Petrography, Geochemistry, and Magmatic Processes of Oligocene-Miocene Tuzla Volcanics, Biga Peninsula, NW Türkiye
Abstract
1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Mineralogical–Petrographic Analysis
3.2. Geochemical Analysis
4. Results
4.1. Petrographic Characteristics
4.1.1. Optical Microscopy
4.1.2. X-Ray Diffraction (XRD) Analysis
4.2. Geochemistry
5. Discussion
5.1. Tectonic Setting
5.2. Magma Source
5.3. Fractional Crystallization and Assimilation- Fractional Crystallization
6. Conclusions
- The Tuzla area hosts a complex Miocene volcanic system composed of andesitic, dacitic, and rhyolitic lavas, trachyandesites, pyroclastic deposits, ignimbrites, and the Kestanbol Pluton.
- Petrographic observations and X-ray diffraction (XRD) analyses indicate that the volcanic units are dominated by porphyritic dacitic–rhyodacitic and trachyandesitic rocks, which have been variably affected by pervasive silicification, iron oxide formation, and mineral opacification related to hydrothermal alteration.
- Geochemical data, particularly rare earth element (REE) systematics, demonstrate that fractional crystallization of primary mineral phases played a major role in the magmatic evolution of the Tuzla volcanics. Chondrite-normalized REE patterns show enrichment in light REEs relative to heavy REEs and broadly similar distribution trends, suggesting derivation from a common parental magma source.
- K2O–Na2O and AFM diagrams indicate high-K calc-alkaline, calc-alkaline, and tholeiitic affinities. Most rhyodacite/dacite samples and all trachyandesites plot within the tholeiitic field, reflecting compositional diversity within the volcanic suite.
- Tectonic discrimination diagrams collectively suggest that the Tuzla volcanic rocks were generated in both volcanic arc–related and intraplate magmatic settings, reflecting a complex tectonomagmatic evolution.
- Although moderate enrichments in Ba and Sr may partly reflect magma source characteristics and differentiation processes, the highest Ba and Sr concentrations are interpreted to result from post-magmatic hydrothermal fluid–rock interaction rather than primary magmatic compositions.
- The Tuzla volcanic suite includes rocks that preserve primary magmatic geochemical signatures as well as samples that have experienced varying degrees of hydrothermal overprinting. Overall, the volcanics were derived from a collision-related, enriched lithospheric mantle source and subsequently evolved through fractional crystallization and assimilation processes, accompanied by crustal contamination.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erenoğlu, R.C.; Arslan, N.; Erenoğlu, O.; Arslan, E. Application of spectral analysis to Determine geothermal anomalies in the Tuzla Region, NW Turkey. Arab. J. Geosci. 2019, 12, 439. [Google Scholar] [CrossRef]
- Genç, Ş.C.; Dönmez, M.; Akçay, A.E.; Altunkaynak, Ş.; Eyüpoğlu, M.; Ilgar, Y. Biga Yarımadası Tersiyer Volkanizmasının Stratigrafik, Petrografik ve Kimyasal Özellikleri Biga Yarımadası’nın Genel ve Ekonomik Jeolojisi, MTA Rapor No: 11101. Ankara, Türkiye. 2009; Unpublished.
- Aldanmaz, E.; Pearce, J.A.; Thirlwall, M.F.; Mitchell, J.G. Petrogenetic evolution of Late Cenozoic, post collision volcanism in Western Anatolia, Turkey. J. Volcanol. Geotherm. Res. 2000, 102, 67–95. [Google Scholar] [CrossRef]
- Altunkaynak, Ş.; Genç, Ş.C. Petrogenesis and time-progressive evolution of the Cenozoic continental volcanism in the Biga Peninsula, NW Anatolia. Lithos 2008, 102, 316–340. [Google Scholar] [CrossRef]
- Topuz, G.; Okay, A.I. Late Eocene–early Oligocene two-mica granites in NW Turkey (the Uludağ Massif): Water-fluxed melting products of a mafic metagreywacke. Lithos 2017, 268, 334–350. [Google Scholar] [CrossRef]
- Ketin, İ. Anadolu’nun Tektonik Birlikleri. Bull. Miner. Res. Explor. 1966, 66, 20–34. [Google Scholar]
- Şengör, A.M.C.; Yılmaz, Y. Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics 1981, 75, 181–241. [Google Scholar] [CrossRef]
- Yılmaz, Y. Comparision of Young Volcanic Associations of Western and Eastern Anatolia under Conpressional Regime; A Review. J. Volcanol. Geotherm. Res. 1990, 44, 69–87. [Google Scholar] [CrossRef]
- Okay, A.İ.; Siyako, M.; Bürkan, K.A. Biga Yarımadası’nın Jeolojisi ve Tektonik Evrimi. TPJD Bülteni 1990, 2, 83–121. [Google Scholar]
- Okay, A.İ.; Tüysüz, O. Tethyan sutures of northern Turkey. In Mediterranean Basins: Tertiary Extension Within the Alpine Orogen; Durand, B., Jolivet, L., Horvath, F., Seranne, M., Eds.; Geological Society Special Publications: London, UK, 1999; Volume 156, pp. 475–515. [Google Scholar]
- Harris, N.B.; Kelley, S.; Okay, A.I. Post-collision magmatism and tectonics in northwest Anatolia. Contrib. Mineral. Petrol. 1994, 117, 241–252. [Google Scholar] [CrossRef]
- Okay, A.; Satır, M.; Maluski, H.; Siyako, M.; Monie, P.; Metzger, R.; Akyüz, S. Paleo- and Neo-Tethyan events in northwest Turkey: Geological and geochronological constraints. In Tectonics of Asia; Yin, A., Harrison, M., Eds.; Cambridge University Press: Cambridge, UK, 1996; pp. 420–441. [Google Scholar]
- Okay, A.I.; Tansel, İ.; Tüysüz, O. Obduction, subduction and collision as reflected in the Upper Cretaceous-Lower Eocene sedimentary record of western Turkey. Geol. Mag. 2001, 138, 117–142. [Google Scholar] [CrossRef]
- Altunkaynak, S.; Dilek, Y. Timing and Nature of Postcollisional Volcanism in Western Anatolia and Geodynamic İmplications. Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia; Dilek, Y., Pavlides, S., Eds.; Geological Society of America Special Paper: Boulder, CO, USA, 2006; Volume 409, pp. 321–351. [Google Scholar]
- Aslan, Z.; Erdem, D.; Temizel, İ.; Arslan, M. SHRIMP U–Pb zircon ages and whole-rock geochemistry for the Şapçı volcanic rocks, Biga Peninsula, Northwest Turkey: Implications for pre-eruption crystallization conditions and source characteristics. Int. Geol. Rev. 2017, 59, 1764–1785. [Google Scholar] [CrossRef]
- Aslan, Z.; Demir, H.; Altın, İ. U–Pb zircon geochronology and petrology of the early Miocene Göloba and Şaroluk plutons in the Biga Peninsula, NW Turkey: Implications for post-collisional magmatism and geodynamic evolution. J. Afr. Earth Sci. 2020, 172, 103998. [Google Scholar] [CrossRef]
- Okay, A.I. Geology of Turkey: A synopsis. Anschnitt 2008, 21, 19–42. [Google Scholar]
- Genç, S.C.; Yılmaz, Y. Post Collisional Magmatism in Armutlu Peninsula, NW Anatolia; Abstracts; IAVCEI International Volcanology Congress: Ankara, Türkiye, 1994. [Google Scholar]
- Delaloye, M.; Bingöl, E. Granitoids from Western and Nortwestern Anatolia: Geochemistry and Modeling of Geodynamic Evolution. Int. Geol. Rev. 2000, 42, 241–268. [Google Scholar] [CrossRef]
- Altunkaynak, Ş. Collision-Driven Slab Break off Magmatism in North Western Anatolia. Turkey. J. Geol. 2007, 115, 63–82. [Google Scholar] [CrossRef]
- Ercan, T.; Satır, M.; Steinitz, G.; Dora, A.; Sarıfakıoğlu, E.; Adis, C.; Walter, H.J.; Yıldırım, T. Biga Yarımadası ile Gökçeada, Bozcaada ve Tavşan Adalarındaki KB Anadolu Tersiyer Volkanizmasının Özellikleri. MTA Derg. 1995, 117, 55–86. [Google Scholar]
- Yilmaz, Y. An approach to the origin of young volcanic rocks of western Turkey. In Tectonic Evolution of the Tethyan Region; Springer: Dordrecht, The Netherlands, 1989; pp. 159–189. [Google Scholar]
- Genç, S.C. Evolution of the Bayramiç Magmatic Complex, Northwestern Anatolia. J. Volcanol. Geotherm. Res. 1998, 85, 233–249. [Google Scholar] [CrossRef]
- Ozgenc, I.; Ilbeyli, N. Petrogenesis of the Late Cenozoic Egrigöz pluton in western Anatolia, Turkey: Implications for magma genesis and crustal processes. Int. Geol. Rev. 2008, 50, 375–391. [Google Scholar] [CrossRef]
- Akay, E. Geology and petrology of the Simav Magmatic Complex (NW Anatolia) and its comparison with the Oligo-Miocene granitoids in NW Anatolia: Implications on Tertiary tectonic evolution of the region. Int. J. Earth Sci. 2009, 98, 1655–1675. [Google Scholar] [CrossRef]
- Prelević, D.; Akal, C.; Foley, S.F.; Romer, R.L.; Stracke, A.; Van Den Bogaard, P. Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle: The case of southwestern Anatolia, Turkey. J. Petrol. 2012, 53, 1019–1055. [Google Scholar] [CrossRef]
- Aysal, N.; Öngen, A.S.; Şahin, S.Y.; Kasapci, C.; Hanilçi, N.; Peytcheva, I. Peritectic assemblage entrainment and mafic-felsic magma interaction in theLate Oligocene-Early Miocene Karadağ Pluton in the Biga Peninsula, northwest Turkey: Petrogenesis and geodynamic implications. Turk. J. Earth Sci. 2021, 30, 279–312. [Google Scholar] [CrossRef]
- Krushensky, R.D. Volcanic rocks of Turkey. Bull. Geol. Surv. Jpn. 1976, 26, 393–412. [Google Scholar]
- Duru, M.; Pehlivan, Ş.; Şentürk, Y.; Yavaş., F.; Kar, H. New Results on the Lithostratigraphy of the Kazdağ Massif in Northwest Turkey. Turk. J. Earth Sci. 2004, 13, 177–186. [Google Scholar]
- Dönmez, M.; Akçay, A.E.; Genç, Ş.C.; Acar, Ş. Middle-late Eocene volcanism and marine ignimbrites in Biga peninsula (NW Anatolia-Turkey). Bull. Miner. Res. Explor. 2005, 131, 21. [Google Scholar]
- Okay, A.İ.; Satır, M. Coeval plutonism and metamorphism in a Latest Oligocene metamorphic core complex in northwest Turkey. Geol. Mag. 2000, 137, 495–516. [Google Scholar] [CrossRef]
- Beccaletto, L.; Jenny, C. Geology and correlations of the Ezine Zone: A Rhodope fagment in NW Turkey. Turk. J. Earth Sci. 2004, 13, 145–176. [Google Scholar]
- Okay, A.I. The oxygen fugacity stability of deerite: An alternative view. J. Metamorph. Geol. 1987, 5, 553–555. [Google Scholar] [CrossRef]
- Şentürk, K.; Okay, A.I. Blueschists discovered east of Saros Bay in Thrace. MTA Derg. 1984, 97, 68–72. [Google Scholar]
- Altunkaynak, Ş.; Dilek, Y.; Genç, C.Ş.; Sunal, G.; Gertisser, R.; Furnes, H.; Foland, K.A.; Yang, J. Spatial, temporal and geochemical evolution of Oligo–Miocene granitoid magmatism in Western Anatolia, Turkey. Gondwana Res. 2012, 21, 961–986. [Google Scholar] [CrossRef]
- Birkle, P.; Satir, M.; Erler, A.; Ercan, T.; Bingol, E.; Orcen, S. Dating, geochemistry and geodynamic significance of the Tertiary magmatism of the Biga Peninsula, NW Turkey. Geol. Black Sea Reg. 1995, 117, 171–180. [Google Scholar]
- Karacik, Z. Ezine-Ayvacık (Çanakkale) Dolayında Genç Volkanizma-Plütonizma İlişkileri [Relationship Between Young Volcanism and Plutonism in Ezine-Ayvacık (Canakkale) Region]. Ph.D. Thesis, İstanbul Technical University, İstanbul, Turkey, 1995. [Google Scholar]
- Karacık, Z.; Yılmaz, Y. Geology of ignimbrites and the associated volcano-plutonic complex of the Ezine area, northwestern Anatolia. J. Volcanol. Geotherm. Res. 1998, 85, 251–264. [Google Scholar] [CrossRef]
- Yılmaz, Y. Geology of Western Anatolia: Active tectonics of northwestern Anatolia. In The Marmara Poly Project; VDF; Hochschulverlag Ag An Der ETH: Zürich, Switzerland, 1997; pp. 1–20. [Google Scholar]
- Yılmaz, Y.; Genc, Ş.C.; Karacik, Z.; Altunkaynak, S. Two contrasting magmatic associations of NW Anatolia and their tectonic significance. J. Geodyn. 2001, 31, 243–271. [Google Scholar] [CrossRef]
- Akal, C. Coeval shoshonitic-ultrapotassic dyke emplacements within the Kestanbol pluton, Ezine–Biga peninsula (NW Anatolia). Turk. J. Earth Sci. 2013, 22, 220–238. [Google Scholar] [CrossRef]
- Şener, M.; Gevrek, A.I. Distribution and significance of hydrothermal alteration minerals in the Tuzla hydrothermal system, Canakkale, Turkey. J. Volcanol. Geotherm. Res. 2000, 96, 215–228. [Google Scholar] [CrossRef]
- Gevrek, A.İ.; Şener, M.; Ercan, T. Çanakkale-Tuzla Jeotermal alanının hidrotermal alterasyon etüdü ve volkanik kayaçların petrolojisi. Bull. Miner. Res. Explor. 1985, 103, 82–103. [Google Scholar]
- Winchester, J.A.; Floyd, P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S.R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu Area, northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Irvine, T.N.; Baragar, W.A.R. A guide to chemical classification of common volcanic rocks. Can. J. Earth Sci. 1971, 8, 523–547. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in Oceanic Basins; Saunders, A.D., Norry, M.J., Eds.; Geological Society Special Publications: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Wood, D.A.; Joron, J.L.; Treuil, M.; Norry, M.; Tarney, J. Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean floor: The nature of mantle source inhomogeneities. Contrib. Mineral. Petrol. 1979, 70, 319–339. [Google Scholar] [CrossRef]
- Wilson, F.H. Geologic Setting, Petrology, and Age of Pliocene to Holocene Volcanoes of the Stepovak Bay Area. In US Geological Survey Bulletin; Government Printing Omce: Washington, DC, USA, 1983; pp. 84–95. [Google Scholar]
- Gorton, M.P.; Schandl, E.S. From continents to island arcs: A geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. Can. Mineral. 2000, 38, 1065–1073. [Google Scholar] [CrossRef]
- Pearce, J.A. Role of the sub-continental lithosphere in magma genesis at active continental margins. In Continental Basalts and Mantle Xenoliths (s. 230–249); Hawkesworth, C.J., Norry, M.J., Eds.; Shiva Publications: Nantwich, UK, 1983. [Google Scholar]
- Bozan, F.; Aslan, Z. Büyükbostancı-Çiçekpınar (Balıkesir, KB Türkiye) yöresindeki Oligosen-Miyosen yaşlı kalk-alkalen volkanik kayaçların mineral kimyası, jeokimyası ve petrolojisi. Türkiye Jeol. Bülteni 2022, 65, 117–148. [Google Scholar]
- Şen, P.; Sarı, R.; Şen, E.; Dönmez, C.; Özkümüş, S.; Küçükefe, Ş. Geochemical features and petrogenesis of Gökçeada volcanism, Çanakkale, NW Turkey. Bull. Miner. Res. Explor. 2020, 161, 81–99. [Google Scholar] [CrossRef]
- Harris, N.B.; Pearce, J.A.; Tindle, A.G. Geochemical characteristics of collision-zone magmatism. Geol. Soc. Lond. Spec. Publ. 1986, 19, 67–81. [Google Scholar] [CrossRef]
- Saatçi, E.S.; Aslan, Z. Yürekli (Balıkesir) volkanitinin petrografisi ve petrolojisi: Biga yarımadasında (KB Türkiye) çatışma sonrasında felsik volkanizmaya bir örnek. MTA Derg. 2018, 157, 105–122. [Google Scholar]
- Pearce, J.A.; Parkinson, I.J. Trace element models for mantle melting: Application to volcanic arc petrogenesis. In Magmatic Processes and Plate Tectonics; Prichard, H.M., Ed.; Geological Society Special Publications: London, UK, 1993; pp. 373–403. [Google Scholar]
- Stolz, A.J.; Varne, R.; Davies, G.R.; Wheller, G.E.; Foden, J.D. Magma source components in an arc-continent collision zone: The Flores-Lembata sector, Sunda arc, Indonesia. Contrib. Mineral. Petrol. 1990, 105, 585–601. [Google Scholar] [CrossRef]
- Kelemen, P.B.; Johnson, K.T.M.; Kinzler, R.J.; Irving, A.J. High-field-strength element depletions in arc basalts due to mantle–magma interaction. Nature 1990, 345, 521–524. [Google Scholar] [CrossRef]
- Ringwood, A.E. Slab-mantle interactions: 3. Petrogenesis of intraplate magmas and structure of the upper mantle. Chem. Geol. 1990, 82, 187–207. [Google Scholar] [CrossRef]
- Pearce, J.A.; Peate, D.W. Tectonic implications of the composition of volcanic arc magmas. Annu. Rev. Earth Planet. Sci. Lett. 1995, 23, 251–285. [Google Scholar] [CrossRef]
- Elburg, M.A.; Bergen, M.V.; Hoogewerff, J.; Foden, J.; Vroon, P.; Zulkarmain, I.; Nasution, A. Geochemical trends across an arc-continent collision zone: Magma sources and slab-wedge transfer processes below the Pantar Strait volcanoes. Indones. Geochim. Cosmochim. Acta 2002, 66, 2771–2789. [Google Scholar] [CrossRef]
- Churikova, T.; Dorendorf, F.; Wörner, G. Sources and fluids in the mantle wedge below Kamchatka, evidence from across-arc geochemical variation. J. Petrol. 2001, 42, 1567–1593. [Google Scholar] [CrossRef]
- Zellmer, G.F.; Annen, C.; Charlıer, B.L.A.; George, R.M.M.; Turner, S.P.; Hawkesworth, C.J. Magma evolution and ascent at volcanic arcs: Constraining petrogenetic processes through rates and chronologies. J. Volcanol. Geotherm. Res. 2005, 140, 171–191. [Google Scholar] [CrossRef]
- McDermott, F.; Delfin, F.G.; Defant, M.J.; Turner, S.; Maury, R. The petrogenesis of magmas from Mt. Bulusan and Mayon in the Bicol arc, the Philippines. Contrib. Mineral. Petrol. 2005, 150, 652–670. [Google Scholar] [CrossRef]
- Hawkesworth, C.J.; Turner, S.P.; McDermott, F.; Peate, D.W.; Van Calsteren, P. U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust. Science 1997, 276, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, T.K.; Smith, E.I. Polygenetic Quaternary volcanism at Crater Flat, Nevada. J. Volcanol. Geotherm. Res. 1994, 63, 165–182. [Google Scholar] [CrossRef]
- Smith, E.I.; Sánchez, A.; Walker, J.D.; Wang, K. Geochemistry of mafic magmas in the Hurricane Volcanic Field, Utah: Implications for small- and large scale chemical variability of the lithospheric mantle. J. Geol. 1999, 107, 433–448. [Google Scholar] [CrossRef]
- Erdem, D.; Aslan, Z. Kalk-alkalen Şapçı (Balıkesir) Volkanitlerin Petrografisi ve Petrolojisi: Biga Yarımadası’nda (Kuzeybatı Türkiye) Çarpışma ile İlişkili Volkanizma. Türkiye Jeol. Bülteni 2015, 58, 1–22. [Google Scholar] [CrossRef]
- Abdel-Rahman, A.F.M. Mesozoic volcanism in the Middle East: Geochemical, isotopic and petrogenetic evolution of extension-related alkali basalts from central Lebanon. Geol. Mag. 2002, 139, 621–640. [Google Scholar] [CrossRef]
- Weaver, B.L.; Wood, D.A.; Tarney, J.; Joron, J.L. Geochemistry of ocean island basalts from the south Atlantic: Ascension, Bouvet, St. Helena, Gough and Tristan da Cunha. Geol. Soc. Lond. Spec. Publ. 1987, 30, 253–267. [Google Scholar] [CrossRef]
- Arslan, M.; Temizel, I.; Abdioğlu, E.; Kolaylı, H.; Yücel, C.; Boztuğ, D.; Şen, C. 40Ar–39Ar dating, whole-rock and Sr–Nd–Pb isotope geochemistry of post-collisional Eocene volcanic rocks in the southern part of the Eastern Pontides (NE Turkey): Implications for magma evolution in extension-induced origin. Contrib. Mineral. Petrol. 2013, 166, 113–142. [Google Scholar] [CrossRef]
- Aydınçakır, E.; Şen, C. Petrogenesis of the post-collisional volcanic rocks from the Borçka (Artvin) area: Implications for the evolution of the Eocene magmatism in the Eastern Pontides (NE Turkey). Lithos 2013, 172, 98–117. [Google Scholar] [CrossRef]
- Pearce, J.A.; Bender, J.F.; De Long, S.E.; Kidd, W.S.F.; Low, P.J.; Güner, Y.; Şaroğlu, F.; Yılmaz, Y.; Moorbath, S.; Mitchell, J.J. Genesis of collision volcanism in eastern Anatolia Turkey. J. Volcanol. Geotherm. Res. 1990, 44, 189–229. [Google Scholar] [CrossRef]
- Lebedev, V.A.; Chernyshev, I.V.; Sagatelyan, A.K.; Goltsman, Y.V.; Oleinikova, T.I. Miocene–Pliocene volcanism of Central Armenia: Geochronology and the role of AFC processes in magma petrogenesis. J. Volcanol. Seismol. 2018, 12, 310–331. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: Oxford, UK, 1985. [Google Scholar]
- Aydınçakır, E. Taşlıyayla (Çaykara, Trabzon, KD Türkiye) civarı Geç Kretase yaşlı kalk-alkali volkanik kayaçların petrografik ve Jeokimyasal Özellikleri. Gümüşhane Üniv. Fen Bilim. Derg. 2017, 7, 51–78. [Google Scholar]
- Condie, K.C. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chem. Geol. 1993, 104, 1–37. [Google Scholar] [CrossRef]
- Jahn, B.M.; Wu, F.; Lo, C.H.; Tsai, C.H. Crust–mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr–Nd isotopic evidence from post-collisional mafic–ultramafic intrusions of the northern Dabie complex, central China. Chem. Geol. 1999, 157, 119–146. [Google Scholar] [CrossRef]
- Jahn, B.M.; Zhang, Z.Q. Archean granulite gneisses from eastern Hebei Province, China: Rare earth geochemistry and tectonic implications. Contrib. Mineral. Petrol. 1984, 85, 224–243. [Google Scholar] [CrossRef]
- Alıcı, P.; Temel, A.; Gourgaud, A.; Kieffer, G.; Gündoğdu, M.N. Petrology and geochemistry of potassic volcanism in the Gölcük area (Isparta, SW Turkey): Genesis of enriched alkaline magmas. J. Asian Earth Sci. 2002, 20, 867–886. [Google Scholar]
- Karaoğlu, Ö.; Helvacı, C.; Sunal, G. Geochemical and Sr–Nd–Pb isotopic constraints on the petrogenesis of Miocene volcanic rocks from western Anatolia: Implications for mantle source characteristics and crustal interaction. Lithos 2014, 184–187, 63–79. [Google Scholar]
- Furman, T.; Rooney, T.O.; Hanan, B.B.; Yücel, C. Isotopic evidence for multi-component mantle sources beneath western Anatolia: Implications for post-collisional magmatism. Lithos 2021, 380–381, 105871. [Google Scholar]
- Romick, J.D.; Kay, S.M.; Kay, R.W. The influence of amphibole fractionation on the evolution of calc-alkaline andesite and dacite tephra from the central Aleutians, Alaska. Contrib. Mineral. Petrol. 1992, 112, 101–118. [Google Scholar] [CrossRef]
- Arth, J.G. Some Trace Elements in Troundhjemites Their Implication to Magma Genesis and Paleotectonic Setting. In Developments in Petrology; U.S. Geological Survey: Denver, CO, USA, 1979; Chapter 3; Volume 6, pp. 123–132. [Google Scholar]
- Pang, K.N.; Zhou, M.F.; Qi, L.; Chung, S.L.; Chu, C.H.; Lee, H.Y. Petrology and geochemistry at the Lower zone-Middle zone transition of the Panzhihua intrusion, SW China: Implications for differentiation and oxide ore genesis. Geosci. Front. 2013, 4, 517–533. [Google Scholar] [CrossRef]
- Liu, P.P.; Zhou, M.F.; Luais, B.; Cividini, D.; Rollion-Bard, C. Disequilibrium iron isotopic fractionation during the high-temperature magmatic differentiation of the Baima Fe–Ti oxide-bearing mafic intrusion, SW China. Earth Planet. Sci. Lett. 2014, 399, 21–29. [Google Scholar] [CrossRef]
- Litvak, V.D.; Spagnuolo, M.G.; Folguera, A.; Poma, S.; Jones, R.E.; Ramos, V.A. Late Cenozoic calc-alkaline volcanism over the Payenia shallow subduction zone, South-Central Andean back-arc (34 30′–37 S), Argentina. J. S. Am. Earth Sci. 2015, 64, 365–380. [Google Scholar] [CrossRef]
- Gill, J.B. Orogenic Andesites and Plate Tectonics; Earth Sciences Board and Oakes College: Santa Cruz, CA, USA, 1981. [Google Scholar]
- Thirlwall, M.F.; Smith, T.E.; Graham, A.M.; Theodorou, N.; Hollings, P.; Davidson, J.P.; Arculus, R.J. High field strength element anomalies in arc lavas: Source or process? J. Petrol. 1994, 35, 819–838. [Google Scholar] [CrossRef]
- Lambert, R.S.J.; Holland, J.G. Yttrium geochemistry applied to petrogenesis utilizing calcium-yttrium relationships in minerals and rocks. Geochim. Cosmochim. Acta 1974, 38, 1393–1414. [Google Scholar] [CrossRef]
- Edwards, C.; Menzies, M.; Thirlwall, M. Evidence from Muriah, Indonesia, for the interplay of supra-subduction zone and intraplate processes in the genesis of potassic alkaline magmas. J. Petrol. 1991, 32, 555–592. [Google Scholar] [CrossRef]
- Aydınçakır, E. Subduction-related Late Cretaceous high-K volcanism in the Central Pontides orogenic belt: Constraints on geodynamic implications. Geodin. Acta 2016, 28, 379–411. [Google Scholar] [CrossRef]
- Tarabi, S.; Emami, M.H.; Modabberi, S.; Zakariaee, S.J.S. Eocene-Oligocene volcanic units of momen abad, east of Iran: Petrogenesis and magmatic evolution. Iran. J. Earth Sci. 2019, 11, 126–140. [Google Scholar]
















| Rhyodacite/Dacite | Trachyandesite | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Major Oxides (wt.%) | DL | T-1a-2 | T-1e | T-3b | K-1a | K-1b | K-2d | K-2e | T-1b | T-1c | T-1g | T-3a | T-3c | K-2a | K-2b |
| SiO2 | 0.01 | 65.39 | 51.80 | 69.89 | 73.36 | 67.47 | 64.36 | 69.38 | 70.27 | 76.53 | 58.23 | 66.20 | 71.18 | 72.37 | 72.79 |
| Al2O3 | 0.01 | 11.62 | 13.21 | 16.29 | 10.32 | 14.66 | 14.67 | 17.68 | 14.07 | 12.50 | 17.89 | 13.21 | 12.63 | 12.63 | 15.84 |
| Fe2O3 | 0.04 | 1.25 | 4.28 | 0.76 | 3.66 | 2.99 | 9.47 | 3.21 | 3.46 | 2.52 | 4.28 | 6.53 | 1.23 | 4.73 | 1.68 |
| MgO | 0.01 | 0.02 | 1.53 | 0.15 | 2.26 | 1.21 | 0.64 | 0.79 | 0.18 | 0.04 | 0.26 | 0.22 | 0.15 | 0.20 | 0.43 |
| CaO | 0.01 | 0.26 | 11.15 | 0.72 | 1.23 | 0.99 | 0.07 | 0.19 | 0.72 | 0.37 | 0.99 | 0.81 | 0.99 | 0.33 | 0.13 |
| Na2O | 0.01 | 0.67 | 2.05 | 1.43 | 0.10 | 0.23 | 0.07 | 0.06 | 1.56 | 0.35 | 1.39 | 1.58 | 1.01 | 0.10 | 0.12 |
| K2O | 0.01 | 1.93 | 1.16 | 0.81 | 3.62 | 7.05 | 3.15 | 3.34 | 094 | 0.13 | 1.33 | 0.91 | 0.74 | 3.26 | 4.35 |
| TiO2 | 0.01 | 0.555 | 0.481 | 0.740 | 0.993 | 0.433 | 0.453 | 0.447 | 0.585 | 0.446 | 0.800 | 0.795 | 0.581 | 0.939 | 0.865 |
| P2O5 | 0.01 | 0.79 | 0.15 | 0.27 | 0.66 | 0.16 | 0.30 | 0.17 | 0.13 | 0.07 | 0.27 | 0.17 | 0.14 | 0.16 | 0.13 |
| MnO | 0.01 | 0.010 | 0.031 | 0.030 | 0.066 | 0.052 | 0.014 | 0.016 | 0.019 | 0.012 | 0.022 | 0.014 | 0.021 | 0.008 | 0.007 |
| LOI | −5.1 | 14.72 | 12.87 | 9.58 | 3.85 | 5.49 | 7.18 | 5.60 | 9.01 | 6.65 | 12.67 | 8.92 | 9.03 | 5.78 | 4.26 |
| Total | 0.01 | 97.23 | 98.69 | 100.7 | 100.1 | 100.7 | 100.4 | 100.9 | 101.00 | 99.62 | 98.12 | 99.37 | 97.69 | 100.5 | 100.6 |
| Trace element (ppm) | |||||||||||||||
| Ba | 2 | 1287 | 701 | 233 | 357 | 987 | 763 | 535 | 1192 | 13,060 | 264 | 1292 | 20,050 | 5089 | 1003 |
| Cs | 0.1 | 0.9 | 46.2 | 7.7 | 2.6 | 5.3 | 8.6 | 11.4 | 25.1 | 3.5 | 23.3 | 26.8 | 11.7 | 4.5 | 8.2 |
| Ni | 20 | <20 | 50 | <20 | 130 | 20 | <20 | 50 | 30 | 30 | 50 | <20 | 40 | <20 | <20 |
| Co | 1 | 3 | 11 | 3 | 22 | 8 | 7 | 13 | 10 | 2 | 6 | 3 | 14 | 9 | 1 |
| V | 5 | 87 | 92 | 137 | 143 | 70 | 58 | 55 | 60 | 40 | 90 | 151 | 66 | 133 | 148 |
| Cu | 10 | 20 | 20 | 60 | 60 | 20 | 50 | 60 | 60 | 10 | 40 | 20 | 20 | 30 | 30 |
| Zn | 30 | <30 | 60 | <30 | 50 | 50 | 110 | 90 | 100 | 30 | 70 | <30 | 40 | <30 | <30 |
| Pb | 5 | 203 | 34 | 905 | 74 | 36 | 29 | 41 | 92 | 26 | 52 | 85 | 59 | 37 | 40 |
| Rb | 1 | 11 | 59 | 42 | 174 | 311 | 146 | 170 | 68 | 10 | 92 | 79 | 49 | 121 | 190 |
| Sr | 2 | 5320 | 797 | 967 | 202 | 211 | 54 | 20 | 581 | 722 | 572 | 939 | 1042 | 539 | 306 |
| Y | 0.5 | 27.8 | 17.6 | 23.8 | 28.1 | 13.0 | 16.5 | 16.1 | 16.3 | 21.8 | 13.1 | 20.4 | 15.2 | 21.0 | 19.0 |
| Zr | 1 | 198 | 141 | 310 | 351 | 167 | 173 | 164 | 302 | 292 | 216 | 294 | 385 | 313 | 289 |
| Nb | 0.2 | 10.9 | 8.7 | 15.1 | 16.2 | 7.9 | 8.5 | 7.4 | 12.9 | 15.6 | 17.7 | 14.9 | 10.3 | 18.1 | 15.3 |
| Th | 0.05 | 50.9 | 11.4 | 57.4 | 53.1 | 15.8 | 22.6 | 16.8 | 34.2 | 35.2 | 35.4 | 41.5 | 33.8 | 40.9 | 32.2 |
| W | 0.5 | 6.2 | 1.8 | 1.8 | 8.7 | 4.8 | 13.8 | 3.8 | 9.1 | 3.9 | 5.8 | 1.3 | 7.7 | 9.4 | 11.2 |
| Hf | 0.1 | 3.8 | 4.7 | 8.0 | 10.9 | 4.9 | 6.0 | 4.8 | 8.9 | 7.9 | 6.7 | 7.9 | 11.1 | 9.3 | 11.3 |
| U | 0.01 | 10.60 | 3.19 | 59.00 | 14.60 | 5.12 | 4.33 | 4.91 | 6.96 | 1.24 | 4.93 | 5.70 | 9.76 | 12.10 | 14.40 |
| Ta | 0.01 | 1.23 | 0.60 | 1.67 | 1.87 | 0.70 | 0.74 | 0.68 | 1.38 | 1.17 | 1.42 | 1.58 | 1.36 | 2.14 | 1.65 |
| Sb | 0.2 | 5.8 | 7.9 | 9.6 | 1.9 | 1.8 | 3.8 | 0.8 | 13.2 | 3.1 | 11.3 | 13.0 | 22.0 | 0.8 | 2.7 |
| Rare Earth Element (ppm) | |||||||||||||||
| La | 0.05 | 96.9 | 34.5 | 91.8 | 85.6 | 40.6 | 39.2 | 37.9 | 52.2 | 63.8 | 75.2 | 68.7 | 49.1 | 80.1 | 78.8 |
| Ce | 0.05 | 184.0 | 67.9 | 17.0 | 167.0 | 76.5 | 72.9 | 72.8 | 94.3 | 114.0 | 142.0 | 128.0 | 91.0 | 147.0 | 143.0 |
| Pr | 0.01 | 20.0 | 7.9 | 18.6 | 21.0 | 8.7 | 8.3 | 8.5 | 10.8 | 12.5 | 15.8 | 13.8 | 10.3 | 17.0 | 17.5 |
| Nd | 0.05 | 72.7 | 28.3 | 64.2 | 77.0 | 30.9 | 28.4 | 29.4 | 36.4 | 42.8 | 46.0 | 47.7 | 36.9 | 61.3 | 62.7 |
| Sm | 0.01 | 14.40 | 5.44 | 11.50 | 13.70 | 5.20 | 5.02 | 5.71 | 6.06 | 7.22 | 5.10 | 9.02 | 6.20 | 8.80 | 9.45 |
| Eu | 0.005 | 3.77 | 1.16 | 2.20 | 2.53 | 1.03 | 0.85 | 1.06 | 1.39 | 1.22 | 0.82 | 1.93 | 1.21 | 1.28 | 1.57 |
| Gd | 0.01 | 11.10 | 4.05 | 6.59 | 9.18 | 3.69 | 4.11 | 4.90 | 4.14 | 4.99 | 2.93 | 5.84 | 4.28 | 4.00 | 4.88 |
| Tb | 0.01 | 1.29 | 0.57 | 0.85 | 1.27 | 0.45 | 0.56 | 0.68 | 0.51 | 0.72 | 0.42 | 0.74 | 0.55 | 0.64 | 0.71 |
| Dy | 0.01 | 5.70 | 3.16 | 4.60 | 5.63 | 2.42 | 2.97 | 3.22 | 2.92 | 3.78 | 2.33 | 3.98 | 2.72 | 3.87 | 3.68 |
| Ho | 0.01 | 0.89 | 0.61 | 0.83 | 0.99 | 0.44 | 0.52 | 0.55 | 0.56 | 0.77 | 0.44 | 0.73 | 0.52 | 0.76 | 0.63 |
| Er | 0.01 | 2.24 | 1.71 | 2.33 | 2.49 | 1.29 | 1.52 | 1.54 | 1.59 | 2.10 | 1.38 | 2.16 | 1.47 | 2.01 | 1.78 |
| Tm | 0.005 | 0.312 | 0.229 | 0.344 | 0.342 | 0.185 | 0.206 | 0.223 | 0.223 | 0.292 | 0.202 | 0.328 | 0.228 | 0.274 | 0.246 |
| Yb | 0.01 | 2.00 | 1.42 | 2.20 | 2.17 | 1.20 | 1.42 | 1.40 | 1.59 | 1.87 | 1.53 | 2.07 | 1.64 | 1.59 | 1.54 |
| Lu | 0.002 | 0.303 | 0.240 | 0.343 | 0.363 | 0.186 | 0.244 | 0.239 | 0.274 | 0.330 | 0.261 | 0.316 | 0.260 | 0.250 | 0.253 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kiray, D.; Cengiz, O. Petrography, Geochemistry, and Magmatic Processes of Oligocene-Miocene Tuzla Volcanics, Biga Peninsula, NW Türkiye. Minerals 2026, 16, 23. https://doi.org/10.3390/min16010023
Kiray D, Cengiz O. Petrography, Geochemistry, and Magmatic Processes of Oligocene-Miocene Tuzla Volcanics, Biga Peninsula, NW Türkiye. Minerals. 2026; 16(1):23. https://doi.org/10.3390/min16010023
Chicago/Turabian StyleKiray, Didem, and Oya Cengiz. 2026. "Petrography, Geochemistry, and Magmatic Processes of Oligocene-Miocene Tuzla Volcanics, Biga Peninsula, NW Türkiye" Minerals 16, no. 1: 23. https://doi.org/10.3390/min16010023
APA StyleKiray, D., & Cengiz, O. (2026). Petrography, Geochemistry, and Magmatic Processes of Oligocene-Miocene Tuzla Volcanics, Biga Peninsula, NW Türkiye. Minerals, 16(1), 23. https://doi.org/10.3390/min16010023

