Impact of Historical Mining and Metallurgical Technologies on Soil and Sediment Composition Along the Ibar River
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of Study Area
2.2. Land Use
2.3. Geological Settings
2.4. Lithological Units
2.5. Outcropping Rocks/Outcrops and Mining Activities
2.6. History of Mining and Smelting
2.7. Sampling Design
2.8. Sample Preparation and Chemical Analyses
3. Data Processing
4. Results and Discussion
4.1. Element Contents Across Defined Zones and Sampled Materials
4.2. Relationships Between Contents of the Same Elements by Sample Material and River Distance
4.3. Relationships Between Elements (Geochemical Groups)
4.4. Anthropogenically Induced Element Contents
4.4.1. Silver (Ag)
4.4.2. Arsenic (As)
4.4.3. Cadmium (Cd)
4.4.4. Copper (Cu)
4.4.5. Lead (Pb)
4.4.6. Zinc (Zn)
4.5. Natural Enrichment of Elements
4.5.1. Chromium (Cr)
4.5.2. Nickel (Ni)
4.5.3. Magnesium (Mg)
4.6. Distributions Representing the Background
4.6.1. Aluminium (Al)
4.6.2. Vanadium (V)
4.7. Enrichment (Content) Ratios
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Topsoil vs. Subsoil
Unit | Topsoil (T) | Subsoil (S) | F–Value (ANOVA) | R (T/S) | |||
---|---|---|---|---|---|---|---|
Ag | mg/kg | 1.6 | 1.6 | 0.20 | 0.92 | * | |
Al | % | 4.6 | 4.4 | 2.14 | 0.68 | * | |
As | mg/kg | 70 | 76 | 1.86 | 0.88 | * | |
Ba | mg/kg | 310 | 310 | 0.61 | 0.61 | * | |
Ca | % | 1.5 | 1.5 | 2.91 | 0.91 | * | |
Cd | mg/kg | 2.6 | 2.9 | 1.11 | 0.93 | * | |
Cr | mg/kg | 220 | 220 | 0.00 | 0.94 | * | |
Cu | mg/kg | 34 | 33 | 1.68 | 0.96 | * | |
Fe | % | 3.8 | 4.1 | 0.00 | 0.85 | * | |
K | % | 1.3 | 1.3 | 0.04 | 0.82 | * | |
Li | mg/kg | 25 | 26 | 0.90 | 0.85 | * | |
Mg | % | 1.6 | 1.7 | 0.19 | 0.97 | * | |
Mn | mg/kg | 930 | 940 | 3.39 | 0.90 | * | |
Na | % | 0.79 | 0.85 | 0.06 | 0.91 | * | |
Ni | mg/kg | 210 | 210 | 0.01 | 0.97 | * | |
P | % | 0.063 | 0.047 | 26.09 | * | 0.80 | * |
Pb | mg/kg | 190 | 190 | 0.56 | 0.98 | * | |
Sr | mg/kg | 140 | 150 | 1.27 | 0.90 | * | |
V | mg/kg | 69 | 75 | 1.97 | 0.67 | * | |
Zn | mg/kg | 360 | 360 | 2.22 | 0.97 | * | |
*—statistically significant values (p = 0.05). |
Appendix B. Stream Sediments vs. Floodplains Soil
Unit | Stream Sediment (SS) | Floodplains (FP) | F–Value (ANOVA) | R (SS/FP) | |||
---|---|---|---|---|---|---|---|
Ag | mg/kg | 1.8 | 1.8 | 0.18 | 0.86 | * | |
Al | % | 5.0 | 4.5 | 3.87 | 0.39 | ||
As | mg/kg | 270 | 130 | 7.88 | * | 0.89 | * |
Ba | mg/kg | 310 | 310 | 0.23 | 0.67 | * | |
Ca | % | 2.8 | 1.8 | 31.73 | * | 0.10 | |
Cd | mg/kg | 8.1 | 4.9 | 2.05 | 0.89 | * | |
Cr | mg/kg | 280 | 280 | 0.06 | 0.60 | * | |
Cu | mg/kg | 50 | 41 | 1.94 | 0.72 | * | |
Fe | % | 4.9 | 4.2 | 8.49 | * | 0.34 | |
K | % | 1.2 | 1.3 | 0.74 | 0.63 | * | |
Li | mg/kg | 25 | 25 | 0.16 | 0.72 | * | |
Mg | % | 1.9 | 2.0 | 0.04 | 0.90 | * | |
Mn | mg/kg | 2000 | 1200 | 11.43 | * | 0.79 | * |
Na | % | 0.97 | 0.90 | 3.33 | 0.75 | * | |
Ni | mg/kg | 250 | 270 | 0.28 | 0.82 | * | |
P | % | 0.092 | 0.057 | 26.50 | * | 0.21 | |
Pb | mg/kg | 330 | 300 | 0.15 | 0.96 | * | |
Sr | mg/kg | 180 | 170 | 1.96 | 0.51 | ||
V | mg/kg | 74 | 69 | 3.36 | 0.61 | * | |
Zn | mg/kg | 1000 | 680 | 3.10 | 0.85 | * | |
*—statistically significant values (p = 0.05). |
Appendix C. Floodplains vs. River Terraces
Unit | Floodplains (FP) | River Terraces (RT) | F–Value (ANOVA) | R (FP/RT) | |||
---|---|---|---|---|---|---|---|
Ag | mg/kg | 1.8 | 1.4 | 12.35 | * | 0.84 | * |
Al | % | 4.5 | 4.5 | 0.84 | −0.01 | ||
As | mg/kg | 130 | 45 | 62.08 | * | −0.10 | |
Ba | mg/kg | 310 | 300 | 3.98 | 0.46 | ||
Ca | % | 1.8 | 1.2 | 16.55 | * | −0.14 | |
Cd | mg/kg | 4.9 | 1.6 | 76.18 | * | −0.38 | |
Cr | mg/kg | 280 | 170 | 4.57 | * | 0.18 | |
Cu | mg/kg | 41 | 28 | 32.18 | * | 0.22 | |
Fe | % | 4.2 | 3.7 | 4.09 | * | −0.19 | |
K | % | 1.3 | 1.3 | 0.11 | 0.52 | ||
Li | mg/kg | 25 | 27 | 7.49 | * | 0.08 | |
Mg | % | 2.0 | 1.3 | 9.60 | * | 0.25 | |
Mn | mg/kg | 1200 | 780 | 24.61 | * | 0.22 | |
Na | % | 0.90 | 0.75 | 22.37 | * | 0.58 | * |
Ni | mg/kg | 270 | 160 | 5.04 | * | 0.11 | |
P | % | 0.057 | 0.052 | 4.04 | * | −0.07 | |
Pb | mg/kg | 300 | 120 | 40.57 | * | 0.84 | * |
Sr | mg/kg | 170 | 120 | 44.67 | * | 0.38 | |
V | mg/kg | 69 | 76 | 4.95 | * | 0.28 | |
Zn | mg/kg | 680 | 180 | 133.97 | * | 0.19 | |
*—statistically significant values (p = 0.05). |
Appendix D. Correlation Coefficients: Element Content vs. River Distance
Stream Sediments | Floodplains | River Terraces | |
---|---|---|---|
Ag 1 | −0.86 * | −0.88 * | −0.86 * |
Al | 0.48 | 0.60 | 0.31 |
As | −0.92 * | −0.91 * | −0.38 |
Ba | −0.47 | −0.66 | −0.39 |
Ca | −0.13 | 0.08 | −0.03 |
Cd 1 | −0.94 * | −0.85 * | 0.01 |
Cr | 0.81 * | 0.90 * | 0.77 * |
Cu 1 | −0.90 * | −0.93 * | −0.09 |
Fe | −0.50 | 0.18 | 0.40 |
K | −0.20 | −0.44 | −0.50 |
Li | 0.26 | 0.11 | 0.08 |
Mg | 0.82 * | 0.82 * | 0.69 * |
Mn | −0.92 * | −0.91 * | 0.09 |
Na | 0.57 | 0.43 | −0.10 |
Ni | 0.73 * | 0.92 * | 0.71 * |
P | −0.48 | −0.51 | −0.09 |
Pb 1 | −0.92 * | −0.95 * | −0.90 * |
Sr | 0.03 | 0.29 | −0.26 |
V | 0.40 | 0.40 | 0.42 |
Zn 1 | −0.89 * | −0.91 * | −0.15 |
*—statistically significant values (p = 0.05), 1—without I-1 and I-2 (river terraces)—explanation in text. |
References
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Habibullah-Al-Mamun, M.; Islam, M.K. Heavy Metal Pollution in Surface Water and Sediment: A Preliminary Assessment of an Urban River in a Developing Country. Ecol. Indic. 2015, 48, 282–291. [Google Scholar] [CrossRef]
- Vasilevska, S.; Stafilov, T.; Šajn, R. Distribution of Trace Elements in Sediments and Soil from Crn Drim River Basin, Republic of Macedonia. SN Appl. Sci. 2019, 1, 555. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Kaur, P.; Singh Sidhu, G.P.; Bali, A.S.; Bhardwaj, R.; Thukral, A.K.; Cerda, A. Pollution Assessment of Heavy Metals in Soils of India and Ecological Risk Assessment: A State-of-the-Art. Chemosphere 2019, 216, 449–462. [Google Scholar] [CrossRef]
- Wu, Y.; Li, X.; Yu, L.; Wang, T.; Wang, J.; Liu, T. Review of Soil Heavy Metal Pollution in China: Spatial Distribution, Primary Sources, and Remediation Alternatives. Resour. Conserv. Recycl. 2022, 181, 106261. [Google Scholar] [CrossRef]
- Liu, S.; Yu, F.; Lang, T.; Ji, Y.; Fu, Y.; Zhang, J.; Ge, C. Spatial Distribution of Heavy Metal Contaminants: The Effects of Water-Sediment Regulation in the Henan Section of the Yellow River. Sci. Total Environ. 2023, 892, 164568. [Google Scholar] [CrossRef]
- Liu, F.; Wang, X.; Dai, S.; Zhou, J.; Liu, D.; Hu, Q.; Wang, W.; Xie, M.; Lu, Y.; Tian, M.; et al. Spatial Variations, Health Risk Assessment, and Source Apportionment of Soil Heavy Metals in the Middle Yellow River Basin of Northern China. J. Geochem. Explor. 2023, 252, 107275. [Google Scholar] [CrossRef]
- Sun, H.; Ren, J.; Wang, J.; Yu, J.; Zuo, L.; Wu, X.; Mukofu, C.; Dokowe, A.P.; Cao, S.; Cheng, X. Spatial Distributions, Potential Sources, and Ecological Risks of Heavy Metals in Stream Sediments in Zambia. J. Geochem. Explor. 2025, 270, 107659. [Google Scholar] [CrossRef]
- Feng, Y.; Bao, Q.; Xiao, X.; Lin, M. Geo-Accumulation Vector Model for Evaluating the Heavy Metal Pollution in the Sediments of Western Dongting Lake. J. Hydrol. 2019, 573, 40–48. [Google Scholar] [CrossRef]
- Tu, Y.-J.; Luo, P.-C.; Li, Y.-L.; Liu, J.; Sun, T.-T.; Li, G.-J.; Duan, Y.-P. Seasonal Heavy Metal Speciation in Sediment and Source Tracking via Cu Isotopic Composition in Huangpu River, Shanghai, China. Ecotoxicol. Environ. Saf. 2023, 260, 115068. [Google Scholar] [CrossRef]
- Fryirs, K.; Thompson, C.; Gore, D. Using a Fluvial Archive to Place Extreme Flood Sediment (Dis)Connectivity Dynamics in Context of a Longer-Term Record. Int. J. Sediment. Res. 2022, 37, 447–456. [Google Scholar] [CrossRef]
- Gümgüm, B.; Öztürk, G. Chemical Speciation of Heavy Metals in the Tigris River Sediment. Chem. Speciat. Bioavailab. 2001, 13, 25–29. [Google Scholar] [CrossRef]
- Birch, G.F.; Lee, J.-H.; Gunns, T.; Besley, C.H. The Use of Sedimentary Metals to Assess Anthropogenic Change, Ecological Risk, Model Past and Future Impacts and Identify Contaminant Sources in the Eleven Estuaries of Greater Sydney (Australia): A Review and Critical Assessment. Sci. Total Environ. 2024, 950, 175268. [Google Scholar] [CrossRef]
- Šajn, R.; Halamić, J.; Peh, Z.; Galović, L.; Alijagić, J. Assessment of the Natural and Anthropogenic Sources of Chemical Elements in Alluvial Soils from the Drava River Using Multivariate Statistical Methods. J. Geochem. Explor. 2011, 110, 278–289. [Google Scholar] [CrossRef]
- Popov, S.I.; Stafilov, T.; Šajn, R.; Tănăselia, C. Distribution of Trace Elements in Sediment and Soil from River Vardar Basin, Macedonia/Greece. J. Environ. Sci. Health Part. A 2016, 51, 1–14. [Google Scholar] [CrossRef]
- Omwene, P.I.; Öncel, M.S.; Çelen, M.; Kobya, M. Heavy Metal Pollution and Spatial Distribution in Surface Sediments of Mustafakemalpaşa Stream Located in the World’s Largest Borate Basin (Turkey). Chemosphere 2018, 208, 782–792. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, A.; Török, A.I.; Kovacs, E.; Cadar, O.; Mirea, I.C.; Micle, V. Metal Contents and Pollution Indices Assessment of Surface Water, Soil, and Sediment from the Arieș River Basin Mining Area, Romania. Sustainability 2022, 14, 8024. [Google Scholar] [CrossRef]
- Ouma, K.; Shane, A.; Syampungani, S. Aquatic Ecological Risk of Heavy-Metal Pollution Associated with Degraded Mining Landscapes of the Southern Africa River Basins: A Review. Minerals 2022, 12, 225. [Google Scholar] [CrossRef]
- Budianta, W. Heavy Metal Pollution and Mobility of Sediment in Tajum River Caused by Artisanal Gold Mining in Banyumas, Central Java, Indonesia. Environ. Sci. Pollut. Res. 2021, 28, 8585–8593. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Han, Z.; Zhou, J.; Xu, S.; Zhang, Q.; Chen, H.; Bo, W.; Xia, X. Content and Distribution of Mercury in Drainage Catchment Sediment and Alluvial Soil of China. J. Geochem. Explor. 2015, 154, 32–48. [Google Scholar] [CrossRef]
- Huang, L.; Fang, H.; Ni, K.; Yang, W.; Zhao, W.; He, G.; Han, Y.; Li, X. Distribution and Potential Risk of Heavy Metals in Sediments of the Three Gorges Reservoir: The Relationship to Environmental Variables. Water 2018, 10, 1840. [Google Scholar] [CrossRef]
- Kumar, V.; Parihar, R.D.; Sharma, A.; Bakshi, P.; Singh Sidhu, G.P.; Bali, A.S.; Karaouzas, I.; Bhardwaj, R.; Thukral, A.K.; Gyasi-Agyei, Y.; et al. Global Evaluation of Heavy Metal Content in Surface Water Bodies: A Meta-Analysis Using Heavy Metal Pollution Indices and Multivariate Statistical Analyses. Chemosphere 2019, 236, 124364. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhang, Q.; Wang, W.; Hua, J.; Li, H. The Multi-Media Environmental Behavior of Heavy Metals around Tailings under the Influence of Precipitation. Ecotoxicol. Environ. Saf. 2023, 266, 115541. [Google Scholar] [CrossRef] [PubMed]
- Qin, G.; Niu, Z.; Yu, J.; Li, Z.; Ma, J.; Xiang, P. Soil Heavy Metal Pollution and Food Safety in China: Effects, Sources and Removing Technology. Chemosphere 2021, 267, 129205. [Google Scholar] [CrossRef] [PubMed]
- Ondrasek, G.; Shepherd, J.; Rathod, S.; Dharavath, R.; Rashid, M.I.; Brtnicky, M.; Shahid, M.S.; Horvatinec, J.; Rengel, Z. Metal Contamination—A Global Environmental Issue: Sources, Implications & Advances in Mitigation. RSC Adv. 2025, 15, 3904–3927. [Google Scholar] [CrossRef]
- Foucher, D.; Ogrinc; Hintelmann, H. Tracing Mercury Contamination from the Idrija Mining Region (Slovenia) to the Gulf of Trieste Using Hg Isotope Ratio Measurements. Environ. Sci. Technol. 2009, 43, 33–39. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, H.; Chang, J.; Qu, J.; Xie, H.; Yu, L. Heavy Metal Contamination in Surface Sediments of Yangtze River Intertidal Zone: An Assessment from Different Indexes. Environ. Pollut. 2009, 157, 1533–1543. [Google Scholar] [CrossRef]
- Erol, B.; Topkar, M.O.; Aydemir, A.N.; Okay, E.; Caliskan, E.; Sofulu, O. A Treatment Strategy for Proximal Femoral Benign Bone Lesions in Children and Recommended Surgical Procedures: Retrospective Analysis of 62 Patients. Arch. Orthop. Trauma Surg. 2016, 136, 1051–1061. [Google Scholar] [CrossRef]
- Oyarzún, J.; Oyarzun, R.; Lillo, J.; Higueras, P.; Maturana, H.; Oyarzún, R. Distribution of Chemical Elements in Calc-Alkaline Igneous Rocks, Soils, Sediments and Tailings Deposits in Northern Central Chile. J. S. Am. Earth Sci. 2016, 69, 25–42. [Google Scholar] [CrossRef]
- van der Ent, A.; Baker, A.J.M.; Reeves, R.D.; Pollard, A.J.; Schat, H. Hyperaccumulators of Metal and Metalloid Trace Elements: Facts and Fiction. Plant Soil. 2013, 362, 319–334. [Google Scholar] [CrossRef]
- Stafilov, T.; Stojanova, K.; Tašev, K.; Bačeva Andonovska, K. Accumulation and Distribution of Heavy Metals in Soil and Food Crops in the Pb–Zn Mine Environ. Case Study: Region of Probištip, North Macedonia. J. Environ. Sci. Health Part. A 2023, 58, 171–182. [Google Scholar] [CrossRef]
- Barać, N.; Škrivanj, S.; Bukumirić, Z.; Živojinović, D.; Manojlović, D.; Barać, M.; Petrović, R.; Ćorac, A. Distribution and Mobility of Heavy Elements in Floodplain Agricultural Soils along the Ibar River (Southern Serbia and Northern Kosovo). Chemometric Investigation of Pollutant Sources and Ecological Risk Assessment. Environ. Sci. Pollut. Res. 2016, 23, 9000–9011. [Google Scholar] [CrossRef]
- Stafilov, T.; Aliu, M.; Sajn, R. Arsenic in Surface Soils Affected by Mining and Metallurgical Processing in K. Mitrovica Region, Kosovo. Int. J. Environ. Res. Public. Health 2010, 7, 4050–4061. [Google Scholar] [CrossRef]
- Šajn, R.; Aliu, M.; Stafilov, T.; Alijagić, J. Heavy Metal Contamination of Topsoil around a Lead and Zinc Smelter in Kosovska Mitrovica/Mitrovicë, Kosovo/Kosovë. J. Geochem. Explor. 2013, 134, 1–16. [Google Scholar] [CrossRef]
- Gashi, F.; Frančišković-Bilinski, S.; Bilinski, H.; Kika, L. Assessment of the Effects of Urban and Industrial Development on Water and Sediment Quality of the Drenica River in Kosovo. Environ. Earth Sci. 2016, 75, 801. [Google Scholar] [CrossRef]
- Gashi, F.; Frančišković-Bilinski, S.; Bilinski, H.; Shala, A.; Gashi, A. Impact of Kishnica and Badovci Flotation Tailing Dams on Levels of Heavy Metals in Water of Graçanica River (Kosovo). J. Chem. 2017, 2017, 1–10. [Google Scholar] [CrossRef]
- Takić, L.M.; Todorović, B.Ž.; Zdravković, A.S.; Elezović, N.M.; Živković, N.V. Correlation Analysis of Physicochemical Parameters of the Ecological Status: A Case Study of Ibar River (Serbia). Bulg. Chem. Commun. 2018, 50, 243–249. [Google Scholar]
- Elezović, N.; Dervišević, I.; Elezovic, N.; Ilic Komatina, D.; Dervisevic, I.; Ketin, S.; Dasic, P. Analysis of SWQI Index of the River Ibar (Serbia) Predrag Dašić Academy of Professional Studies Sumadija. Fresenius Environ. Bull. 2018, 27, 2505–2509. [Google Scholar]
- Elezović, N.; Takić, L.; Živković, N.; Jovanić, P. Assessment of ecological status of the river ibar in the function of physico-chemical parameters. Facta Univ. Ser. Work. Living Environ. Prot. 2016, 12, 311–317. [Google Scholar]
- Borgna, L.; Di Lella, L.A.; Nannoni, F.; Pisani, A.; Pizzetti, E.; Protano, G.; Riccobono, F.; Rossi, S. The High Contents of Lead in Soils of Northern Kosovo. J. Geochem. Explor. 2009, 101, 137–146. [Google Scholar] [CrossRef]
- Ivanović, R.; Valjarević, A.; Vukoičić, D.; Radovanović, D. Climatic regions of Kosovo and Metohija. Bull. Nat. Sci. Res. 2016, 6, 49–54. [Google Scholar] [CrossRef]
- Jović, S.; Đokić, J. Flood Risk Management Modelling in the River Ibar Catchment Area. In Natural Risk Management and Engineering: NatRisk Project; Springer International Publishing: Cham, Switzerland, 2020; pp. 143–168. [Google Scholar]
- Copernicus—Land Monitoring Service (CLMS). Available online: https://land.copernicus.eu/ (accessed on 28 November 2023).
- Zagorchev, I.S. Geology of the Balkan Peninsula. In Encyclopedia of Geology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 4, pp. 382–407. ISBN 9780081029091. [Google Scholar]
- Gallhofer, D.; Quadt, A.V.; Peytcheva, I.; Schmid, S.M.; Heinrich, C.A. Tectonic, Magmatic, and Metallogenic Evolution of the Late Cretaceous Arc in the Carpathian-Balkan Orogen. Tectonics 2015, 34, 1813–1836. [Google Scholar] [CrossRef]
- Janković, S.; Jelenković, R.; Vujić, S. Mineral Resources and Potential Prognosis of Metallic and Non-Metallic Mineral Raw Materials in Serbia and Montenegro at the End of the XXth Century; Engineering Acadeemy of Yugoslavia: Faculty of Mining and Geology Department for Computers Application in Mining and Department for Economic Geology: Belgrade, Serbia, 2003; ISBN 86-903489-3-X. [Google Scholar]
- Schmid, S.M.; Fügenschuh, B.; Kounov, A.; Maţenco, L.; Nievergelt, P.; Oberhänsli, R.; Pleuger, J.; Schefer, S.; Schuster, R.; Tomljenović, B.; et al. Tectonic Units of the Alpine Collision Zone between Eastern Alps and Western Turkey. Gondwana Res. 2020, 78, 308–374. [Google Scholar] [CrossRef]
- Borojević Šoštarić, S.; Palinkaš, L.A.; Topa, D.; Spangenberg, J.E.; Prochaska, W. Silver–Base Metal Epithermal Vein and Listwaenite Types of Deposit Crnac, Rogozna Mts., Kosovo. Part I: Ore Mineral Geochemistry and Sulfur Isotope Study. Ore Geol. Rev. 2011, 40, 65–80. [Google Scholar] [CrossRef]
- Aničić Urošević, M.; Vuković, G.; Vasić, P.; Jakšić, T.; Nikolić, D.; Škrivanj, S.; Popović, A. Environmental Implication Indices from Elemental Characterisations of Collocated Topsoil and Moss Samples. Ecol. Indic. 2018, 90, 529–539. [Google Scholar] [CrossRef]
- Janković, S. Metalogenetske Provincije Jugoslavije u Prostoru i Vremenu (Opšti Pregled). In Proceedings of the Metalogenija i Koncepcija Geotektonskog Razvoja Jugoslavije, Rudarsko-Geološki Fakultet, Belgrade, Serbia, 27–28 February 1974; pp. 31–52. [Google Scholar]
- Hyseni, S.; Durmishaj, B.; Fetahaj, B.; Shala, F.; Berisha, A.; Large, D. Trepça Ore Belt and Stan Terg Mine—Geological Overview and Interpretation, Kosovo (SE Europe). Geologija 2010, 53, 87–92. [Google Scholar] [CrossRef]
- Borojević Šoštarić, S.; Palinkaš, L.A.; Neubauer, F.; Hurai, V.; Cvetković, V.; Roller-Lutz, Z.; Mandić, M.; Genser, J. Silver-Base Metal Epithermal Vein and Listwanite Hosted Deposit Crnac, Rogozna Mts., Kosovo, Part II: A Link between Magmatic Rocks and Epithermal Mineralization. Ore Geol. Rev. 2013, 50, 98–117. [Google Scholar] [CrossRef]
- Geological Map SFRJ in Scale 1:500,000; Federal Geological Institute: Belgrade, Serbia, 1970.
- Sikošek, B. Explanation for Geological Map of Yougoslavia: Scale 1:500,000; Federal Geological Institute: Belgrade, Serbia, 1971. [Google Scholar]
- Šajn, R.; Ristović, I.; Čeplak, B. Mining and Metallurgical Waste as Potential Secondary Sources of Metals—A Case Study for the West Balkan Region. Minerals 2022, 12, 547. [Google Scholar] [CrossRef]
- Aliu, M.; Šajn, R.; Stafilov, T. Distribution of Ag, Au, Bi, Cu, and Mo in Surface Soils. Case Study: Mitrovica Region, Republic of Kosovo. Chem. Ecol. 2023, 39, 970–990. [Google Scholar] [CrossRef]
- Šajn, R.; Alijagić, J.; Ristović, I. Secondary Deposits as a Potential REEs Source in South-Eastern Europe. Minerals 2024, 14, 120. [Google Scholar] [CrossRef]
- ISO 14869-1:2001; Soil Quality—Dissolution for the Determination of Total Element Content—Part 1: Dissolution with Hydrofluoric and Perchloric Acids. International Organization for Standardization: Geneva, Switzerland, 2001.
- Balabanova, B.; Stafilov, T.; Bačeva, K.; Šajn, R. Biomonitoring of Atmospheric Pollution with Heavy Metals in the Copper Mine Vicinity Located near Radoviš, Republic of Macedonia. J. Environ. Sci. Health Part. A 2010, 45, 1504–1518. [Google Scholar] [CrossRef] [PubMed]
- Box, G.E.P.; Cox, D.R. An Analysis of Transformations. J. R. Stat. Society. Ser. B 1964, 26, 211–252. [Google Scholar] [CrossRef]
- Zhang, C.; Selinus, O. Statistics and GIS in Environmental Geochemistry—Some Problems and Solutions. J. Geochem. Explor. 1998, 64, 339–354. [Google Scholar] [CrossRef]
- Krige, D.G. On the Departure of Ore Value Distributions from Lognormal Models in South African Gold Mines. J. S. Afr. Inst. Min. Metall. 1960, 60, 231–244. [Google Scholar]
- Krige, D.G. A Statistical Approaches to Some Basic Mine Valuation Problems on the Witwatersrand. J. Chem. Metall. Min. Soc. South. Afr. 1951, 52, 119–139. [Google Scholar]
- Rose, A.W.; Hawkes, H.E.; Webb, J.S. Geochemistry in Mineral Exploration, 2nd ed.; Academic Press: London, UK, 1979. [Google Scholar]
- Zhang, C.S.; Zhang, S.; Zhang, L.C.; Wang, L.J. Background Contents of Heavy Metals in Sediments of the Changjiang River System and Their Calculation Methods. J. Environ. Sci. 1995, 7, 422–429. [Google Scholar]
- Šajn, R.; Stafilov, T.; Balabanova, B.; Alijagić, J. Multi-Scale Application of Advanced ANN-MLP Model for Increasing the Large-Scale Improvement of Digital Data Visualisation Due to Anomalous Lithogenic and Anthropogenic Elements Distribution. Minerals 2022, 12, 174. [Google Scholar] [CrossRef]
- Salminen, R.; Tarvainen, T.; Demetriades, A.; Duris, M.; Fordyce, F.M.; Gregorauskiene, V.; Kahelin, H.; Kivisilla, J.; Klaver, G.; Klin, H.; et al. Geochemical Atlas of Europe. In Background Information, Methodology and Maps; Geological Survey of Finland: Espoo, Finland, 2005. [Google Scholar]
- De Vos, W.; Tarvainen, T.; Salminen, R.; Reeder, S.; De Vivo, B.; Demetriades, A.; Pirc, S.; Batista, M.J.; Marsina, K.; Ottesen, R.T.; et al. Geochemical Atlas of Europe. Part 2, Interpretation of Geochemical Maps, Additional Tables, Figures, Maps, and Related Publications; Geological Survey of Finland: Espoo, Finland, 2006; ISBN 951-690-956-6. [Google Scholar]
- Salminen, R.; Batista, M.J.; Bidovec, M.; Demetriades, A.; De Vivo, B.; De Vos, W.; Lima, A. FOREGS Geochemical Atlas of Europe, Part 1: Background Information, Methodology and Maps; Geological survey of Finland: Espoo, Finland, 2005; ISBN 951-690-921-3. [Google Scholar]
- Templ, M.; Filzmoser, P.; Reimann, C. Cluster Analysis Applied to Regional Geochemical Data: Problems and Possibilities. Appl. Geochem. 2008, 23, 2198–2213. [Google Scholar] [CrossRef]
- Reimann, C.; Filzmoser, P.; Garrett, R.G. Factor Analysis Applied to Regional Geochemical Data: Problems and Possibilities. Appl. Geochem. 2002, 17, 185–206. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, C.; Zhao, X.; Dong, J.; Zheng, B. Risk Assessment of Heavy Metals in the Surface Sediment at the Drinking Water Source of the Xiangjiang River in South China. Environ. Sci. Eur. 2020, 32, 23. [Google Scholar] [CrossRef]
- Davis, J.C. Statistics and Data Analysis in Geology, 3rd ed.; Wiley: New York, NY, USA, 2002. [Google Scholar]
- Yousefi, M.; Kamkar-Rouhani, A.; Carranza, E.J.M. Geochemical Mineralization Probability Index (GMPI): A New Approach to Generate Enhanced Stream Sediment Geochemical Evidential Map for Increasing Probability of Success in Mineral Potential Mapping. J. Geochem. Explor. 2012, 115, 24–35. [Google Scholar] [CrossRef]
- Reyes, A.; Thiombane, M.; Panico, A.; Daniele, L.; Lima, A.; Di Bonito, M.; De Vivo, B. Source Patterns of Potentially Toxic Elements (PTEs) and Mining Activity Contamination Level in Soils of Taltal City (Northern Chile). Environ. Geochem. Health 2020, 42, 2573–2594. [Google Scholar] [CrossRef] [PubMed]
- Thiombane, M.; De Vivo, B.; Niane, B.; Watts, M.J.; Marriott, A.L.; Di Bonito, M. A New Hazard Assessment Workflow to Assess Soil Contamination from Large and Artisanal Scale Gold Mining. Environ. Geochem. Health 2023, 45, 5067–5091. [Google Scholar] [CrossRef] [PubMed]
- Balabanova, B.; Stafilov, T.; Šajn, R.; Tănăselia, C. Multivariate Extraction of Dominant Geochemical Markers for Deposition of 69 Elements in the Bregalnica River Basin, Republic of Macedonia (Moss Biomonitoring). Environ. Sci. Pollut. Res. 2016, 23, 22852–22870. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Sharma, A.; Kumar, R.; Bhardwaj, R.; Kumar Thukral, A.; Rodrigo-Comino, J. Assessment of Heavy-Metal Pollution in Three Different Indian Water Bodies by Combination of Multivariate Analysis and Water Pollution Indices. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 1–16. [Google Scholar] [CrossRef]
- Naseer, U.; Ahmad, A.; Adnan, M.; Yousaf, M.; Du, Z.; Qiu, C.; Yue, T. Spatial Distribution and Health Risk Assessment of Potentially Toxic Elements along GT Road from Sialkot to Rawalpindi. Environ. Adv. 2025, 20, 100632. [Google Scholar] [CrossRef]
- Statistica; Ver. 14; TIBCO Software Inc.: Palo Alto, CA, USA, 2022.
- QGIS Development Team-QGIS (Geographic Information System-Open Source); Ver. 3.28; QGIS Development Team: Gossau, Switzerland, 2022.
- Golden Software LCC. Surfer (Surface Mapping System); Ver. 25; Golden Software LCC: Golden, CO, USA, 2023. [Google Scholar]
Area | EU [66,67,68] | Middle River Flow | Lower River Flow | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sampling Material | Stream Sediment | Flood Plains | Topsoil | Stream Sediment | Flood Plains | River Terraces | Stream Sediment | Flood Plains | River Terraces | ||||||
X | X | X | XBC | (Min–Max) | XBC | (Min–Max) | XBC | (Min–Max) | XBC | (Min–Max) | XBC | (Min–Max) | XBC | (Min–Max) | |
Ag (mg/kg) | – | – | 0.30 | 2.6 | (1.8–4.0) | 2.8 | (2.0–5.3) | 1.7 1 | (1.3–20) | 1.3 | (1.1–1.8) | 1.2 | (0.84–1.9) | 0.91 | (0.54–1.8) |
Al (%) | 5.2 | 5.4 | 5.6 | 4.6 | (3.3–5.5) | 3.9 | (2.9–5.1) | 4.1 | (2.4–6.4) | 5.3 | (3.9–6.5) | 5.1 | (4.1–6.2) | 5.0 | (3.8–7.9) |
As (mg/kg) | 12 | 10 | 12 | 580 | (460–700) | 250 | (140–550) | 53 | (21–140) | 150 | (64–240) | 73 | (47–150) | 38 | (20–58) |
Ba (mg/kg) | 420 | 420 | 400 | 320 | (280–420) | 340 | (250–510) | 330 | (140–760) | 290 | (210–360) | 280 | (230–330) | 270 | (200–420) |
Ca (%) | 4.2 | 4.2 | 2.5 | 2.9 | (2.5–3.7) | 1.7 | (1.2–2.3) | 1.3 | (0.2–3.2) | 2.8 | (1.8–3.6) | 2.0 | (1.4–2.6) | 1.1 | (0.26–2.0) |
Cd (mg/kg) | 0.56 | 0.53 | 0.28 | 13 | (8.6–18.2) | 8.6 | (3.9–23) | 1.1 1 | (0.65–20) | 5.1 | (4.0–6.8) | 2.8 | (1.0–6.9) | 1.1 | (0.42–1.7) |
Cr (mg/kg) | 93 | 93 | 95 | 210 | (110–310) | 200 | (99–280) | 88 | (21–170) | 360 | (220–560) | 370 | (190–600) | 280 | (99–560) |
Cu (mg/kg) | 25 | 22 | 17 | 81 | (54–120) | 61 | (44–110) | 25 1 | (18–190) | 35 | (32–44) | 29 | (22–56) | 23 | (16–35) |
Fe (mg/kg) | 2.5 | 2.9 | 2.7 | 5.2 | (4.5–6.3) | 4.1 | (3.0–5.2) | 3.2 | (2.3–4.1) | 4.6 | (4.0–5.4) | 4.3 | (3.7–5.6) | 4.1 | (2.8–5.5) |
K (%) | 1.7 | 1.7 | 1.8 | 1.2 | (1.1–1.4) | 1.3 | (1.1–1.5) | 1.5 | (1.1–1.9) | 1.2 | (0.9–1.4) | 1.2 | (1.0–1.5) | 1.2 | (0.80–1.7) |
Li (mg/kg) | 28 | 30 | – | 25 | (21–30) | 25 | (21–29) | 27 | (16–47) | 25 | (22–39) | 25 | (22–37) | 26 | (18–35) |
Mg (%) | 0.97 | 1.1 | 0.71 | 1.6 | (0.9–2.1) | 1.7 | (0.9–2.5) | 0.78 | (0.3–1.4) | 2.1 | (1.7–2.9) | 2.4 | (1.8–2.9) | 1.8 | (0.74–2.8) |
Mn (mg/kg) | 740 | 870 | 630 | 3400 | (2300–5900) | 1600 | (1100–2800) | 750 | (490–1100) | 1300 | (1050–1600) | 910 | (760–1600) | 810 | (570–1200) |
Na (%) | 0.79 | 0.85 | 0.85 | 0.84 | (0.71–0.96) | 0.79 | (0.59–0.98) | 0.70 | (0.33–1.8) | 1.1 | (0.94–1.3) | 1.0 | (0.81–1.3) | 0.79 | (0.61–0.97) |
Ni (mg/kg) | 35 | 35 | 37 | 200 | (100–300) | 190 | (95–270) | 81 | (21–160) | 310 | (150–590) | 380 | (210–580) | 270 | (79–640) |
P (%) | 0.060 | 0.076 | 0.066 | 0.10 | (0.077–0.17) | 0.061 | (0.041–0.081) | 0.056 | (0.027–0.11) | 0.081 | (0.052–0.11) | 0.054 | (0.035–0.083) | 0.048 | (0.030–0.085) |
Pb (mg/kg) | 54 | 39 | 33 | 650 | (430–1200) | 730 | (440–1600) | 150 1 | (110–9300) | 190 | (150–260) | 140 | (90–340) | 56 | (34–97) |
Sr (mg/kg) | 170 | 170 | 130 | 170 | (150–200) | 150 | (110–210) | 130 | (26–540) | 190 | (150–260) | 190 | (150–240) | 110 | (57–240) |
V (mg/kg) | 60 | 68 | 68 | 69 | (56–78) | 65 | (51–88) | 71 | (54–86) | 79 | (66–98) | 73 | (61–100) | 81 | (68–110) |
Zn (mg/kg) | 110 | 120 | 68 | 1500 | (950–1900) | 1100 | (690–1700) | 120 1 | (94–2100) | 680 | (450–970) | 400 | (180–950) | 110 | (73–170) |
Area | Material | Depth | |||||||
---|---|---|---|---|---|---|---|---|---|
(F) | (p) | (F) | (p) | (F) | (p) | ||||
Ag | 87.74 | 0.00 | * | 3.21 | 0.05 | * | 0.04 | 0.84 | |
Al | 20.75 | 0.00 | * | 0.99 | 0.38 | 0.28 | 0.60 | ||
As | 56.80 | 0.00 | * | 76.69 | 0.00 | * | 0.50 | 0.48 | |
Ba | 7.78 | 0.01 | * | 0.09 | 0.91 | 0.00 | 0.96 | ||
Ca | 0.18 | 0.67 | 29.18 | 0.00 | * | 0.05 | 0.82 | ||
Cd | 30.94 | 0.00 | * | 29.66 | 0.00 | * | 0.26 | 0.61 | |
Cr | 54.15 | 0.00 | * | 10.19 | 0.00 | * | 0.09 | 0.77 | |
Cu | 44.53 | 0.00 | * | 11.85 | 0.00 | * | 0.00 | 0.96 | |
Fe | 3.21 | 0.05 | * | 19.23 | 0.00 | * | 4.01 | 0.05 | * |
K | 7.97 | 0.01 | * | 1.60 | 0.21 | 0.14 | 0.71 | ||
Li | 0.01 | 0.91 | 0.79 | 0.46 | 1.08 | 0.30 | |||
Mg | 40.91 | 0.00 | * | 13.57 | 0.00 | * | 0.01 | 0.93 | |
Mn | 17.86 | 0.00 | * | 41.94 | 0.00 | * | 0.03 | 0.87 | |
Na | 9.98 | 0.00 | * | 5.89 | 0.00 | * | 1.20 | 0.28 | |
Ni | 44.18 | 0.00 | * | 8.90 | 0.00 | * | 0.03 | 0.86 | |
P | 5.45 | 0.02 | * | 9.24 | 0.00 | * | 15.31 | 0.00 | * |
Pb | 96.30 | 0.00 | * | 16.46 | 0.00 | * | 0.00 | 0.99 | |
Sr | 0.25 | 0.62 | 5.51 | 0.01 | * | 0.00 | 0.95 | ||
V | 14.87 | 0.00 | * | 4.61 | 0.01 | * | 5.59 | 0.02 | * |
Zn | 34.27 | 0.00 | * | 37.26 | 0.00 | * | 0.00 | 0.96 |
Ag | 1.00 | |||||||||||||||||||
Al | −0.28 | 1.00 | ||||||||||||||||||
As | 0.55 | −0.03 | 1.00 | |||||||||||||||||
Ba | 0.47 | −0.08 | 0.40 | 1.00 | ||||||||||||||||
Ca | 0.19 | 0.42 | 0.59 | 0.16 | 1.00 | |||||||||||||||
Cd | 0.75 | −0.15 | 0.85 | 0.47 | 0.47 | 1.00 | ||||||||||||||
Cr | −0.43 | 0.33 | −0.10 | −0.53 | 0.15 | −0.19 | 1.00 | |||||||||||||
Cu | 0.74 | −0.15 | 0.73 | 0.48 | 0.43 | 0.85 | −0.21 | 1.00 | ||||||||||||
Fe | −0.08 | 0.51 | 0.40 | −0.17 | 0.51 | 0.20 | 0.49 | 0.23 | 1.00 | |||||||||||
K | 0.30 | −0.13 | 0.04 | 0.66 | −0.08 | 0.13 | −0.68 | 0.20 | −0.48 | 1.00 | ||||||||||
Li | −0.34 | 0.26 | −0.27 | −0.15 | −0.11 | −0.41 | −0.10 | −0.35 | 0.06 | 0.30 | 1.00 | |||||||||
Mg | −0.39 | 0.47 | −0.03 | −0.43 | 0.29 | −0.14 | 0.90 | −0.22 | 0.54 | −0.61 | −0.02 | 1.00 | ||||||||
Mn | 0.32 | 0.15 | 0.81 | 0.26 | 0.60 | 0.61 | 0.09 | 0.54 | 0.70 | −0.12 | −0.05 | 0.16 | 1.00 | |||||||
Na | 0.10 | 0.04 | 0.19 | 0.41 | 0.29 | 0.38 | −0.06 | 0.21 | −0.11 | 0.31 | −0.33 | 0.06 | 0.03 | 1.00 | ||||||
Ni | −0.34 | 0.30 | −0.08 | −0.53 | 0.11 | −0.16 | 0.94 | −0.15 | 0.50 | −0.67 | −0.07 | 0.92 | 0.10 | −0.11 | 1.00 | |||||
P | 0.34 | 0.15 | 0.61 | 0.36 | 0.69 | 0.53 | −0.19 | 0.56 | 0.22 | 0.15 | −0.13 | −0.07 | 0.58 | 0.18 | −0.19 | 1.00 | ||||
Pb | 0.90 | −0.24 | 0.72 | 0.57 | 0.28 | 0.87 | −0.39 | 0.85 | 0.01 | 0.31 | −0.35 | −0.35 | 0.48 | 0.21 | −0.32 | 0.46 | 1.00 | |||
Sr | 0.37 | 0.25 | 0.44 | 0.61 | 0.54 | 0.57 | −0.10 | 0.46 | 0.08 | 0.29 | −0.39 | 0.09 | 0.26 | 0.69 | −0.13 | 0.45 | 0.49 | 1.00 | ||
V | −0.53 | 0.51 | −0.38 | −0.30 | −0.01 | −0.50 | 0.24 | −0.43 | 0.33 | −0.05 | 0.46 | 0.25 | −0.19 | −0.12 | 0.18 | −0.22 | −0.57 | −0.27 | 1.00 | |
Zn | 0.67 | −0.05 | 0.89 | 0.49 | 0.55 | 0.91 | −0.14 | 0.82 | 0.27 | 0.14 | −0.38 | −0.07 | 0.67 | 0.39 | −0.13 | 0.59 | 0.83 | 0.63 | −0.43 | 1.00 |
Ag | Al | As | Ba | Ca | Cd | Cr | Cu | Fe | K | Li | Mg | Mn | Na | Ni | P | Pb | Sr | V | Zn |
F1 | F2 | Comm | |
---|---|---|---|
Cd | 0.95 | −0.07 | 90.1 |
Zn | 0.95 | 0.01 | 89.6 |
As | 0.92 | 0.11 | 85.6 |
Cu | 0.90 | −0.10 | 81.5 |
Pb | 0.89 | −0.31 | 89.5 |
Ag | 0.77 | −0.39 | 74.2 |
Mn | 0.75 | 0.34 | 68.7 |
Cr | −0.18 | 0.93 | 88.9 |
Ni | −0.13 | 0.92 | 86.7 |
Mg | −0.12 | 0.94 | 89.3 |
Fe | 0.35 | 0.73 | 65.3 |
Prp.Totl | 50.7 | 31.9 | 82.7 |
EigenVal | 5.69 | 3.40 | |
Expl.Var | 5.58 | 3.51 |
Area | Upper River Flow vs. Eu Average | Lower River Flow vs. EU Average | Upper vs. Lower River Flow | ||||||
---|---|---|---|---|---|---|---|---|---|
Sampling Material | Stream Sediment | Flood Plains | River Terraces | Stream Sediment | Flood Plains | River Terraces | Stream Sediment | Flood Plains | River Terraces |
Ag 1,2 | 8.6 | 9.0 | 5.6 | 4.4 | 4.1 | 3.0 | 1.9 | 2.2 | 1.9 |
Al | 0.9 | 0.7 | 0.7 | 1.0 | 1.0 | 0.9 | 0.9 | 0.8 | 0.8 |
As | 57.1 | 20.1 | 4.6 | 14.5 | 6.0 | 3.2 | 3.9 | 3.4 | 1.4 |
Ba | 0.8 | 0.8 | 0.8 | 0.7 | 0.7 | 0.7 | 1.1 | 1.2 | 1.2 |
Ca | 0.7 | 0.4 | 0.5 | 0.7 | 0.5 | 0.4 | 1.0 | 0.8 | 1.1 |
Cd 1 | 24.3 | 15.3 | 3.8 | 9.7 | 4.9 | 3.7 | 2.5 | 3.1 | 1.0 |
Cr | 2.3 | 2.1 | 0.9 | 3.9 | 4.0 | 2.9 | 0.6 | 0.5 | 0.3 |
Cu 1 | 3.7 | 2.4 | 1.5 | 1.6 | 1.2 | 1.3 | 2.3 | 2.1 | 1.1 |
Fe | 1.8 | 1.7 | 1.2 | 1.6 | 1.7 | 1.5 | 1.1 | 1.0 | 0.8 |
K | 0.7 | 0.8 | 0.9 | 0.7 | 0.7 | 0.7 | 1.0 | 1.1 | 1.2 |
Li | 0.8 | 0.9 | – | 0.8 | 0.9 | – | 1.0 | 1.0 | 1.0 |
Mg | 1.5 | 1.7 | 1.1 | 2.0 | 2.4 | 2.6 | 0.7 | 0.7 | 0.4 |
Mn | 4.0 | 2.2 | 1.2 | 1.6 | 1.2 | 1.3 | 2.5 | 1.8 | 0.9 |
Na | 1.0 | 1.0 | 0.8 | 1.3 | 1.3 | 0.9 | 0.8 | 0.8 | 0.9 |
Ni | 5.8 | 5.5 | 2.2 | 8.8 | 11.0 | 7.2 | 0.7 | 0.5 | 0.3 |
P | 1.4 | 1.0 | 0.8 | 1.1 | 0.9 | 0.7 | 1.3 | 1.1 | 1.1 |
Pb 1 | 16.8 | 13.5 | 4.6 | 4.9 | 2.7 | 1.7 | 3.5 | 5.1 | 2.6 |
Sr | 1.0 | 0.9 | 1.0 | 1.1 | 1.2 | 0.8 | 0.9 | 0.8 | 1.2 |
V | 1.0 | 1.1 | 1.0 | 1.2 | 1.2 | 1.2 | 0.9 | 0.9 | 0.9 |
Zn 1 | 12.3 | 10.5 | 1.8 | 5.7 | 3.8 | 1.6 | 2.2 | 2.8 | 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šajn, R.; Alijagić, J.; Stafilov, T. Impact of Historical Mining and Metallurgical Technologies on Soil and Sediment Composition Along the Ibar River. Minerals 2025, 15, 955. https://doi.org/10.3390/min15090955
Šajn R, Alijagić J, Stafilov T. Impact of Historical Mining and Metallurgical Technologies on Soil and Sediment Composition Along the Ibar River. Minerals. 2025; 15(9):955. https://doi.org/10.3390/min15090955
Chicago/Turabian StyleŠajn, Robert, Jasminka Alijagić, and Trajče Stafilov. 2025. "Impact of Historical Mining and Metallurgical Technologies on Soil and Sediment Composition Along the Ibar River" Minerals 15, no. 9: 955. https://doi.org/10.3390/min15090955
APA StyleŠajn, R., Alijagić, J., & Stafilov, T. (2025). Impact of Historical Mining and Metallurgical Technologies on Soil and Sediment Composition Along the Ibar River. Minerals, 15(9), 955. https://doi.org/10.3390/min15090955