoir; Carr, T.R., Mason, E.P., Feazel, C.T., Eds.; American Association of Petroleum Geologists, Methods in Exploration: Tulsa, OK, USA, 2003; Volume 14, pp. 249–260. [Google Scholar]
- Morton, A.C.; Hallsworth, C.R.; Kunka, J.; Laws, E.; Payne, S.; Walder, D. Heavy mineral stratigraphy of the Clair Group (Devonian) in the Clair Field, west of Shetland, UK. In Application of Modern Stratigraphic Techniques: Theory and Case Histories; Ratcliffe, K.T., Zaitlin, B.A., Eds.; SEPM Special Publication: Broken Arrow, OK, USA, 2010; Volume 94, pp. 183–199. [Google Scholar]
- Morton, A.; Milne, A. Heavy mineral stratigraphic analysis on the Clair Field, UK West of Shetlands—A unique real-time solution for redbed correlation while drilling. Pet. Geosci. 2012, 18, 115–127. [Google Scholar] [CrossRef]
- Nichols, G.J. Sedimentary evolution of the Lower Clair Group, Devonian, west of Shetland: Climate and sediment supply controls on fluvial, aeolian and lacustrine deposition. In Petroleum Geology: North-West Europe and Global Perspectives—Proceedings of the 6th Petroleum Geology Conference; Doré, A.G., Vining, B., Eds.; Geological Society: London, UK, 2005; pp. 957–967. [Google Scholar]
- Knox, R.W.O.B.; Cocker, J.D.; Filatoff, J. Heavy mineral stratigraphy of the Unayzah Formation and Basal Khuff Clastics (Carboniferous to Permian) of Central Saudi Arabia. GeoArabia 2010, 15, 17–80. [Google Scholar]
- Knox, R.W.O.B.; Franks, S.G.; Cocker, J.D. Stratigraphic evolution of heavy-mineral provenance signatures in the sandstones of the Wajid Group (Cambrian to Permian), southwestern Saudi Arabia. GeoArabia 2007, 12, 65–96. [Google Scholar]
- Naing, T.T.; Bussien, D.A.; Winkler, W.H.; Nold, M.; von Quadt, A. Provenance study on Eocene–Miocene sandstones of the Rakhine Coastal Belt, Indo-Burman Ranges of Myanmar: Geodynamic implications. In Sediment Provenance Studies in Hydrocarbon Exploration and Production; Scott, R.A., Smyth, H.R., Morton, A.C., Richardson, N., Eds.; Geological Society, Special Publications: London, UK, 2014; Volume 386, pp. 195–216. [Google Scholar]
- Morton, A.C.; Humphreys, B.; Manggal, G.; Fanning, C.M. Provenance and correlation of Upper Jurassic and Lower Cretaceous reservoir sandstones in Papua New Guinea using heavy mineral analysis. In Petroleum Exploration and Development in Papua New Guinea: Proceedings of the Fourth PNG Petroleum Convention; Buchanan, P.G., Grainge, A.M., Thornton, R.C.N., Eds.; PNG Chamber of Mines and Petroleum: Port Moresby, Papua New Guinea, 2000; pp. 187–203. [Google Scholar]
- Pindell, J.; Kennan, L.; Wright, D.; Erikson, J. Clastic domains of sandstones in central/eastern Venezuela, Trinidad, and Barbados: Heavy mineral and tectonic constraints on provenance and palaeogeography. In the Origin and Evolution of the Caribbean Plate; James, K., Lorente, M.A., Pindell, J., Eds.; Geological Society, Special Publications: London, UK, 2009; Volume 328, pp. 743–797. [Google Scholar]
- Vincent, H.; Wach, G. The detrital record of Cretaceous to Pliocene sandstones across the NE South American margin. J. Geol. Soc. Lond. 2017, 174, 434–452. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morton, A.; McGill, P. Correlation of Hydrocarbon Reservoir Sandstones Using Heavy Mineral Provenance Signatures: Examples from the North Sea and Adjacent Areas. Minerals 2018, 8, 564. https://doi.org/10.3390/min8120564
Morton A, McGill P. Correlation of Hydrocarbon Reservoir Sandstones Using Heavy Mineral Provenance Signatures: Examples from the North Sea and Adjacent Areas. Minerals. 2018; 8(12):564. https://doi.org/10.3390/min8120564
Chicago/Turabian StyleMorton, Andrew, and Paula McGill. 2018. "Correlation of Hydrocarbon Reservoir Sandstones Using Heavy Mineral Provenance Signatures: Examples from the North Sea and Adjacent Areas" Minerals 8, no. 12: 564. https://doi.org/10.3390/min8120564