Phosphorite Ore Enrichment Due to Secondary Alteration in the Jhamarkotra Stromatolitic Phosphorites, Aravalli Supergroup, Northwestern India
Abstract
1. Introduction
2. Geological Setting
Age of the Jhamarkotra Formation
3. Materials and Methods
3.1. Field Observations
3.2. Sampling
3.3. Analytical Procedures
4. Results
4.1. Petrographic Observations
4.2. Geochemistry
4.3. Rare Earth Elements+Yttrium (REE+Y)
4.4. Trace Element Data
4.5. Relative Enrichment in Upgraded Phosphorite
5. Discussion
5.1. Basin Evolution History
5.2. Petrography
5.3. Trace Elements
5.4. Rare Earth Elements
5.5. Origin of Stromatolitic Phosphorite of the Jhamarkotra Formation
6. Conclusions
- ➢
- Stromatolitic phosphorites were deposited in a shallow-marine environment. A detailed mineralogical and geochemical study indicates that the stromatolitic columns consist of phosphorite; however, the whole-rock phosphorite content is low, ranging from 6 to 20%, to be economically viable. In contrast, the upgraded phosphorites in the eastern sector have undergone hydrothermal alteration with both dolomite and phosphate components being altered, albeit to a different extent, by hydrothermal fluids derived from the basement and delivered along structurally controlled pathways.
- ➢
- Primary columnar, stromatolitic phosphorites have been modified with dolomite being leached, and phosphorite content increased from ~20 to 40 wt%. Sulfide minerals and elevated uranium content suggest that hydrothermal fluids are basement-derived.
- ➢
- Both hydrothermal and diagenetic processes have likely played a role in altering and enriching stromatolitic phosphorite to varying extents. However, high Sr concentrations in the upgraded phosphorite support a significant role for hydrothermal alteration. Similar REE patterns for upgraded and stromatolitic phosphorites suggest a low fluid-rock ratio. Upgraded phosphorites are enriched in REEs and have positive Ce and Eu anomalies, indicating hydrothermal activity involved in upgrading.
- ➢
- Increased uranium and strontium concentrations in the upgraded phosphorites suggest that hydrothermal fluids, which altered stromatolitic phosphorites, were derived from a felsic basement, had low temperature, and were oxidizing. These hydrothermal fluids have altered the stromatolitic phosphorites along major faults observed in the eastern section, leading to the formation of a phosphate ore zone.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pufahl, P.K.; Groat, L.A. Sedimentary and Igneous Phosphate Deposits: Formation and Exploration: An Invited Paper. Econ. Geol. 2017, 112, 483–516. [Google Scholar] [CrossRef]
- Broom-Fendley, S.; Siegfried, P.R.; Wall, F.; O′Neill, M.; Brooker, R.A.; Fallon, E.K.; Pickles, J.R.; Banks, D.A. The Origin and Composition of Carbonatite-Derived Carbonate-Bearing Fluorapatite Deposits. Miner. Depos. 2021, 56, 863–884. [Google Scholar] [CrossRef]
- Bekker, A.; Holland, H.D.; Wang, P.L.; Rumble, D.; Stein, H.J.; Hannah, J.L.; Coetzee, L.L.; Beukes, N.J. Dating the Rise of Atmospheric Oxygen. Nature 2004, 427, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Bekker, A.; Krapež, B.; Karhu, J.A. Correlation of the Stratigraphic Cover of the Pilbara and Kaapvaal Cratons Recording the Lead up to Paleoproterozoic Icehouse and the GOE. Earth-Sci. Rev. 2020, 211, 103389. [Google Scholar] [CrossRef]
- Bekker, A.; Karhu, J.A.; Eriksson, K.A.; Kaufman, A.J. Chemostratigraphy of Paleoproterozoic Carbonate Successions of the Wyoming Craton: Tectonic Forcing of Biogeochemical Change? Precambrian Res. 2003, 120, 279–325. [Google Scholar] [CrossRef]
- Papineau, D. Global Biogeochemical Changes at Both Ends of the Proterozoic: Insights from Phosphorites. Astrobiology 2010, 10, 165–181. [Google Scholar] [CrossRef]
- Woolley, A.R.; Kjarsgaard, B.A. Paragenetic Types of Carbonatite as Indicated by the Diversity and Relative Abundances of Associated Silicate Rocks: Evidence from a Global Database. Can. Mineral. 2008, 46, 741–752. [Google Scholar] [CrossRef]
- Holland, H.D. The Oxygenation of the Atmosphere and Oceans. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 903–915. [Google Scholar] [CrossRef]
- Bekker, A.; Holland, H.D. Oxygen Overshoot and Recovery during the Early Paleoproterozoic. Earth Planet. Sci. Lett. 2012, 317, 295–304. [Google Scholar] [CrossRef]
- Cook, P.J.; Shergold, J.H. Phosphorus, Phosphorites and Skeletal Evolution at the Precambrian—Cambrian Boundary. Nature 1984, 308, 231–236. [Google Scholar] [CrossRef]
- Cook, P.J. Phosphogenesis around the Proterozoic-Phanerozoic Transition. J. Geol. Soc. 1992, 149, 615–620. [Google Scholar] [CrossRef]
- Och, L.M.; Shields-Zhou, G.A. The Neoproterozoic Oxygenation Event: Environmental Perturbations and Biogeochemical Cycling. Earth-Sci. Rev. 2012, 110, 26–57. [Google Scholar] [CrossRef]
- King, W. Phosphatic beds, Musuri; Geological Survey of India (GSI): Kolkata, India, 1884; Volume 17, pp. 198–199. [Google Scholar]
- Choudhuri, R. Two decades of phosphorite investigations in India. Geol. Soc. Lond. Spec. Publ. 1990, 52, 305–311. [Google Scholar] [CrossRef]
- Banerjee, D.M. Precambrian Stromatolitic Phosphorites of Udaipur, Rajasthan, India. Bull. Geol. Soc. Am. 1971, 82, 2319–2330. [Google Scholar] [CrossRef]
- Banerjee, D.M.; Schidlowski, M.; Arneth, J.D. Genesis of upper Proterozoic-Cambrian phosphorite deposits of India: Isotopic inferences from carbonate fluorapatite, carbonate and organic carbon. Precambrian Res. 1986, 33, 239–253. [Google Scholar] [CrossRef]
- Banerjee, D.M.; Basu, P.C.; Srivastava, N. Petrology, Mineralogy, Geochemistry, and Origin of the Precambrian Aravallian Phosphorite Deposits of Udaipur and Jhabua, India. Econ. Geol. 1980, 75, 1181–1199. [Google Scholar] [CrossRef]
- Khan, H.H.; Ghosh, D.B.; Soni, M.K.; Sonakia, A.; Zafar, M. Phosphorite Deposits of the Jhabua District, Madhya Pradesh, India; Geological Survey of India (GSI): Kolkata, India, 1989. [Google Scholar]
- Pant, A. Resource Status of Rock Phosphate Deposits in India and Areas of Future Potential; Geological Survey of India (GSI): Kolkata, India, 1980. [Google Scholar]
- Choudhuri, R.; Roy, A.B.; Cook, P.J.; Shergold, J.H. Proterozoic and Cambrian phosphorites deposits: Jhamarkotra, Rajasthan, India. In Proterozoic and Cambrian Phosphorite; Cambridge University Press: Cambridge, UK, 1986; pp. 209–210. [Google Scholar]
- Sant, V.N. Geology of the Indian Platform and its Phosphate Occurrences; Geological Survey of India (GSI): Kolkata, India, 1980. [Google Scholar]
- Chauhan, D.S.; Sisodia, M.S. Phosphorites of Rajasthan. Mem.-Geol. Soc. India 1989, 13, 9–23. [Google Scholar]
- Khan, S.; Dar, S.A.; Khan, K.F.; Shuaib, M. Rare Earth Element Signatures of Paleoproterozoic Sallopat Phosphorites of Aravalli Basin, India: Implications for Diagenetic Effects and Depositional Environment. Acta Geochim. 2023, 42, 726–738. [Google Scholar] [CrossRef]
- Harshitha, G.; Gonz, I.; Manikyamba, C.; Andres, D.; Yadav, J.K.; Kanti, M. Critical Mineral Potential of Indian Phosphorites: Evidence of REE Enrichment in Ediacaran Sediments from the Cuddapah Basin. J. Geochem. Explor. 2026, 280, 107918. [Google Scholar] [CrossRef]
- Agarwal, D.K.; Sreenivas, B. An Appraisal of Uranium Deposits of India and Their Style of Deposition with Reference to the Paleoproterozoic Great Oxidation Event. Int. Geol. Rev. 2021, 63, 571–584. [Google Scholar] [CrossRef]
- Mazumdar, A.; Banerjee, D.M. Genesis of Early Cambrian phosphorite of Krol Belt, Lesser Himalaya. Curr. Sci. 2015, 1247–1252. Available online: https://link.springer.com/content/pdf/10.1007/s12040-007-0048-9.pdf (accessed on 1 July 2025).
- Rao, V.P.; Kessarkar, P.M. Origin of Cretaceous Phosphorites from the Onshore of Tamil Nadu, India. J. Earth Syst. Sci. 2007, 116, 525–536. [Google Scholar] [CrossRef]
- Sreenivas, B.; Sharma, S.D.; Kumar, B.; Patil, D.J.; Roy, A.B.; Srinivasan, R. Positive Δ13C Excursion in Carbonate and Organic Fractions from the Paleoproterozoic Aravalli Supergroup, Northwestern India. Precambrian Res. 2001, 106, 277–290. [Google Scholar] [CrossRef]
- Papineau, D.; Purohit, R.; Fogel, M.L.; Shields-Zhou, G.A. High Phosphate Availability as a Possible Cause for Massive Cyanobacterial Production of Oxygen in the Paleoproterozoic Atmosphere. Earth Planet. Sci. Lett. 2013, 362, 225–236. [Google Scholar] [CrossRef]
- Papineau, D.; Gregorio, B.D.E.; Fearn, S.; Kilcoyne, D.; Mcmahon, G. Nanoscale Petrographic and Geochemical Insights on the Origin of the Palaeoproterozoic Stromatolitic Phosphorites from Aravalli Supergroup, India. Geobiology 2016, 14, 3–32. [Google Scholar] [CrossRef]
- Pufahl, P.K.; James, N.P.; Dalrymple, R.W. Bioelemental sediments. Facies Models 2010, 4, 477–503. [Google Scholar]
- Dar, S.A.; Khan, K.F. Depositional Environment of Phosphorites of the Sonrai Basin, Lalitpur District, Uttar Pradesh, India. Appl. Stud. Coast. Mar. Environ. 2016, 301–319. [Google Scholar] [CrossRef]
- Dar, S.A.; Balaram, V.; Roy, P.; Mir, A.R.; Javed, M.; Teja, M.S. Geoscience Frontiers Phosphorite Deposits: A Promising Unconventional Resource for Rare Earth Elements. Geosci. Front. 2025, 16, 102044. [Google Scholar] [CrossRef]
- Chauhan, D.S. Phosphate-Bearing Stromatolites of the Precambrian Aravalli Phosphorite Deposits of the Udaipur Region, Their Environmental Significance and Genesis of Phosphorite. Precambrian Res. 1979, 8, 95–126. [Google Scholar] [CrossRef]
- Papineau, D.; Purohit, R.; Goldberg, T.; Pi, D.; Shields, G.A.; Bhu, H.; Steele, A.; Fogel, M.L. High Primary Productivity and Nitrogen Cycling after the Paleoproterozoic Phosphogenic Event in the Aravalli Supergroup, India. Precambrian Res. 2009, 171, 37–56. [Google Scholar] [CrossRef]
- Maheshwari, A.; Sial, A.N.; Chittora, V.K.; Bhu, H. A Positive Δ13C Carb Anomaly in Paleoproterozoic Carbonates of the Aravalli Craton, Western India: Support for a Global Isotopic Excursion. J. Asian Earth Sci. 2002, 21, 59–67. [Google Scholar] [CrossRef]
- Maheshwari, A.; Sial, A.N.; Gaucher, C.; Bossi, J.; Bekker, A.; Ferreira, V.P.; Romano, A.W. Global Nature of the Paleoproterozoic Lomagundi Carbon Isotope Excursion: A Review of Occurrences in Brazil, India, and Uruguay. Precambrian Res. 2010, 182, 274–299. [Google Scholar] [CrossRef]
- Purohit, R.; Sanyal, P.; Roy, A.B.; Bhattacharya, S.K. 13C Enrichment in the Palaeoproterozoic Carbonate Rocks of the Aravalli Supergroup, Northwest India: Influence of Depositional Environment. Gondwana Res. 2010, 18, 538–546. [Google Scholar] [CrossRef]
- Sarangi, S.; Gopalan, K.; Roy, A.B.; Sreenivas, B.; Sharma, S. Das Pb-Pb Age of Carbonates of Jhamarkotra Formation: Constraints on the Age of Aravalli Supergroup, Rajasthan. J. Geol. Soc. India 2006, 67, 442–446. [Google Scholar] [CrossRef]
- Mckenzie, N.R.; Hughes, N.C.; Myrow, P.M.; Banerjee, D.M. Author′ s Personal Copy New Age Constraints for the Proterozoic Aravalli—Delhi Successions of India and Their Implications. Precambrian Res. 2013, 238, 120–128. [Google Scholar] [CrossRef]
- Wang, W.; Cawood, P.A.; Pandit, M.K.; Zhou, M.F.; Zhao, J.H. Evolving Passive- and Active-Margin Tectonics of the Paleoproterozoic Aravalli Basin, NW India. Bull. Geol. Soc. Am. 2018, 131, 426–443. [Google Scholar] [CrossRef]
- Absar, N.; Sreenivas, B. Petrology and Geochemistry of Greywackes of the ~1.6 Ga Middle Aravalli Supergroup, Northwest India: Evidence for Active Margin Processes. Int. Geol. Rev. 2015, 57, 134–158. [Google Scholar] [CrossRef]
- Roy, A.B. Stratigraphic and Tectonic Framework of the Aravalli Mountain Range. Open J. Geol. 1988, 2, 3–31. [Google Scholar]
- Roy, A.B.; Kröner, A. Single Zircon Evaporation Ages Constraining the Growth of the Archaean Aravalli Craton, Northwestern Indian Shield. Geol. Mag. 1996, 133, 333–342. [Google Scholar] [CrossRef]
- Roy, A.B.; Jakhar, S.R. Geology of Rajasthan (Northwest India) Precambrian to Recent; Scientific Publishers: New York, NY, USA, 2002. [Google Scholar]
- Geological Survey of India. Heron The Geology of Central Rajputana: Memoirs of the Geological Survey of India; Geological Survey of India: Kolkata, India, 1953; Volume 79, p. 2. [Google Scholar]
- Roy, A.B. Department of Geology, M.U. Tectonic Study of the Archaean-Greenstone Association from Rakhiawal, East of Udaipur, Southern Rajasthan. In Proceedings of National Seminar Tectonomagmatism, Geochemistry Metamorphism of Precambrian Terrains; Department of Geology, MLS University: Udaipur, India; 2000, pp. 143–157.
- Roy, A.B.; Paliwal, B.S. The Aravalli Rocks, Exposed over a Wide Area in Central and Southern Rajasthan Are Perhaps the Most Ancient Group of Sediments in India in Which Evidence of Life (Stromatolites) Has Been Recorded. Resting on the Gneissic Basement, the Ba. Precambrian Res. 1981, 14, 49–74. [Google Scholar] [CrossRef]
- Deb, M.; Kataria, P. Metallic mineral deposits of Rajasthan. Proc. Sem. Geol. Rajasthan Status Perspect. 1999, 213–237. [Google Scholar]
- Dev, M. Geochronological Constraints in the Precambrian Geology of Rajasthan and Their Metallogenic Implications. In Sediment-Hosted Lead-Zinc Sulfide Deposits with Emphasis on the Deposits in the Northwestern Indian Shield; Deb, M., Goodfellow, W.D., Eds.; New Delhi Narosa Publ. House: Geology Department MLSU: Udaipur, India, 2004; pp. 246–263. [Google Scholar]
- Sreenivas, B.; Vijaya Kumar, T.; Babu, E.V.S.S.K.; Bhaskar Rao, Y.J.; Chugaev, A.V.; Lebedev, V.A.; Vrevsky, A.B. Zircon U-Pb, Whole-Rock Rb-Sr and K-Ar Ages of Metamorphosed and Metasomatized Paleosol at the Base of the Paleoproterozoic Aravalli Supergroup, NW India: A Two-Billion-Year Record of Tectono-Thermal Events. J. Asian Earth Sci. 2023, 246, 105584. [Google Scholar] [CrossRef]
- Ahmad, T.; Dragusanu, C.; Tanaka, T. Provenance of Proterozoic Basal Aravalli Mafic Volcanic Rocks from Rajasthan, Northwestern India: Nd Isotopes Evidence for Enriched Mantle Reservoirs. Precambrian Res. 2008, 162, 150–159. [Google Scholar] [CrossRef]
- Karhu, J.A.; Holland, H.D. Carbon Isotopes and the Rise of Atmospheric Oxygen. Geology 1996, 24, 867–870. [Google Scholar] [CrossRef]
- Rasmussen, B.; Fletcher, I.R.; Bekker, A.; Muhling, J.R.; Gregory, C.J.; Thorne, A.M. Deposition of 1.88-Billion-Year-Old Iron Formations as a Consequence of Rapid Crustal Growth. Nature 2012, 484, 498–501. [Google Scholar] [CrossRef]
- Bekker, A. Great Oxidation Event. In Encyclopedia of Astrobiology, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1219–1227. [Google Scholar]
- Roy, A.B. Geophysical Modelling of the Crust of the Aravalli Mountain and Its Neighbourhood-Evidence of Mesozoic-Cenozoic Reconstitution. In Crustal Evolution and Metallogeny in the Northwestern Indian Shield. A Festschrift for Asoke Mookherjee; Narosa Publishing House: New Delhi, India, 2000; pp. 203–216. [Google Scholar]
- Fareeduddin; Banerjee, D.M. Aravalli Craton and Its Mobile Belts: An Update. EPA 2020, 43, 88–108. [Google Scholar] [CrossRef]
- Mallick, M.; Banerjee, B.; Hassan, T.; Vijaya Kumar, T.; Babu, E.V.S.S.K.; Krishna, K.; Kumar, R. Geochemistry of Permian Carbonaceous Shales from Raniganj Sub-Basin, Damodar Valley, India: Implications for Provenance, Weathering, Tectonics and Source of Organic Matter. Appl. Geochemistry 2022, 146, 105469. [Google Scholar] [CrossRef]
- Crosby, C.H.; Bailey, J.V.; Sharma, M. Fossil Evidence of Iron-Oxidizing Chemolithotrophy Linked to Phosphogenesis in the Wake of the Great Oxidation Event. Geology 2014, 42, 1015–1018. [Google Scholar] [CrossRef]
- Pourmand, A.; Dauphas, N.; Ireland, T.J. A Novel Extraction Chromatography and MC-ICP-MS Technique for Rapid Analysis of REE, Sc and Y: Revising CI-Chondrite and Post-Archean Australian Shale (PAAS) Abundances. Chem. Geol. 2012, 291, 38–54. [Google Scholar] [CrossRef]
- Lawrence, M.G.; Greig, A.; Collerson, K.D.; Kamber, B.S. Rare Earth Element and Yttrium Variability in South East Queensland Waterways. Aquat. Geochem. 2006, 12, 39–72. [Google Scholar] [CrossRef]
- Heard, A.W.; Bekker, A.; Kovalick, A.; Tsikos, H.; Ireland, T.; Dauphas, N. Oxygen Production and Rapid Iron Oxidation in Stromatolites Immediately Predating the Great Oxidation Event. Earth Planet. Sci. Lett. 2022, 582, 117416. [Google Scholar] [CrossRef]
- Bau, M.; Dulski, P. Distribution of Yttrium and Rare-Earth Elements in the Penge And Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res. 1996, 79, 37–55. [Google Scholar] [CrossRef]
- De Baar, H.J.W.; Bacon, M.P.; Brewer, P.G.; Bruland, K.W. Rare Earth Elements in the Pacific and Atlantic Oceans. Geochim. Cosmochim. Acta 1985, 49, 1943–1959. [Google Scholar] [CrossRef]
- Chen, W.T.; Zhou, M.F. Mineralogical and Geochemical Constraints on Mobilization and Mineralization of Rare Earth Elements in the Lala Fe-Cu-(Mo, REE) Deposit, SW China. Am. J. Sci. 2015, 315, 671–711. [Google Scholar] [CrossRef]
- Chen, X.; Wen, C.; Meng, D.; Li, B.; Jiang, B.; Qin, J. Implications of Major and Trace Element Migration in Altered Granites for Hydrothermal Alteration and Granite-Related Uranium Mineralization in the Sanjiu Ore Field, South China. Mineral 2022, 12, 144. [Google Scholar] [CrossRef]
- Large, R.R.; Bull, S.W.; Maslennikov, V.V. A Carbonaceous Sedimentary Source-Rock Model for Carlin-Type and Orogenic Gold Deposits. Econ. Geol. 2011, 106, 331–358. [Google Scholar] [CrossRef]
- Mishra, P.K.; Mohanty, S.P. Geochemistry of Carbonate Rocks of the Chilpi Group, Bastar Craton, India: Implications on Ocean Paleoredox Conditions at the Late Paleoproterozoic Era. Precambrian Res. 2021, 353, 106023. [Google Scholar] [CrossRef]
- Mcarthur, J.M.; Walsh, J.N. Rare-earth geochemistry of phosphorites. Chem. Geol. 1984, 47, 191–220. [Google Scholar] [CrossRef]
- Jarvis, I. Phosphorite geochemistry: State-of-the-art and environmental concerns. Oceanogr. Lit. Rev. 1995, 8, 639. [Google Scholar]
- Banner, J.A.Y.L.; Hanson, G.N. Calculation of Simultaneous Isotopic and Trace Element Variations during Water-Rock Interaction with Applications to Carbonate Diagenesis. Geochim. Cosmochim. Acta 1990, 54, 3123–3137. [Google Scholar] [CrossRef]
- German, R.; Elderfield, H. Application of the Ce anomaly as a paleoredox indicator: The ground rules. Paleoceanography 1990, 5, 823–833. [Google Scholar] [CrossRef]
- Banner, J.L.; Hanson, G.N.; Meyers, W.J. Rare earth element and Nd isotopic variations in regionally extensive dolomites from the Burlington-Keokuk Formation (Mississippian); implications for REE mobility during carbonate diagenesis. J. Sediment. Res. 1988, 58, 415–432. [Google Scholar] [CrossRef]
- Kaufman, A.J.; Knoll, A.H.; Awramik, S.M. Biostratigraphic and Chemostratigraphic Correlation of Neoproterozoic Sedimentary Successions: Upper Tindir Group, Northwestern Canada, as a Test Case. Geology 1992, 20, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, A.J.; Jacobsen, S.B.; Knoll, A.H. The Vendian Record of Sr and C Isotopic Variations in Seawater: Implications for Tectonics and Paleoclimate. Earth Planet. Sci. Lett. 1993, 120, 409–430. [Google Scholar] [CrossRef]
- Korte, C.; Jasper, T.; Kozur, H.W.; Veizer, J. 87Sr/86Sr Record of Permian Seawater. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 240, 89–107. [Google Scholar] [CrossRef]
- Huang, S.J.; Qing, H.R.; Huang, P.P.; Hu, Z.W.; Wang, Q.D.; Zou, M.L.; Liu, H.N. Evolution of Strontium Isotopic Composition of Seawater from Late Permian to Early Triassic Based on Study of Marine Carbonates, Zhongliang Mountain, Chongqing, China. Sci. China Ser. D Earth Sci. 2008, 51, 528–539. [Google Scholar] [CrossRef]
- Xiong, L.; Yao, G.; Xiong, S.; Wang, J.; Shen, A.; Hao, Y.; Yao, G.; Xiong, S.; Wang, J.; Ni, C.; et al. Origin of Dolomite in the Middle Devonian Guanwushan Formation of the Western Sichuan Basin, Western China Lianqiao. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 495, 113–126. [Google Scholar] [CrossRef]
- Partin, C.A.; Bekker, A.; Planavsky, N.J.; Scott, C.T.; Gill, B.C.; Li, C.; Podkovyrov, V.; Maslov, A.; Konhauser, K.O.; Lalonde, S.V.; et al. Large-Scale Fluctuations in Precambrian Atmospheric and Oceanic Oxygen Levels from the Record of U in Shales. Earth Planet. Sci. Lett. 2013, 369, 284–293. [Google Scholar] [CrossRef]
- Langmuir, D. Uranium Solution-Mineral Equilibria at Low Temperatures with Applications to Sedimentary Ore Deposits. Geochim. Cosmochim. Acta 1978, 42, 547–569. [Google Scholar] [CrossRef]
- Gabitov, R.; Migdisov, A.; Nguyen, A.; Van Hartesveldt, N.; Perez-Huerta, A.; Sadekov, A.; Sauer, K.B.; Baker, J.; Paul, V.; Caporuscio, F.; et al. Uptake of Uranium by Carbonate Crystallization from Reduced and Oxidized Hydrothermal Fluids. Chem. Geol. 2021, 564, 120054. [Google Scholar] [CrossRef]
- Wignall, P.B.; Twitchett, R.J. Oceanic Anoxia and the End Permian Mass Extinction. Science 1996, 272, 1155–1158. [Google Scholar] [CrossRef]
- Bonnetti, C.; Cuney, M.; Bourlange, S.; Deloule, E.; Poujol, M.; Liu, X.; Peng, Y.; Yang, J. Primary Uranium Sources for Sedimentary-Hosted Uranium Deposits in NE China: Insight from Basement Igneous Rocks of the Erlian Basin. Miner. Depos. 2017, 52, 297–315. [Google Scholar] [CrossRef]
- Banner, J.L. Application of the Trace Element and Isotope Geochemistry of Strontium to Studies of Carbonate Diagenesis. Sedimentology 1995, 42, 805–824. [Google Scholar] [CrossRef]
- Dey, B.; Das, K.; Dasgupta, N.; Bose, S.; Hidaka, H.; Ghatak, H. Zircon U–Pb (SHRIMP) Ages of the Jahazpur Granite and Mangalwar Gneiss from the Deoli-Jahazpur Sector, Rajasthan, NW India: A Preliminary Reappraisal of Stratigraphic Correlation and Implications to Crustal Growth. In Geological Evolution of the Precambrian Indian shield; Springer International Publishing: Cham, Switzerland, 2019; pp. 39–56. [Google Scholar] [CrossRef]
- Sengupta, S.; Basak, K. Mesoproterozoic Orogeny along the Eastern Boundary of Aravalli Craton, Northwestern India: A Structural and Geochronological Study of Hindoli–Jahazpur Group of Rocks. J. Earth Syst. Sci. 2021, 130, 203. [Google Scholar] [CrossRef]
- Ozha, M.K.; Mishra, B.; Hazarika, P.; Jeyagopal, A.V.; Yadav, G.S. EPMA Monazite Geochronology of the Basement and Supracrustal Rocks within the Pur-Banera Basin, Rajasthan: Evidence of Columbia Breakup in Northwestern India. J. Asian Earth Sci. 2016, 117, 284–303. [Google Scholar] [CrossRef]
















| Cumulative wt% | Phosphorite | Dolomite | Calcite | Quartz | Others |
|---|---|---|---|---|---|
| B41 | 20.96 | 69.07 | 1.65 | 3.17 | 5.15 |
| E18 | 47.14 | 19.39 | 13.75 | 17.75 | 1.97 |
| Sample Number | Depth (in m) | SiO2 (%) | MgO (%) | CaO (%) | K2O (%) | P2O5 (%) | LOI (%) | m-CaO/m-MgO | m-P2O5 | Rock Type | Block |
|---|---|---|---|---|---|---|---|---|---|---|---|
| B1 | 55.8 | 66.45 | 2.46 | 20.19 | 1.25 | 0.28 | 3.00 | 5.89 | 0.00 | Carbonaceous Phyllite | |
| B2 | 58.1 | 4.40 | 11.77 | 39.17 | 0.29 | 0.72 | 41.13 | 2.39 | 0.01 | Upper Dolostone | |
| B3 | 60.6 | 9.52 | 16.61 | 28.67 | 0.31 | 0.41 | 42.00 | 1.24 | 0.00 | ||
| B4 | 62.6 | 3.06 | 12.32 | 38.77 | 0.30 | 0.09 | 43.36 | 2.26 | 0.00 | ||
| B5 | 64.5 | 9.39 | 16.78 | 26.70 | 0.34 | 0.15 | 44.00 | 1.14 | 0.00 | ||
| B6 | 66.4 | 2.87 | 12.90 | 37.70 | 0.36 | 0.09 | 43.66 | 2.10 | 0.00 | ||
| B7 | 68 | 7.80 | 16.57 | 29.92 | 0.47 | 0.48 | 41.00 | 1.30 | 0.00 | ||
| B8 | 69.2 | 2.98 | 11.90 | 38.99 | 0.29 | 0.14 | 42.89 | 2.36 | 0.00 | ||
| B9 | 70.7 | 9.56 | 16.16 | 29.86 | 0.31 | 0.16 | 42.00 | 1.33 | 0.00 | ||
| B10 | 73.2 | 0.55 | 9.59 | 41.77 | 0.05 | 6.09 | 40.95 | 3.13 | 0.04 | Stromatolitic phosphorite interval | B |
| B11 | 74.1 | 4.74 | 17.90 | 31.32 | 0.08 | 12.35 | 33.00 | 1.26 | 0.09 | ||
| B13 | 76.5 | 7.62 | 11.99 | 35.89 | 0.00 | 19.14 | 25.00 | 2.15 | 0.13 | ||
| B15 | 78.8 | 3.83 | 15.86 | 35.48 | 0.01 | 19.12 | 24.00 | 1.61 | 0.13 | ||
| B17 | 80.6 | 1.99 | 15.57 | 36.59 | 0.02 | 10.62 | 34.00 | 1.69 | 0.07 | ||
| B19 | 82.2 | 1.33 | 13.78 | 39.77 | 0.02 | 20.44 | 23.00 | 2.07 | 0.14 | ||
| B21 | 84.5 | 1.56 | 13.88 | 38.88 | 0.02 | 17.53 | 26.00 | 2.01 | 0.12 | ||
| B23 | 87 | 0.62 | 14.46 | 37.77 | 0.03 | 12.74 | 34.00 | 1.88 | 0.09 | ||
| B25 | 89.2 | 0.52 | 15.66 | 34.22 | 0.04 | 8.73 | 39.00 | 1.57 | 0.06 | ||
| B27 | 91.2 | 0.45 | 15.42 | 34.21 | 0.06 | 9.44 | 39.00 | 1.59 | 0.07 | ||
| B29 | 93.9 | 0.48 | 13.88 | 35.98 | 0.02 | 14.22 | 34.00 | 1.86 | 0.10 | ||
| B31 | 96.2 | 0.41 | 13.74 | 35.78 | 0.04 | 10.88 | 37.00 | 1.87 | 0.08 | ||
| B33 | 97.3 | 0.69 | 13.77 | 36.89 | 0.05 | 15.74 | 32.00 | 1.93 | 0.11 | ||
| B35 | 99 | 2.31 | 12.44 | 40.22 | 0.03 | 18.44 | 25.00 | 2.32 | 0.13 | ||
| B37 | 100.5 | 2.39 | 14.61 | 39.04 | 0.03 | 12.58 | 31.00 | 1.92 | 0.09 | ||
| B39 | 102.1 | 1.39 | 14.57 | 33.88 | 0.04 | 8.32 | 41.00 | 1.67 | 0.06 | ||
| B41 | 103.8 | 0.64 | 13.81 | 36.06 | 0.03 | 11.34 | 36.00 | 1.88 | 0.08 | ||
| B43 | 105.6 | 1.45 | 12.58 | 37.47 | 0.03 | 11.73 | 35.00 | 2.14 | 0.08 | ||
| B44 | 106.3 | 0.56 | 8.89 | 43.44 | 0.07 | 9.19 | 36.38 | 3.51 | 0.06 | ||
| B45 | 106.8 | 5.10 | 15.20 | 35.87 | 0.01 | 0.10 | 43.00 | 1.70 | 0.00 | Lower Dolostone | |
| B46 | 108.8 | 4.38 | 11.14 | 39.87 | 0.20 | 0.82 | 41.01 | 2.57 | 0.01 | ||
| B47 | 110 | 7.02 | 15.34 | 34.20 | 0.23 | 1.13 | 39.00 | 1.60 | 0.01 | ||
| B48 | 111.2 | 4.13 | 12.32 | 38.74 | 0.36 | 0.93 | 40.95 | 2.26 | 0.01 | ||
| B49 | 113.8 | 2.07 | 16.02 | 33.05 | 0.34 | 0.59 | 44.00 | 1.48 | 0.00 | ||
| B50 | 114.5 | 3.47 | 11.28 | 39.14 | 0.26 | 1.67 | 41.12 | 2.49 | 0.01 | ||
| E1 | 195.1 | 4.21 | 15.60 | 35.07 | 0.29 | 0.16 | 42.00 | 1.62 | 0.00 | Upper Dolostone | |
| E3 | 197.7 | 3.97 | 14.95 | 34.31 | 0.23 | 0.06 | 43.00 | 1.65 | 0.00 | ||
| E5 | 199.3 | 2.29 | 14.10 | 36.25 | 0.32 | 0.09 | 44.00 | 1.85 | 0.00 | ||
| E7 | 200.4 | 3.18 | 15.95 | 33.83 | 0.39 | 0.07 | 43.00 | 1.52 | 0.00 | ||
| E9 | 203 | 4.12 | 15.17 | 35.03 | 0.29 | 0.12 | 43.00 | 1.66 | 0.00 | ||
| E11 | 204.5 | 1.86 | 14.43 | 35.33 | 0.28 | 0.09 | 45.00 | 1.76 | 0.00 | ||
| E13 | 206.7 | 3.44 | 15.53 | 35.26 | 0.32 | 0.12 | 43.00 | 1.63 | 0.00 | ||
| E14 | 207.7 | 9.95 | 10.27 | 39.21 | 0.14 | 0.09 | 37.62 | 2.74 | 0.00 | ||
| E15 | 208.3 | 6.70 | 13.66 | 36.55 | 0.21 | 2.59 | 38.00 | 1.92 | 0.02 | E | |
| E17 | 209.5 | 3.64 | 1.77 | 49.25 | 0.04 | 36.00 | 8.00 | 20.01 | 0.25 | Upgraded Phosphorite | |
| E18 | 210.5 | 3.90 | 2.86 | 42.14 | 0.04 | 33.18 | 14.21 | 10.60 | 0.23 | ||
| E19 | 211.7 | 4.70 | 5.87 | 47.72 | 0.04 | 26.71 | 14.00 | 5.84 | 0.19 | ||
| E20 | 212.2 | 2.75 | 4.31 | 44.12 | 0.02 | 30.50 | 17.85 | 7.36 | 0.21 | ||
| E21 | 212.9 | 5.40 | 5.68 | 47.21 | 0.10 | 28.48 | 11.00 | 5.98 | 0.20 | ||
| E22 | 213.3 | 0.28 | 2.29 | 47.90 | 0.03 | 34.08 | 13.93 | 15.03 | 0.24 | ||
| E23 | 214.3 | 3.99 | 6.61 | 49.94 | 0.07 | 28.84 | 10.00 | 5.43 | 0.20 | ||
| E24 | 215.4 | 8.24 | 1.36 | 40.01 | 0.21 | 40.80 | 8.98 | 21.16 | 0.29 | ||
| E25 | 216.5 | 7.55 | 14.39 | 38.14 | 0.17 | 0.03 | 38.00 | 1.91 | 0.00 | Lower Dolostone | |
| E26 | 217.3 | 1.97 | 9.77 | 41.11 | 0.01 | 1.18 | 43.57 | 3.02 | 0.01 | ||
| E27 | 219.4 | 9.89 | 13.59 | 39.37 | 0.30 | 0.02 | 34.00 | 2.08 | 0.00 | ||
| E28 | 220.5 | 11.63 | 9.82 | 41.21 | 0.09 | 0.33 | 34.83 | 3.02 | 0.00 | ||
| E29 | 221.4 | 18.48 | 11.61 | 42.91 | 0.13 | 0.19 | 25.00 | 2.66 | 0.00 | ||
| E30 | 221.9 | 8.62 | 10.41 | 40.55 | 0.20 | 0.11 | 38.32 | 2.80 | 0.00 |
| Cumulative wt% | SiO2 | MgO | CaO | K2O | P2O5 |
|---|---|---|---|---|---|
| Stromatolitic phosphorite | 2.86 | 21.43 | 54.92 | 0.05 | 20.74 |
| Upgraded phosphorite | 4.96 | 4.22 | 52.86 | 0.08 | 37.87 |
| Name | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Y | Ho | Er | Tm | Yb | Lu | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| B10 | 1.37 | 2.71 | 0.26 | 0.99 | 0.18 | 0.07 | 0.20 | 0.03 | 0.21 | 2.54 | 0.05 | 0.16 | 0.03 | 0.13 | 0.02 | |
| B11 | 0.64 | 1.22 | 0.13 | 0.53 | 0.11 | 0.06 | 0.11 | 0.02 | 0.15 | 1.82 | 0.04 | 0.12 | 0.02 | 0.09 | 0.01 | |
| B13 | 1.77 | 1.99 | 0.21 | 0.73 | 0.14 | 0.05 | 0.16 | 0.02 | 0.18 | 1.82 | 0.04 | 0.12 | 0.02 | 0.08 | 0.01 | |
| B15 | 0.46 | 0.84 | 0.09 | 0.38 | 0.09 | 0.03 | 0.08 | 0.02 | 0.13 | 1.30 | 0.03 | 0.08 | 0.01 | 0.05 | 0.01 | |
| B17 | 0.61 | 1.05 | 0.11 | 0.44 | 0.09 | 0.03 | 0.10 | 0.02 | 0.12 | 1.12 | 0.03 | 0.08 | 0.01 | 0.06 | 0.01 | |
| B19 | 0.62 | 1.07 | 0.11 | 0.44 | 0.10 | 0.04 | 0.10 | 0.02 | 0.13 | 1.31 | 0.03 | 0.09 | 0.01 | 0.06 | 0.01 | |
| B21 | 3.91 | 5.52 | 0.53 | 1.91 | 0.34 | 0.07 | 0.40 | 0.05 | 0.35 | 3.37 | 0.08 | 0.24 | 0.03 | 0.16 | 0.02 | |
| B23 | 1.54 | 2.43 | 0.23 | 0.87 | 0.16 | 0.05 | 0.19 | 0.03 | 0.21 | 2.10 | 0.05 | 0.15 | 0.02 | 0.09 | 0.01 | |
| B25 | 0.39 | 0.73 | 0.08 | 0.35 | 0.07 | 0.03 | 0.07 | 0.01 | 0.10 | 1.14 | 0.03 | 0.08 | 0.01 | 0.06 | 0.01 | Stromatolitic phosphorite |
| B27 | 0.44 | 0.90 | 0.10 | 0.41 | 0.09 | 0.03 | 0.09 | 0.01 | 0.12 | 1.23 | 0.03 | 0.09 | 0.01 | 0.07 | 0.01 | |
| B29 | 0.51 | 1.03 | 0.17 | 0.71 | 0.15 | 0.04 | 0.16 | 0.03 | 0.20 | 2.12 | 0.05 | 0.15 | 0.02 | 0.10 | 0.01 | |
| B31 | 0.57 | 1.17 | 0.13 | 0.51 | 0.12 | 0.04 | 0.11 | 0.02 | 0.15 | 1.47 | 0.04 | 0.11 | 0.02 | 0.08 | 0.01 | |
| B33 | 0.88 | 1.79 | 0.20 | 0.79 | 0.17 | 0.05 | 0.17 | 0.03 | 0.22 | 2.02 | 0.06 | 0.15 | 0.03 | 0.11 | 0.02 | |
| B35 | 1.29 | 2.61 | 0.29 | 1.28 | 0.27 | 0.06 | 0.28 | 0.05 | 0.39 | 3.60 | 0.10 | 0.27 | 0.04 | 0.19 | 0.03 | |
| B37 | 1.09 | 1.94 | 0.22 | 0.90 | 0.19 | 0.04 | 0.19 | 0.03 | 0.26 | 2.48 | 0.07 | 0.18 | 0.03 | 0.12 | 0.02 | |
| B39 | 0.88 | 1.55 | 0.16 | 0.65 | 0.13 | 0.04 | 0.13 | 0.02 | 0.15 | 1.26 | 0.04 | 0.10 | 0.01 | 0.06 | 0.01 | |
| B41 | 0.80 | 1.21 | 0.13 | 0.53 | 0.12 | 0.03 | 0.11 | 0.02 | 0.16 | 1.69 | 0.04 | 0.12 | 0.02 | 0.09 | 0.01 | |
| B43 | 2.83 | 4.89 | 0.49 | 1.84 | 0.34 | 0.06 | 0.36 | 0.05 | 0.34 | 3.01 | 0.08 | 0.21 | 0.03 | 0.14 | 0.02 | |
| B44 | 5.35 | 11.53 | 1.25 | 5.11 | 1.05 | 0.17 | 1.02 | 0.16 | 1.14 | 11.74 | 0.28 | 0.75 | 0.11 | 0.53 | 0.08 | |
| E17 | 6.24 | 13.25 | 1.39 | 5.70 | 1.28 | 0.25 | 1.26 | 0.23 | 1.73 | 15.33 | 0.45 | 1.18 | 0.18 | 0.76 | 0.11 | |
| E18 | 3.10 | 5.80 | 0.55 | 2.08 | 0.39 | 0.14 | 0.45 | 0.07 | 0.50 | 6.01 | 0.13 | 0.36 | 0.06 | 0.27 | 0.04 | |
| E19 | 0.68 | 1.29 | 0.14 | 0.71 | 0.16 | 0.06 | 0.15 | 0.03 | 0.24 | 2.29 | 0.06 | 0.17 | 0.03 | 0.12 | 0.02 | Upgraded phosphorite |
| E20 | 1.01 | 1.91 | 0.17 | 0.71 | 0.15 | 0.09 | 0.17 | 0.03 | 0.21 | 2.53 | 0.05 | 0.15 | 0.02 | 0.11 | 0.02 | |
| E21 | 1.10 | 2.33 | 0.24 | 1.07 | 0.24 | 0.09 | 0.23 | 0.05 | 0.38 | 3.77 | 0.10 | 0.28 | 0.04 | 0.20 | 0.03 | |
| E22 | 1.12 | 1.93 | 0.17 | 0.68 | 0.14 | 0.08 | 0.15 | 0.02 | 0.18 | 4.32 | 0.05 | 0.14 | 0.02 | 0.09 | 0.01 | |
| E23 | 1.59 | 3.68 | 0.36 | 1.53 | 0.32 | 0.10 | 0.31 | 0.05 | 0.43 | 4.86 | 0.11 | 0.32 | 0.06 | 0.27 | 0.04 | |
| E24 | 10.48 | 16.95 | 1.55 | 5.15 | 0.86 | 0.39 | 1.04 | 0.13 | 0.74 | 5.03 | 0.17 | 0.46 | 0.09 | 0.47 | 0.07 |
| Sample Number | Li | Sr | Ba | Th | U | Zr | Ta | Sc | Mn | Mn/Sr | Th/U | REE | Y/Ho | Ce/Ce* | Eu/Eu* | LREE/HREE | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| B10 | 2.69 | 138.87 | 25.45 | 0.17 | 0.52 | 2.68 | 0.00 | 3.06 | 1278 | 9.21 | 0.32 | 6.40 | 46.17 | 1.31 | 1.99 | 0.58 | Stromatolitic phosphorite |
| B11 | 2.46 | 138.78 | 31.88 | 0.10 | 0.65 | 0.85 | 0.01 | 2.95 | 1795 | 12.93 | 0.15 | 3.26 | 44.78 | 1.17 | 2.61 | 0.45 | |
| B13 | 1.03 | 155.17 | 8.43 | 0.08 | 1.45 | 1.32 | 0.02 | 3.07 | 1343 | 8.65 | 0.06 | 5.52 | 40.66 | 1.04 | 1.65 | 0.79 | |
| B15 | 1.61 | 163.19 | 14.83 | 0.07 | 0.75 | 0.68 | 0.01 | 3.14 | 1046 | 6.41 | 0.09 | 2.31 | 39.05 | 1.22 | 1.67 | 0.52 | |
| B17 | 1.57 | 140.91 | 16.89 | 0.08 | 0.57 | 2.29 | 0.01 | 2.88 | 1524 | 10.81 | 0.15 | 2.75 | 37.05 | 1.30 | 1.61 | 0.55 | |
| B19 | 1.65 | 154.36 | 19.50 | 0.09 | 0.70 | 2.87 | 0.05 | 2.88 | 956 | 6.19 | 0.13 | 2.81 | 39.23 | 1.19 | 1.96 | 0.58 | |
| B21 | 1.75 | 154.07 | 19.21 | 0.13 | 2.03 | 3.30 | 0.03 | 2.80 | 968 | 6.29 | 0.06 | 13.61 | 39.91 | 1.18 | 1.05 | 1.01 | |
| B23 | 2.15 | 131.23 | 20.27 | 0.13 | 0.64 | 2.88 | 0.03 | 2.42 | 1330 | 10.13 | 0.20 | 6.02 | 40.08 | 1.21 | 1.44 | 0.78 | |
| B25 | 2.20 | 113.95 | 19.89 | 0.09 | 0.72 | 2.38 | 0.04 | 2.07 | 1511 | 13.26 | 0.13 | 2.03 | 39.06 | 1.31 | 2.12 | 0.42 | |
| B27 | 2.39 | 114.08 | 22.00 | 0.11 | 0.78 | 2.75 | 0.05 | 2.08 | 1679 | 14.71 | 0.14 | 2.42 | 37.01 | 1.19 | 1.95 | 0.43 | |
| B29 | 1.99 | 120.98 | 17.53 | 0.19 | 0.67 | 2.77 | 0.00 | 2.02 | 1201 | 9.93 | 0.28 | 3.34 | 40.02 | 1.37 | 1.33 | 0.50 | |
| B31 | 2.19 | 121.21 | 21.15 | 0.12 | 0.46 | 2.34 | 0.02 | 2.25 | 1601 | 13.21 | 0.25 | 3.07 | 37.22 | 1.13 | 1.75 | 0.46 | |
| B33 | 1.99 | 130.51 | 23.03 | 0.25 | 0.93 | 2.99 | 0.02 | 2.45 | 1149 | 8.81 | 0.26 | 4.66 | 36.44 | 1.16 | 1.40 | 0.53 | |
| B35 | 1.70 | 157.54 | 19.96 | 0.23 | 0.95 | 3.50 | 0.03 | 2.97 | 723 | 4.59 | 0.24 | 7.14 | 35.57 | 1.31 | 1.05 | 0.46 | |
| B37 | 1.91 | 123.30 | 16.49 | 0.14 | 0.88 | 3.03 | 0.02 | 2.22 | 1110 | 9.01 | 0.16 | 5.27 | 36.07 | 1.19 | 1.12 | 0.55 | |
| B39 | 1.47 | 95.79 | 16.58 | 0.12 | 0.35 | 2.45 | 0.04 | 1.68 | 1730 | 18.06 | 0.33 | 3.92 | 35.36 | 1.27 | 1.47 | 0.78 | |
| B41 | 1.59 | 115.31 | 11.16 | 0.11 | 0.52 | 1.34 | 0.06 | 2.01 | 1498 | 12.99 | 0.22 | 3.40 | 38.65 | 1.27 | 1.46 | 0.43 | |
| B43 | 1.74 | 127.28 | 12.32 | 0.18 | 2.27 | 0.86 | 0.02 | 2.19 | 1511 | 11.87 | 0.08 | 11.68 | 38.02 | 1.18 | 0.99 | 1.05 | |
| B44 | 6.14 | 146.42 | 41.86 | 0.86 | 1.85 | 4.63 | 0.03 | 3.26 | 1562 | 10.67 | 0.47 | 28.54 | 41.78 | 1.20 | 0.85 | 0.71 | |
| E17 | 1.71 | 308.09 | 10.09 | 1.22 | 21.12 | 2.07 | 0.06 | 3.07 | 1098 | 3.56 | 0.06 | 34.02 | 34.44 | 1.22 | 0.99 | 0.54 | Upgraded phosphorite |
| E18 | 3.87 | 297.55 | 23.15 | 0.41 | 8.74 | 6.68 | 0.03 | 4.20 | 2854 | 9.59 | 0.05 | 13.95 | 46.84 | 1.25 | 1.85 | 0.60 | |
| E19 | 1.95 | 287.99 | 19.18 | 0.13 | 7.95 | 2.00 | 0.02 | 2.57 | 3254 | 11.30 | 0.02 | 3.86 | 36.59 | 1.50 | 1.87 | 0.36 | |
| E20 | 2.65 | 326.69 | 36.65 | 0.15 | 7.49 | 2.49 | 0.03 | 3.93 | 2247 | 6.88 | 0.02 | 4.81 | 46.16 | 1.41 | 2.97 | 0.45 | |
| E21 | 3.46 | 341.50 | 29.14 | 0.25 | 15.27 | 2.90 | 0.03 | 2.90 | 1782 | 5.22 | 0.02 | 6.40 | 37.48 | 1.34 | 1.91 | 0.36 | |
| E22 | 3.33 | 407.72 | 29.04 | 0.11 | 7.68 | 1.37 | 0.04 | 4.48 | 1382 | 3.39 | 0.01 | 4.79 | NA | 1.43 | 2.94 | 0.54 | |
| E23 | 2.77 | 272.35 | 35.19 | NA | 48.46 | 0.91 | 0.04 | 2.93 | 3654 | 13.42 | NA | 9.19 | 43.05 | 1.39 | 1.59 | 0.39 | |
| E24 | 9.42 | 247.04 | 43.65 | 0.58 | 46.86 | 1.92 | 0.11 | 4.13 | 1317 | 5.33 | 0.01 | 38.55 | 30.33 | 1.11 | 2.46 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kumar, R.; Sreenivas, B.; Kumar, T.V.; Dixit, S.; Balu, G.; Bekker, A. Phosphorite Ore Enrichment Due to Secondary Alteration in the Jhamarkotra Stromatolitic Phosphorites, Aravalli Supergroup, Northwestern India. Minerals 2026, 16, 97. https://doi.org/10.3390/min16010097
Kumar R, Sreenivas B, Kumar TV, Dixit S, Balu G, Bekker A. Phosphorite Ore Enrichment Due to Secondary Alteration in the Jhamarkotra Stromatolitic Phosphorites, Aravalli Supergroup, Northwestern India. Minerals. 2026; 16(1):97. https://doi.org/10.3390/min16010097
Chicago/Turabian StyleKumar, Rajeev, Bulusu Sreenivas, Teeda Vijaya Kumar, Shikha Dixit, Gugulothu Balu, and Andrey Bekker. 2026. "Phosphorite Ore Enrichment Due to Secondary Alteration in the Jhamarkotra Stromatolitic Phosphorites, Aravalli Supergroup, Northwestern India" Minerals 16, no. 1: 97. https://doi.org/10.3390/min16010097
APA StyleKumar, R., Sreenivas, B., Kumar, T. V., Dixit, S., Balu, G., & Bekker, A. (2026). Phosphorite Ore Enrichment Due to Secondary Alteration in the Jhamarkotra Stromatolitic Phosphorites, Aravalli Supergroup, Northwestern India. Minerals, 16(1), 97. https://doi.org/10.3390/min16010097

