Inversion of Vertical Electrical Sounding Data Based on PSO-BP Neural Network
Abstract
1. Introduction
2. Principles of Artificial Neural Networks
2.1. BP Neural Network
- (1)
- Layer-by-layer backward adjustment of connection weights.
- (2)
- Parameter value updates.
- (3)
- Iterative forward propagation.
2.2. Particle Swarm Optimization Algorithm
3. Implementation of a Theoretical Model-Based Synthetic Data Inversion Algorithm Based on PSO-BP Neural Network
3.1. Basic Steps of PSO-BP Neural Networks
- (1)
- Network Architecture Design
- (2)
- Parameter Initialization: Initialized parameters include population size, update iterations, maximum velocity, minimum velocity, upper boundary, and lower boundary. Training parameters consist of training epochs, target error, and learning rate.
- (3)
- Calculate the fitness value for each particle to determine its personal best position () and the global best position ().
- (4)
- The algorithm proceeds to the next step when either the global optimal fitness value falls below the predefined network fault tolerance threshold or the maximum number of iterations is reached. Under these conditions, the current global optimum is adopted as the BP neural network’s optimal solution. If neither condition is met, the algorithm returns to Step 3.
- (5)
- Finalization: Update particle velocities and positions. Subsequently, the BP neural network performs apparent resistivity data inversion using the optimized parameters.
3.2. Inversion of Theoretical Model Synthesis Data Based on PSO-BP Neural Network
3.2.1. Two-Layer Horizontally Stratified Geoelectrical Models
3.2.2. Three-Layer Horizontally Stratified Geoelectrical Models
4. Inversion of Field-Measured Vertical Electrical Sounding Data Based on PSO-Optimized BP Neural Network
4.1. Mining Area Documentation
4.2. Data Pre-Processing
4.3. Inversion of Field-Measured Vertical Electrical Sounding Data Based on PSO-BP Neural Network
5. Conclusions
- (1)
- Through training on horizontally stratified model parameters to obtain optimal weights, followed by inversion of untrained data, the results demonstrate that both BP and PSO-BP neural network inversion outcomes closely align with conventional linear method results. This confirms the feasibility of employing BP and PSO-BP neural networks for resistivity data inversion.
- (2)
- The Particle Swarm Optimization-enhanced BP neural network (PSO-BP) demonstrates superior global search capability and enhanced generalization performance when processing noisy datasets and mitigating overfitting. The optimized model exhibits enhanced adaptability to real-world complex environments. For instance, during the inversion of electrical resistivity survey data, the complex subsurface geoelectrical structures and wide dynamic range of apparent resistivity measurements present significant challenges. While conventional BP networks face increased susceptibility to local optima convergence, the PSO-BP hybrid algorithm’s effective weight-threshold optimization facilitates the identification of optimal geoelectric parameters, thereby achieving robust inversion of resistivity survey data.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, U.K.; Tiwari, R.K.; Singh, S. One-dimensional inversion of geo-electrical resistivity sounding data using artificial neural networks—A case study. Comput. Geosci. 2005, 31, 99–108. [Google Scholar] [CrossRef]
- You, X.R.; Zhang, J.F.; Shi, Y. Artificial neural network-based transient electromagnetic imaging. Geophys. Geochem. Explor. 2023, 47, 1206–1214. [Google Scholar]
- Neyamadpour, A.; Taib, S.; Abdullah, W.W. Using artificial neural networks to invert 2D DC resistivity imaging data for high resistivity contrast regions: A MATLAB application. Comput. Geosci. 2009, 35, 2268–2274. [Google Scholar] [CrossRef]
- Sen, M.K.; Stoffa, P.L. Global Optimization Methods in Geophysical Inversion, 2nd ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Ferreira, N.R.; Porsani, M.J.; Oliveira, S.P. A hybrid genetic-linear algorithm for 2D inversion of sets of vertical electrical sounding. Rev. Bras. Geofísica 2003, 21, 235–248. [Google Scholar] [CrossRef]
- Song, P.; Xu, T. Inversion of Oblique Sounding for Ionospheric Parameters Based on Genetic Algorithm. Mod. Electron. Tech. 2008, 19, 16–18. [Google Scholar]
- Zhu, K.-G. PC-based artificial neural network inversion for airborne time-domain electromagnetic data. Appl. Geophys. 2012, 9, 1–8. [Google Scholar] [CrossRef]
- Noh, K.; Yoon, D.; Byun, J. Imaging subsurface resistivity structure from airborne electromagnetic induction data using deep neural network. Explor. Geophys. 2020, 51, 214–220. [Google Scholar] [CrossRef]
- Zuo, C.; Zhang, X.; Zhao, G.; Yan, L. PCR: A Parallel Convolution Residual Network for Traffic Flow Prediction. IEEE Trans. Emerg. Top. Comput. Intell. 2025, 9, 3072–3083. [Google Scholar] [CrossRef]
- Liu, K.; Jiao, S.; Nie, G.; Ma, H.; Gao, B.; Sun, C.; Wu, G. On image transformation for partial discharge source identification in vehicle cable terminals of high-speed trains. High Volt. 2024, 9, 1090–1100. [Google Scholar] [CrossRef]
- Chunduru, R.K.; Sen, M.K.; Stoffa, P.L.; Nagendra, R. Non-linear inversion of resistivity profiling data for some regular geometrical bodies. Geophys. Prospect. 1995, 43, 979–1003. [Google Scholar] [CrossRef]
- Singh, U.; Tiwari, R.; Singh, S. Inversion of 2-D DC resistivity data using rapid optimization and minimal complexity neural network. Nonlinear Process. Geophys. 2010, 17, 65–76. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Liu, H.F. The application of ABP method in high-density resistivity method inversion. Chin. J. Geophys. 2011, 54, 227–233. [Google Scholar]
- Liu, X.H.; Liu, S.X.; Hu, M.Q.; Sun, Z.Q.; Wang, Q. Research on inversion of high-density resistivity method based on OMAGA-BP algorithm. Geophys. Geochem. Explor. 2023, 47, 1519–1527. [Google Scholar]
- Gao, M.L.; Yu, S.L.; Zheng, J.B.; Xu, C.; Liu, W.Y. Research of resistivity imaging using neural network based on immune genetic algorithm. Chin. J. Geophys. 2016, 59, 4372–4382. [Google Scholar]
- Li, R.; Zhang, H.; Zhuang, Q.; Li, R.; Chen, Y. BP neural network and improved differential evolution for transient electromagnetic inversion. Comput. Geosci. 2020, 137, 104434. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, H.; Wang, L.; Xi, Z.Z.; Zhang, D.J. Magnetotelluric inversion using artificial neural network. J. Cent. South Univ. (Sci. Technol.) 2015, 46, 1707–1714. [Google Scholar]
- Jiang, T.; Zhang, Y.F.; Wang, Y.H. A Study of Application of An Improved PSO Algorithm in BP Network. Comput. Sci. 2006, 9, 164–165+290. [Google Scholar]
- Liu, Y.J.; Yang, X.Q.; Fu, N.; Wang, Y. Method of Particle Swarm Optimization Neural Network on Geological Hazards Comprehensive Evaluation and its Application. J. Seismol. Res. 2012, 35, 571–577+598. [Google Scholar]
- Godio, A.; Santilano, A. On the optimization of electromagnetic geophysical data: Application of the PSO algorithm. J. Appl. Geophys. 2018, 148, 163–174. [Google Scholar] [CrossRef]
- Pace, F.; Santilano, A.; Godio, A. Particle swarm optimization of 2D magnetotelluric data. Geophysics 2019, 84, E125–E141. [Google Scholar] [CrossRef]
- Cui, Y.-A.; Zhang, L.; Zhu, X.; Liu, J.; Guo, Z. Inversion for magnetotelluric data using the particle swarm optimization and regularized least squares. J. Appl. Geophys. 2020, 181, 104156. [Google Scholar] [CrossRef]
- Santilano, A.; Godio, A.; Manzella, A. Particle swarm optimization for simultaneous analysis of magnetotelluric and time-domain electromagnetic data. Geophysics 2018, 83, E151–E159. [Google Scholar] [CrossRef]
- Han, R.T.; Wang, S.M.; Huang, L.S.; Ye, Y.X. A Modified Particle Swarm Algorithm with Crossover Operator and Its Application in Magnetotellutic Data Inversion. Chin. J. Eng. Geophys. 2009, 6, 223–228. [Google Scholar]
- Dong, Y. Joint inversion and application of DC and full-domain TEM with particle swarm optimization. Pure Appl. Geophys. 2022, 179, 371–383. [Google Scholar] [CrossRef]
- Xu, Z.; Fu, Z.; Zhang, J. Research and application of the transient electromagnetic method inversion technique based on particle swarm optimization algorithm. IEEE Access 2020, 8, 198307–198316. [Google Scholar] [CrossRef]
- Cheng, J.L.; Li, M.X.; Li, X.Y.; Sun, X.Y.; Chen, D. Study on particle swarm optimization inversion of mine transient electromagnetic method in whole-space. Chin. J. Geophys. 2014, 57, 3478–3484. [Google Scholar]
- Oyeyemi, K.D.; Aizebeokhai, A.P.; Ukabam, C.S.; Kayode, O.T.; Olaojo, A.A.; Metwaly, M. Nonlinear inversion of electrical resistivity sounding data for multi-layered 1-D earth model using global particle swarm optimization (GPSO). Heliyon 2023, 9, e16528. [Google Scholar] [CrossRef] [PubMed]
- Pace, F.; Godio, A.; Santilano, A.; Comina, C. Joint optimization of geophysical data using multi-objective swarm intelligence. Geophys. J. Int. 2019, 218, 1502–1521. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, L.; Jiang, F.B. 2-D Improved particle swarm optimization algorithm for electrical resistance tomography inversion. Geophys. Geochem. Explor. 2015, 39, 1047–1052. [Google Scholar]
- Dai, Q.W.; Zhang, H.; Zhang, B. Combined inversion of resistivity sounding and GPR to eliminate equivalent phenomena based on multiple group particle swarm optimization algorithm. Comput. Tech. Geophys. Geochem. Explor. 2019, 41, 761–767. [Google Scholar]
- Cui, Y.A.; Liu, X.; Guo, Y.J.; Xiao, J.P.; Liu, C.M. Research progress of resistivity method in nonferrous metal mineral exploration. Res. Prog. Resist. Method Nonferrous Met. Miner. Explor. 2023, 33, 223–239. [Google Scholar]
- Cui, Y.A.; Chen, Z.; Zhu, X.; Liu, H.; Liu, J. Sequential and simultaneous joint inversion of resistivity and IP sounding data using particle swarm optimization. J. Earth Sci. 2017, 28, 709–718. [Google Scholar] [CrossRef]
- Pace, F.; Raftogianni, A.; Godio, A. A comparative analysis of three computational-intelligence metaheuristic methods for the optimization of TDEM data. Pure Appl. Geophys. 2022, 179, 3727–3749. [Google Scholar] [CrossRef]
- Xu, F.Q.; Qian, Y.; Liu, X.G. GA-BP Neural Network of the Nonlinear Function Approximating. Sci. Technol. Innov. 2012, 28, 148–149+145. [Google Scholar]
- Li, R.; Zhang, H.; Yu, N.; Li, R.; Zhuang, Q. A fast approximation for 1-D inversion of transient electromagnetic data by using a back propagation neural network and improved particle swarm optimization. Nonlinear Process. Geophys. 2019, 26, 445–456. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.Y. Back-propagation neural network training based on particle swarm optimization with best influential partical. Comput. Eng. Appl. 2007, 18, 69–71+86. [Google Scholar]
- Huang, X.; Guo, L.H.; Li, J.; Yu, Y. Target threat assessment based on BP neural network optimized by modified particle swarm optimization. J. Jilin Univ. (Eng. Technol. Ed.) 2017, 47, 996–1002. [Google Scholar]
- Ruan, B.Y. 1-D Optimization Inversion Method for Resistivity and IP Sounding Data. J. Guilin Univ. Technol. 1999, 4, 321–325. [Google Scholar]
- Shaw, R.; Srivastava, S. Particle swarm optimization: A new tool to invert geophysical data. Geophysics 2007, 72, F75–F83. [Google Scholar] [CrossRef]
Sample Number | Theoretical Value | Inversion Values | ||||
---|---|---|---|---|---|---|
h1 | ρ1 | ρ2 | h1 | ρ1 | ρ2 | |
(m) | (Ω·m) | (Ω·m) | (m) | (Ω·m) | (Ω·m) | |
1 | 10 | 600 | 400 | 10.469 | 598.99 | 399.88 |
2 | 50 | 700 | 900 | 49.36 | 700.53 | 899.28 |
3 | 100 | 900 | 100 | 100.86 | 901.07 | 100.01 |
4 | 60 | 300 | 700 | 59.27 | 299.53 | 699.17 |
5 | 30 | 300 | 800 | 30.32 | 298.81 | 799.7 |
6 | 20 | 200 | 500 | 20.74 | 199.56 | 500.59 |
7 | 40 | 600 | 100 | 39.37 | 599.6 | 99.27 |
8 | 60 | 400 | 800 | 60.7 | 399.83 | 800.32 |
9 | 70 | 200 | 1000 | 69.71 | 199.92 | 999.01 |
10 | 80 | 800 | 200 | 80.74 | 799.71 | 198.83 |
Sample Number | Theoretical Value | Inversion Values | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
h1 | ρ1 | h2 | ρ2 | ρ3 | h1 | ρ1 | h2 | ρ2 | ρ3 | |
(m) | (Ω·m) | (m) | (Ω·m) | (Ω·m) | (m) | (Ω·m) | (m) | (Ω·m) | (Ω·m) | |
1 | 50 | 200 | 40 | 500 | 100 | 47.98 | 203.35 | 39.16 | 496.07 | 101.84 |
2 | 90 | 700 | 50 | 500 | 800 | 85.47 | 698.22 | 47.15 | 495.22 | 799.91 |
3 | 40 | 800 | 60 | 600 | 700 | 39.03 | 797.85 | 55.49 | 602.2 | 702.05 |
4 | 20 | 500 | 50 | 300 | 200 | 18.59 | 498.56 | 54.99 | 294.92 | 199.36 |
5 | 20 | 800 | 70 | 100 | 500 | 20.74 | 803.66 | 72.93 | 98.3 | 501.78 |
6 | 80 | 700 | 50 | 800 | 700 | 78.08 | 698.08 | 47.4 | 804.87 | 694.87 |
7 | 20 | 500 | 40 | 800 | 800 | 20.07 | 501.67 | 45.14 | 798.2 | 800.16 |
8 | 70 | 700 | 70 | 900 | 200 | 64.62 | 698.65 | 67.72 | 897.85 | 203.48 |
9 | 60 | 400 | 50 | 700 | 300 | 58.75 | 402.96 | 51.59 | 701.68 | 304.84 |
10 | 20 | 500 | 40 | 200 | 300 | 19.76 | 504.52 | 43.43 | 197.34 | 302.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Gu, G.; Wu, Y.; Wang, S.; Niu, X.; Xu, Z.; He, H.; Lin, X.; Cao, L. Inversion of Vertical Electrical Sounding Data Based on PSO-BP Neural Network. Minerals 2025, 15, 925. https://doi.org/10.3390/min15090925
Wang Y, Gu G, Wu Y, Wang S, Niu X, Xu Z, He H, Lin X, Cao L. Inversion of Vertical Electrical Sounding Data Based on PSO-BP Neural Network. Minerals. 2025; 15(9):925. https://doi.org/10.3390/min15090925
Chicago/Turabian StyleWang, Yingjie, Guanwen Gu, Ye Wu, Shunji Wang, Xingguo Niu, Zhihe Xu, Haoyuan He, Xinglong Lin, and Lai Cao. 2025. "Inversion of Vertical Electrical Sounding Data Based on PSO-BP Neural Network" Minerals 15, no. 9: 925. https://doi.org/10.3390/min15090925
APA StyleWang, Y., Gu, G., Wu, Y., Wang, S., Niu, X., Xu, Z., He, H., Lin, X., & Cao, L. (2025). Inversion of Vertical Electrical Sounding Data Based on PSO-BP Neural Network. Minerals, 15(9), 925. https://doi.org/10.3390/min15090925