Occurrence and Origin of Chlorine in Middle Jurassic High-Cl Coals from the Sha’erhu Area, Turpan–Hami Basin, Northwest China
Abstract
1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Standard Coal, Mineralogical, and Geochemical Analyses
3.2. Analytical Methods for Chlorine Speciation
4. Results
4.1. Coal Properties
4.2. Mineralogy
4.3. Geochemistry
4.4. Chlorine Speciation
5. Discussion
5.1. Depositional–Diagenetic Environment
5.2. Brine Iintrusion
5.3. Chlorine Occurrence Forms
5.4. Formation Mechanism of High-Chlorine Coal
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hong, K.; Zhou, T.; Zhang, M.; Zeng, Y.; Li, W.; Yang, H. Combustion Utilization of High-Chlorine Coal: Current Status and Future Prospects. Energies 2025, 18, 3011. [Google Scholar] [CrossRef]
- Tillman, D.A.; Duong, D.; Miller, B. Chlorine in solid fuels fired in pulverized fuel boilers Sources, forms, reactions, and consequences: A literature review. Energy Fuels 2009, 23, 3379–3391. [Google Scholar] [CrossRef]
- Gullett, B.; Sarofim, A.; Smith, K.; Procaccini, C. The role of chlorine in dioxin formation. Process Saf. Environ. Prot. 2000, 78, 47–52. [Google Scholar] [CrossRef]
- Procaccini, C. The Chemistry of Chlorine in Combustion Systems and the Gas-Phase Formation of Chlorinated and Oxygenated Pollutants. Doctoral Dissertation, Massachusetts Institute of Technology, Cambridge, MA, USA, 1999. [Google Scholar]
- Yudovich, Y.E.; Ketris, M. Chlorine in coal: A review. Int. J. Coal Geol. 2006, 67, 127–144. [Google Scholar] [CrossRef]
- Vassilev, S.; Eskenazy, G.; Vassileva, C. Contents, modes of occurrence and origin of chlorine and bromine in coal. Fuel 2000, 79, 903–921. [Google Scholar] [CrossRef]
- Qi, X.; Song, G.; Yang, S.; Yang, Z.; Lyu, Q. Migration and transformation of sodium and chlorine in high-sodium high-chlorine Xinjiang lignite during circulating fluidized bed combustion. J. Energy Inst. 2019, 92, 673–681. [Google Scholar] [CrossRef]
- Peng, B.; Li, X. Release and transformation characteristics of modes of occurrence of chlorine in coal gangue during combustion. Energy Fuels 2018, 32, 9926–9933. [Google Scholar] [CrossRef]
- Caswell, S.A.; Holmes, L.F.; Spears, D.A. Water-soluble chlorine and associated major cations from the coal and mudrocks of the Cannock and North Staffordshire coalfields. Fuel 1984, 63, 774–781. [Google Scholar] [CrossRef]
- Caswell, S.A.; Holmes, L.F.; Spears, D.A. Total chlorine in coal seam profiles from the South Staffordshire (Cannock) coalfield. Fuel 1984, 63, 782–787. [Google Scholar] [CrossRef]
- Huggins, F.E.; Huffman, G.P. Chlorine in coal: An XAFS spectroscopic investigation. Fuel 1995, 74, 556–569. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, S.; Qiao, J.; Zhang, H.; Zhang, E.; Ma, Y.; Hao, Y. Chemical characteristics, formation mechanisms, and geological evolution processes of high-salinity coal reservoir water in the Binchang area of the southern Ordos Basin, China. Int. J. Coal Geol. 2024, 291, 104574. [Google Scholar] [CrossRef]
- Ma, D.; Jia, S.; Hu, Z.; Wang, X.; Li, L.; Tan, H.; ur Rahman, Z. Experimental investigation of water washing effect on high-chlorine coal properties. Fuel 2022, 319, 123838. [Google Scholar] [CrossRef]
- Li, J.; Zhuang, X.; Querol, X.; Font, O.; Moreno, N.; Zhou, J. Environmental geochemistry of the feed coals and their combustion by-products from two coal-fired power plants in Xinjiang Province, Northwest China. Fuel 2012, 95, 446–456. [Google Scholar] [CrossRef]
- Hanor, J.S. Origin of saline fluids in sedimentary basins. Geol. Soc. Lond. Spec. Publ. 1994, 78, 151–174. [Google Scholar] [CrossRef]
- Li, C.; Gao, X.; Li, S.; Bundschuh, J. A review of the distribution, sources, genesis, and environmental concerns of salinity in groundwater. Environ. Sci. Pollut. Res. 2020, 27, 41157–41174. [Google Scholar] [CrossRef]
- Zimmerman, A.J.; Weindorf, D.C. Heavy metal and trace metal analysis in soil by sequential extraction: A review of procedures. Int. J. Anal. Chem. 2010, 2010, 387803. [Google Scholar] [CrossRef]
- Ali, J.; Tuzen, M.; Jatoi, W.B.; Feng, X.; Sun, G.; Saleh, T.A. A review of sequential extraction methods for fractionation analysis of toxic metals in solid environmental matrices. TrAC Trends Anal. Chem. 2024, 173, 117639. [Google Scholar] [CrossRef]
- Okoro, H.K.; Fatoki, O.S.; Adekola, F.A.; Ximba, B.J.; Snyman, R.G. A review of sequential extraction procedures for heavy metals speciation in soil and sediments. Open Access Sci. Rep. 2012, 1, 1–9. [Google Scholar] [CrossRef]
- Selley, R.C. Ancient Sedimentary Environments: And Their Sub-Surface Diagnosis; Routledge: London, UK, 2013. [Google Scholar]
- Miao, H.; Guo, J.; Wang, Y.; Jiang, Z.; Zhang, C.; Li, C. Mineralogical and elemental geochemical characteristics of Taodonggou Group in Taibei Sag, Turpan-Hami Basin: Implication for Source sink system and evolution history of lake basin. EGUsphere 2023, 2023, 1–29. [Google Scholar]
- Xiao, L.; Zhao, C.; Tang, S.; Liu, Z.; Yang, W.; Yuan, T. Sedimentary facies and coal-accumulation of the Early-Middle Jurassic in Toksun coalfield Northwestern China. Energy Explor. Exploit. 2013, 31, 459–470. [Google Scholar] [CrossRef]
- ASTM D3174-12; Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal. ASTM International: West Conshohocken, PA, USA, 2012.
- ASTM D3173M-17a; Standard Test Method for Moisture in the Analysis Sample of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D3175-17; Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D4208-19; Standard Test Method for Total Chlorine in Coal by the Oxygen Vessel Combustion/Ion Selective Electrode Method. ASTM International: West Conshohocken, PA, USA, 2019.
- ATSM D3177-02; Standard Test Methods for Total Sulfur in the Analysis Sample of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D2798-21; Standard Test Method for Microscopical Determination of the Vitrinite Reflectance of Coal. ASTM International: West Conshohocken, PA, USA, 2021.
- Dai, S.; Wang, X.; Zhou, Y.; Hower, J.C.; Li, D.; Chen, W.; Zhu, X.; Zou, J. Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the late Permian coals from the Songzao Coalfield, Chongqing, Southwest China. Chem. Geol. 2011, 282, 29–44. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Palmer, C.A.; Wang, P. Quantification of the modes of occurrence of 42 elements in coal. Int. J. Coal Geol. 2018, 185, 138–160. [Google Scholar] [CrossRef]
- Zhao, F.; Ren, D.; Wang, Z. Geochemical characteristics and step-by-step extraction of chlorine in coal. J. China Univ. Min. Technol. 1999, 28, 61–64. [Google Scholar]
- GB/T 15224.1-2018; Classification for Quality of Coal—Part 1: Ash. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2018.
- GB/T 15224.2-2021; Classification for Quality of Coal—Part 2: Sulfur Content. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2021.
- GB/T 20475.2-2006; Classification for Content of Harmful Elements in Coal—Part 2: Chlorine. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2006.
- ASTM D388-23; Standard Classification of Coals by Rank. ASTM International: West Conshohocken, PA, USA, 2023.
- Dai, S.; Ren, D.; Chou, C.-L.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Ketris, M.P.; Yudovich, Y.E. Estimations of Clarkes for Carbonaceous Biolithes: World Averages for Trace Element Contents in Black Shales and Coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- Dai, S.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Xing, Y.; Zhang, W.; Song, W.; Wang, P. Enrichment of U–Se–Mo–Re–V in coals preserved within marine carbonate successions: Geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Miner. Depos. 2015, 50, 159–186. [Google Scholar] [CrossRef]
- Dai, S.; Graham, I.T.; Ward, C.R. A review of anomalous rare earth elements and yttrium in coal. Int. J. Coal Geol. 2016, 159, 82–95. [Google Scholar] [CrossRef]
- Dai, S.; Liu, J.; Ward, C.R.; Hower, J.C.; French, D.; Jia, S.; Hood, M.M.; Garrison, T.M. Mineralogical and geochemical compositions of Late Permian coals and host rocks from the Guxu Coalfield, Sichuan Province, China, with emphasis on enrichment of rare metals. Int. J. Coal Geol. 2016, 166, 71–95. [Google Scholar] [CrossRef]
- Tsanga, A.D.; Ekoa Bessa, A.Z.; Ngueutchoua, G.; Armstrong-Altrin, J.S. Microtexture, mineralogy, and geochemistry of sediments in the Campo beach area, South Cameroon. J. Sediment. Environ. 2025, 10, 325–347. [Google Scholar] [CrossRef]
- Zheng, X.; Dai, S.; Nechaev, V.; Sun, R. Environmental perturbations during the latest Permian: Evidence from organic carbon and mercury isotopes of a coal-bearing section in Yunnan Province, southwestern China. Chem. Geol. 2020, 549, 119680. [Google Scholar] [CrossRef]
- Rimmer, S.M. Geochemical paleoredox indicators in Devonian–Mississippian black shales, central Appalachian Basin (USA). Chem. Geol. 2004, 206, 373–391. [Google Scholar] [CrossRef]
- Ghandour, I.M. Paleoenvironmental changes across the Paleocene–Eocene boundary in West Central Sinai, Egypt: Geochemical proxies. Swiss J. Geosci. 2020, 113, 3. [Google Scholar] [CrossRef]
- Reiss, A.G.; Gavrieli, I.; Rosenberg, Y.O.; Reznik, I.J.; Luttge, A.; Emmanuel, S.; Ganor, J. Gypsum precipitation under saline conditions: Thermodynamics, kinetics, morphology, and size distribution. Minerals 2021, 11, 141. [Google Scholar] [CrossRef]
- Warren, J. Evaporites, brines and base metals: Fluids, flow and ‘the evaporite that was’. Aust. J. Earth Sci. 1997, 44, 149–183. [Google Scholar] [CrossRef]
- Raup, O.B.; Bodine, M.W. Evaporites and Brines; The Geological Society of America: Boulder, CO, USA, 1991. [Google Scholar]
- Xu, X.; Ning, S.; Sun, J.; Wang, H.; Li, B.; Zhang, J.; Ding, L. Geochemical characteristics and paleoenvironmental significance of the Xishanyao Formation coal in the eastern Junggar Basin. Coal Sci. Technol. 2024, 52, 153–163. [Google Scholar]
- Wang, R.; Wang, W.; Lu, Q.; Zhang, J.; Wang, W.; Dong, L. Geochemistry of Middle Jurassic Coals from the Dananhu Mine, Xinjiang: Emphasis on Sediment Source and Control Factors of Critical Metals. Minerals 2024, 14, 767. [Google Scholar] [CrossRef]
- Zhu, F.; Li, C.; Leng, J.; Jia, M.; Gong, H.; Wang, B.; Zhang, F.; Jiang, Z.; Wang, Z. Paleoenvironmental characteristics of lacustrine shale and its impact on organic matter enrichment in Funing Formation of Subei Basin. Minerals 2023, 13, 1439. [Google Scholar] [CrossRef]
- Wei, W.; Gilleaudeau, G.; Song, Y.; Ruebsam, W.; Algeo, T.J. Preface for Chemical Geology VSI: Elemental salinity proxies. Chem. Geol. 2025, 694, 123023. [Google Scholar] [CrossRef]
- Warren, J. Evaporites, brines and base metals: Low-temperature ore emplacement controlled by evaporite diagenesis. Aust. J. Earth Sci. 2000, 47, 179–208. [Google Scholar] [CrossRef]
- Bazargani-Guilani, K.; Faramarzi, M.; Tak, M.A.N. Multistage dolomitization in the cretaceous carbonates of the east Shahmirzad area, north Semnan, central Alborz, Iran. Carbonates Evaporites 2010, 25, 177–191. [Google Scholar] [CrossRef]
- Worden, R.H. Halogen elements in sedimentary systems and their evolution during diagenesis. In The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle; Springer: Berlin/Heidelberg, Germany, 2018; pp. 185–260. [Google Scholar]
- Yang, R.; Fan, A.; Van Loon, A.; Han, Z.; Wang, X. Depositional and diagenetic controls on sandstone reservoirs with low porosity and low permeability in the eastern Sulige gas field, China. Acta Geol. Sin.-Engl. Ed. 2014, 88, 1513–1534. [Google Scholar] [CrossRef]
- Zhu, N.; Yao, S.; Zhang, Y.; Ning, S.; Jia, B.; Zhou, Y.; Zhang, W. Influence of coupled dissolution-precipitation processes on the pore structure, characteristics, and evolution of tight sandstone: A case study in the upper Paleozoic reservoir of Bohai Bay Basin, eastern China. J. Asian Earth Sci. 2024, 262, 105998. [Google Scholar] [CrossRef]
- Bataille, C.P.; Bowen, G.J. Mapping 87Sr/86Sr variations in bedrock and water for large scale provenance studies. Chem. Geol. 2012, 304, 39–52. [Google Scholar] [CrossRef]
- Jewuła, K.; Środoń, J.; Kuligiewicz, A.; Mikołajczak, M.; Liivamägi, S. Critical evaluation of geochemical indices of palaeosalinity involving boron. Geochim. Cosmochim. Acta 2022, 322, 1–23. [Google Scholar] [CrossRef]
- Sun, L.; Wu, S.; Yue, D.; Cui, W. Paleosalinity reconstruction in offshore lacustrine basins based on elemental geochemistry: A case study of Middle-Upper Eocene Shahejie Formation, Zhanhua Sag, Bohai Bay Basin. J. Oceanol. Limnol. 2024, 42, 1087–1105. [Google Scholar] [CrossRef]
- Hu, T.; Pang, X.; Jiang, S.; Wang, Q.; Xu, T.; Lu, K.; Huang, C.; Chen, Y.; Zheng, X. Impact of paleosalinity, dilution, redox, and paleoproductivity on organic matter enrichment in a saline lacustrine rift basin: A case study of Paleogene organic-rich shale in Dongpu Depression, Bohai Bay Basin, Eastern China. Energy Fuels 2018, 32, 5045–5061. [Google Scholar] [CrossRef]
- Cai, C.; Li, K.; Li, H.; Zhang, B. Evidence for cross formational hot brine flow from integrated 87Sr/86Sr, REE and fluid inclusions of the Ordovician veins in Central Tarim, China. Appl. Geochem. 2008, 23, 2226–2235. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, Q.; Zhu, C.; Yang, G. Adsorption of ions at the interface of clay minerals and aqueous solutions. In Advances in Colloid Science; IntechOpen: London, UK, 2016. [Google Scholar]
- Müller, G.; Nkusi, G.; Schöler, H.F. Natural organohalogens in sediments. J. Für Prakt. Chem./Chem.-Ztg. 1996, 338, 23–29. [Google Scholar] [CrossRef]
- Fabbrizio, A.; Stalder, R.; Hametner, K.; Günther, D. Experimental chlorine partitioning between forsterite, enstatite and aqueous fluid at upper mantle conditions. Geochim. Cosmochim. Acta 2013, 121, 684–700. [Google Scholar] [CrossRef]
- Golding, S.; Collerson, K.; Uysal, I.; Glikson, M.; Baublys, K.; Zhao, J. Nature and source of carbonate mineralization in Bowen Basin coals, Eastern Australia. In Organic Matter and Mineralisation: Thermal Alteration, Hydrocarbon Generation and Role in Metallogenesis; Springer: Berlin/Heidelberg, Germany, 2000; pp. 296–313. [Google Scholar]
- Kai, C.; Qimeng, L.; Yu, L.; Weihua, P.; Zitao, W.; Xiang, Z. Hydrochemical characteristics and source analysis of deep groundwater in Qianyingzi Coal Mine. Coal Geol. Explor. 2022, 50, 12. [Google Scholar]
- Rinder, T.; Dietzel, M.; Stammeier, J.A.; Leis, A.; Bedoya-González, D.; Hilberg, S. Geochemistry of coal mine drainage, groundwater, and brines from the Ibbenbüren mine, Germany: A coupled elemental-isotopic approach. Appl. Geochem. 2020, 121, 104693. [Google Scholar] [CrossRef]
- Diehl, S.; Goldhaber, M.; Hatch, J. Modes of occurrence of mercury and other trace elements in coals from the warrior field, Black Warrior Basin, Northwestern Alabama. Int. J. Coal Geol. 2004, 59, 193–208. [Google Scholar] [CrossRef]









| Sample ID | Ad | Mad | Vdaf | St,d | Clt, ad | Ro, ran |
|---|---|---|---|---|---|---|
| SEH-2-1R | 84.59 | 3.33 | nd | 0.28 | 0.23 | nd |
| SEH-2-2 | 9.52 | 8.28 | 48.05 | 1.32 | 0.56 | 0.29 |
| SEH-2-3F | 86.12 | 3.08 | nd | 0.06 | 0.20 | nd |
| SEH-3-1R | 87.87 | 3.23 | nd | 0.06 | 0.22 | nd |
| SEH-3-2 | 19.65 | 9.04 | 43.48 | 1.96 | 0.93 | 0.33 |
| SEH-3-3F | 79.14 | 4.48 | nd | 0.18 | 0.44 | nd |
| SEH-4-1R | 85.37 | 2.48 | nd | 0.08 | 0.38 | nd |
| SEH-4-2 | 33.41 | 6.74 | 37.11 | 0.90 | 0.71 | 0.34 |
| SEH-4-3F | 81.17 | 3.15 | nd | 0.08 | 0.19 | nd |
| SEH-5-1R | 89.52 | 3.39 | nd | 0.02 | 0.20 | nd |
| SEH-5-2R | 71.53 | 6.72 | nd | 0.11 | 0.27 | nd |
| SEH-5-3 | 4.40 | 34.75 | 59.52 | 0.12 | 1.57 | 0.27 |
| SEH-5-4 | 6.69 | 30.96 | 55.48 | 0.11 | 1.33 | 0.29 |
| SEH-5-5 | 8.59 | 30.26 | 54.16 | 0.07 | 1.21 | 0.26 |
| SEH-5-6 | 6.13 | 29.71 | 57.21 | 0.21 | 1.00 | 0.28 |
| WA | 10.12 | 26.33 | 53.38 | 0.39 | 0.75 | 0.29 |
| Sample ID | Qtz | Ms | Ill | Kln | Mont | Bsn | Ab | Kfs | Py | Clc | Ntr | Hl |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| SEH-2-1R | 38.1 | 10.5 | 5.8 | 36.8 | 4.8 | nd | nd | nd | nd | 4.0 | nd | nd |
| SEH-2-2 | 14.3 | 4.0 | 17.5 | 10.8 | 5.8 | 43.1 | 0.7 | 0.8 | 3.0 | nd | nd | nd |
| SEH-2-3F | 28.3 | 9.2 | 2.1 | 49.1 | 4.7 | nd | 4.1 | 2.5 | nd | nd | nd | nd |
| SEH-3-1R | 38.1 | 12.2 | 6.7 | 38.2 | 4.8 | nd | nd | nd | nd | nd | nd | nd |
| SEH-3-2 | 14.8 | 11.7 | 9.4 | 30.8 | 7.0 | 22.8 | nd | nd | 3.5 | nd | nd | nd |
| SEH-3-3F | 29.8 | 13.4 | 6.5 | 38.3 | 7.6 | nd | nd | nd | nd | 4.4 | nd | nd |
| SEH-4-1R | 40.1 | 10.3 | 4.8 | 39.5 | 2.3 | nd | nd | nd | nd | 3.0 | nd | nd |
| SEH-4-2 | 23.1 | 15.6 | 12.5 | 37.1 | 5.4 | 6.4 | nd | nd | nd | nd | nd | nd |
| SEH-4-3F | 34.8 | 14.2 | 2.6 | 39.6 | 6.0 | nd | 2.8 | nd | nd | nd | nd | nd |
| SEH-5-1R | 37.9 | 13.9 | 3.1 | 40.4 | 4.7 | nd | nd | nd | nd | nd | nd | nd |
| SEH-5-2R | 23.3 | 10.1 | 7.5 | 48.4 | 8.8 | 1.9 | nd | nd | nd | nd | nd | nd |
| SEH-5-3 | 13.2 | nd | nd | 14.2 | nd | 43.1 | nd | nd | nd | nd | 18.6 | 10.9 |
| SEH-5-4 | 11.7 | nd | nd | 32.7 | nd | 35.4 | nd | nd | nd | nd | 12.1 | 8.1 |
| SEH-5-5 | 13.1 | nd | nd | 45.9 | nd | 32.5 | nd | nd | nd | nd | 4.3 | 4.2 |
| SEH-5-6 | 16.6 | nd | nd | 20.4 | nd | 49.0 | nd | nd | nd | nd | 7.6 | 6.4 |
| Sample-ID | LOI | SiO2 | TiO2 | Al2O3 | Fe2O3 | MnO | MgO | CaO | Na2O | K2O | P2O5 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| SEH-2-1R | 15.43 | 54.88 | 1.01 | 19.10 | 4.49 | 0.028 | 1.55 | 0.67 | 0.84 | 1.766 | 0.098 |
| SEH-2-2 | 90.49 | 2.90 | 0.08 | 1.58 | 0.92 | 0.002 | 0.55 | 2.28 | 0.98 | 0.110 | 0.055 |
| SEH-2-3F | 13.91 | 54.32 | 0.99 | 23.11 | 3.40 | 0.023 | 0.90 | 0.64 | 1.16 | 1.371 | 0.072 |
| SEH-3-1R | 12.16 | 57.03 | 1.02 | 21.22 | 3.87 | 0.017 | 1.21 | 0.61 | 0.80 | 1.884 | 0.069 |
| SEH-3-2 | 80.36 | 8.75 | 0.28 | 4.80 | 1.79 | 0.004 | 0.58 | 1.86 | 1.25 | 0.234 | 0.023 |
| SEH-3-3F | 20.89 | 49.01 | 0.89 | 19.82 | 3.91 | 0.027 | 1.64 | 0.86 | 0.95 | 1.820 | 0.083 |
| SEH-4-1R | 14.65 | 55.93 | 1.22 | 20.02 | 2.98 | 0.025 | 1.52 | 0.66 | 0.71 | 2.016 | 0.168 |
| SEH-4-2 | 66.61 | 19.04 | 0.47 | 8.30 | 1.61 | 0.014 | 0.72 | 1.49 | 0.92 | 0.703 | 0.040 |
| SEH-4-3F | 18.85 | 53.57 | 1.11 | 19.93 | 2.78 | 0.009 | 0.68 | 0.90 | 0.90 | 1.130 | 0.039 |
| SEH-5-1R | 10.51 | 58.38 | 1.26 | 21.76 | 3.26 | 0.015 | 1.27 | 0.52 | 0.62 | 2.195 | 0.094 |
| SEH-5-2R | 28.52 | 44.48 | 1.17 | 19.61 | 2.69 | 0.008 | 0.66 | 1.35 | 0.78 | 0.586 | 0.040 |
| SEH-5-3 | 95.62 | 0.59 | 0.02 | 0.45 | 0.43 | 0.010 | 0.25 | 2.10 | 0.48 | 0.015 | 0.002 |
| SEH-5-4 | 93.33 | 1.65 | 0.04 | 1.12 | 0.35 | 0.008 | 0.29 | 2.71 | 0.45 | 0.016 | 0.004 |
| SEH-5-5 | 91.43 | 2.58 | 0.04 | 1.87 | 0.42 | 0.009 | 0.27 | 2.58 | 0.74 | 0.017 | 0.004 |
| SEH-5-6 | 93.89 | 1.31 | 0.06 | 0.72 | 0.88 | 0.019 | 0.25 | 2.22 | 0.59 | 0.020 | 0.003 |
| WA | 89.90 | 3.79 | 0.10 | 2.03 | 0.73 | 0.01 | 0.35 | 2.27 | 0.67 | 0.10 | 0.01 |
| China | nd | 8.47 | 0.33 | 5.98 | 4.85 | 0.015 | 0.22 | 1.23 | 0.16 | 0.19 | 0.092 |
| CC | nd | 0.45 | 0.30 | 0.34 | 0.15 | 0.70 | 1.57 | 1.85 | 4.17 | 0.54 | 0.12 |
| Sample ID | Ultrawater | CH3COONH4 | CH3COOH | HTCH | Residue |
|---|---|---|---|---|---|
| SEH-2-2 | 0.442 | 0.027 | 0.014 | 0.073 | 0.008 |
| SEH-3-2 | 0.764 | 0.056 | 0.035 | 0.065 | 0.008 |
| SEH-4-2 | 0.543 | 0.087 | 0.031 | 0.042 | 0.002 |
| SEH-5-3 | 1.33 | 0.138 | 0.033 | 0.057 | 0.012 |
| SEH-5-6 | 0.886 | 0.045 | 0.031 | 0.043 | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xu, X.; Wang, W.; Lu, Q.; Wang, W.; Zhang, B.; Wu, Y.; Li, J.; Che, K.; Shen, Y. Occurrence and Origin of Chlorine in Middle Jurassic High-Cl Coals from the Sha’erhu Area, Turpan–Hami Basin, Northwest China. Minerals 2026, 16, 18. https://doi.org/10.3390/min16010018
Xu X, Wang W, Lu Q, Wang W, Zhang B, Wu Y, Li J, Che K, Shen Y. Occurrence and Origin of Chlorine in Middle Jurassic High-Cl Coals from the Sha’erhu Area, Turpan–Hami Basin, Northwest China. Minerals. 2026; 16(1):18. https://doi.org/10.3390/min16010018
Chicago/Turabian StyleXu, Xinyi, Wenfeng Wang, Qingfeng Lu, Wenlong Wang, Bofei Zhang, Yuanzhe Wu, Jiaxin Li, Kexin Che, and Yixin Shen. 2026. "Occurrence and Origin of Chlorine in Middle Jurassic High-Cl Coals from the Sha’erhu Area, Turpan–Hami Basin, Northwest China" Minerals 16, no. 1: 18. https://doi.org/10.3390/min16010018
APA StyleXu, X., Wang, W., Lu, Q., Wang, W., Zhang, B., Wu, Y., Li, J., Che, K., & Shen, Y. (2026). Occurrence and Origin of Chlorine in Middle Jurassic High-Cl Coals from the Sha’erhu Area, Turpan–Hami Basin, Northwest China. Minerals, 16(1), 18. https://doi.org/10.3390/min16010018

