An Overview of Applications, Toxicology and Separation Methods of Lithium
Abstract
1. Introduction
2. Li Market and Its Main Applications
Lithium Compound | Chemical Structure | Applications | Reference |
---|---|---|---|
Lithium ferrite | LiFe5O8 | Electronics and medicine, the ferrofluid industry, gas sensors, contrast agents in magnetic resonance imaging, drug delivery, and rechargeable Li-ion batteries, high density data storage, catalysts, information storage systems, magnetic bulk cores, microwave absorbers, and medical diagnostics and therapy. | [26] |
Lithium bromide | LiBr | Greases, lubricants, synthetic rubbers. | [13] |
Lithium carbonate | Li2CO3 | Pharmaceuticals, control of thermal expansion in ceramics. | [13,27] |
Lithium chloride | LiCl | Moisture absorber in air conditioning systems and batteries, and in the production of lightweight alloys. | [27] |
Lithium hydroxide | LiOH | Alkaline storage batteries, manufacture of lithium soaps, and additive in industrial batteries. | [27] |
Lithium cobaltate | LiCoO2 | Storage batteries | [24] |
Lithium ferrophosphate | LiFePO4 | Storage batteries | [24] |
Lithium titanate | LiTiO3 | Source of tritium in the nuclear fusion reactors. | [10] |
Lithium zirconate | Li2ZrO3 | Source of tritium in the nuclear fusion reactors. | [10] |
Lithium hydride | LiH | Storage of hydrogen fuel. | [28] |
3. Li Extraction, Environmental Impact and Toxicology
3.1. Li Extraction and Its Environmental Impact
3.2. Li Toxicological Profile
4. Methods for Li Separation
4.1. Chemical Precipitation
4.2. Membrane-Based Technologies
4.3. Adsorption
Lithium Recovery Source | Lithium Source Pretreatment | Adsorbent | Adsorbent Preparation Conditions | Adsorption Conditions | Adsorption Capacity, mg/g | Reference |
---|---|---|---|---|---|---|
Spent Li-ion battery powders | Leaching by NH3·H2O–NH4HCO3 solutions with H2O2 | Manganese type lithium ion-sieve powder | --- | Initial concentration of Li+ 2.5 g/L, 2 g/L of Ni2+ and Co2+, 150 g/L of NH4+ at 30 °C for 6 h | 31.62 | [207] |
Enriched salt lake brine from Qaidam basin in China | --- | Titanium type lithium ion sieve (HxTiO3) powder | 0.5 g of H2TiO3 and 7.5 g of tetrabutylamine, 2.5 mol/L of LiOH at 170 °C for 24 h. Pickled with 0.5 M HCl at 30 °C for 24 h | 0.1 g of HxTiO3, 20 mL of brine, at 25 °C for 24 h, initial pH 8.8 | 36.34 | [139] |
Concentrated brine from the Qaidam area of China | Adjust to pH 8.8 with Ca(OH)2. Precipitate removal | Iron-doped lithium ion sieve powder | Precursor: LiOH, TiO2/Fe2O3 molar ratio of 0.15 at 600 °C for 3 h. 2 g of precursor, 0.5 M HCl at 25 °C for 24 h | 0.1 g of iron-doped lithium ion sieves, brine (1.6 g/L) at 25 °C for 55 h | 34.8 | [209] |
Lithium solution | --- | Lithium ion imprinted polymers (LIP) Non-lithium ion imprinted polymers (NLIPs) | 1 dose of liquor: 0.3 g of DB14C4, 0.0689 g of LiNO3 and 0.17 mL of α-MAA in 60 mL of methanol and DMF at 25 °C for 30 min. 1 dose of liquor and 0.5 g of MWCNTs (for 5 min), 3.96 g of EGDMA and 125 mg of AIBN | 15 mg of LIP, 300 mg/L of Li+, pH 6, 25 °C for 2 | 9.45 0.52 | [210] |
Synthetic brine (LiCl and NaCl) | --- | Commercial ion-exchange resins Lewatit TP 207 TP 208 K2629 | Matrix of crosslinked polyestirene TP 207 and TP 208 are macroporous cation exchange weakly acidic resins. K2629 is microporous, strongly acidic resin | 50 mL of synthetic brine (100 mg/L), 25 °C, 20 min | 4.30 4.34 3.24 | [211] |
LiOH solution (1.8 g/L) | --- | Molybdenum-titanium oxide lithium ion sieve (Mo/Ti-LIS) powder | TiO2, LiOH∙H2O, MoO2 at 600 °C for 3 h. Pickled with 0.5 M HCl at 25 °C for 24 h | 0.1 g of Mo/Ti-LIS, 100 rpm, 25 °C, 50 h | 78 | [206] |
LiOH solution | --- | Fe3O4-doped magnetic lithium ion-sieve powder | Mixture: 0.1 g of magnetic Fe3O4 nanospheres, 3.9 g of MnCl2 in 50 mL of water, 30 min of ultrasonication. Mixture containing 2.5 g of LiOH and 2.5 mL of H2O2 in 50 mL of water under stirring for 2 h. Final mixture at 170 °C for 10 h | 0.4 g of adsorbent in 500 mL of LiOH (50 mg/L), pH 10.1, 24 h | 29.33 | [212] |
Lithium solution | --- | Pristine titanate nanotubes (pTNTs) Urea-Titanate nanotubes (UTNTs) Melamine-Titanate nanotubes (MTNTs) Polyacrylonitrile-Titanate nanotubes (PANTNTs) | pTNT: 2 g of anatase titanium (IV) oxide powder, 60 mL of 10 M NaOH at 130 °C for 26 h. UTNTs, MTNTs and PANTNTs: 1 g of urea, melamine or polyacrylonitrile in 20 mL of ethanol at 40 °C for 20 min and then 1 g of pTNTs at 80 °C for 2 h | 0.15 g of powder adsorbent, 250 mL of Li solution (30 mg/L) at 25 °C, pH 8 | 34.4 35.31 40.26 31.81 | [142] |
Lithium solution | --- | Magnetic carbon-based lithium ion-imprinted material (Li+-IIP-Fe3O4@C) | Magnetic carbon nanospheres salinization by γ-methacryloxypropyltrimethoxysilane and functionalized with methacrylic acid. Grafting with 2-hydroxymethyl-12-crown-4 and LiClO4 | 5 mg of adsorbent, 10 mL of lithium solution (300 mg/L), 25 °C | 22.94 | [140] |
Lithium solution | --- | Fe-doped manganese oxide lithium ion-sieves (LiMn2-xFexO4) | Calcination of LiOH, MnO2 and Fe2O3 at 450 °C for 6 h. Calcined obtained with 1 M HCl for 6 h | 0.150 L of LiCl (200 mg/L), 0.15 g of adsorbent, 2 h, pH 12 | 34.8 | [208] |
West Taijinar salt lake brine | Adjust to pH 8.8 with NH3 1 M | Shaped titanium-based lithium ion sieve (HTO-P) | Titanium-based lithium ion sieve powder was pressed into a sheet and crushed (0.64 mm) | 0.15 g of HTO-P, 30 mL of brine, pH 8.8, 30 °C, 24 h | 19.22 | [213] |
Seawater reverse osmosis brine (43 mg-Li/L, 17 mg-Sr/L) | --- | Li-ion-imprinted polymer (IIP) | Solution 1: 20 mL of acetonitrile, 74.5 mg of dicyclohexane-18-crown-6, 21.3 mg of LiCl at 25 °C and sonicated. 0.8 g of EGDMA (Crosslinker), 0.13 g of tertbutyl acrylate (monomer), 0.3 g of potassium persulphate with solution 1 at 25 °C | 10 mg of IIP, 30 mL of seawater brine, 45 °C, pH 10, 24 h | 300 | [214] |
LiOH solution | --- | Porous Li1.33Mn1.67O4 (H-LMO) disc | LMO: Li2CO3/MnCO3 molar ratio of 1.33/1.67, 500 °C, 4 h. LMO disc: Mixture of LMO and 25% (by mass) petroleum pitch at 150 °C for 30 min. Pressing with a disc-shaped mold (20 mm) at 150 °C for 30 min. Extraction of Li+ with 0.3 M HCl for 6 days | 1.5 g of adsorbent, 0.5 L of Li+ solution (200 mg/L), 72 h at 25 °C. | 24 | [215] |
LiCl solution | --- | Ionic Liquid-Cellulose nanocrystals-Date pits (IL-CNC@DP) | IL-CNC: C7H8INO and DMSO at 65 °C; cellulose nanocrystals at 65 ° for 1 h. IL-CNC@DP: IL-CNC and 5 g of date pit | 0.05 g of adsorbent, 50 mL of LiCl (100 mg/L) 25 °C, pH 6 | 105 | [144] |
LiOH solution | --- | Ti-LIS Ti-LIS-Zr E-12/Ti-LIS-Zr | For lithium ion sieve (LIS) pellets: Li2CO3, TiO2 and Zr(NO3)4 at 650 °C for 4 h. 0.25 M HCl for 24 h | 0.5 g of adsorbent, 50 mL of LiOH (1.8 g/L), 24 h | 56.3 93.2 47.5 | [216] |
LiNO3 solution | --- | MIL-100(Fe) MOF (Metal–organic framework) | Iron powder, H3BTC, HF, HNO3 in 10 mL of water at 150 °C for 12 h in teflon-lined autoclave | 20 mg of adsorbent, 2 of mL LiNO3 (12 g/L), 15 °C, 8 h | 83.9 | [141] |
Lithium solution Qarhan salt lake brine | --- | Hydrogen manganese oxide-sepiolite (HMO-SEP) | MO-SEP: MnSO4·H2O and Na2S2O8 by hydrothermal method LMO-SEP: 2.0462 g of MO-SEP and 25 mL of LiNO3 (0.5 M) for 1 h HMO-SEP: LMO-SEP and 0.2 M HCl for 48 h | 25 °C, 8 h, 300 mg, 2.5 m/L of Li, pH 12 50 mg of adsorbent, 20 mL of brine, pH 12, 25 °C, 24 h | 52.41 47.25 | [217] |
LiCl solution | --- | Commercial Dowex G26 resin as powder | --- | 1.5 L of Li, 1 g of adsorbent, 0.16 mL/min, 3 h, pH 9 | 12 | [145] |
Lithium solution | --- | Tungsten-doped Ti-based Li-ion sieve (HTO-W) | LiOH·H2O, TiO2 and WO3 in 20 mL water at 160 °C for 24 h. Calcination at 600 °C for 2 h. 0.2 M HCl at 30 °C for 24 h | LiCl solution (425 mg/L), 30 °C, 3 h | 43.01 | [218] |
Li2CO3 solution | Simulated lithium solution (2.5 g/L): Li2CO3 and H2SO4 | Porous carbon beads-Fe3O4 Porous carbon beads-FeCl3 | Beads: Coal tar pitch and THF/DMF in isopropyl alcohol. Beads carbonization at 800 °C, 2 h. Beads activation at 850 °C, 2 h. Spherical droplets with coal tar pitch in isopropyl alcohol and water. Magnetization impregnated with FeCl3 | 30 mg of adsorbent, 10 mL of lithium solution, 5 h | 73.8 79.8 | [143] |
Simulated seawater | --- | HTO/MXene@PVC hybrid film | Precursor: MXene, Li2TiO3, LIS, 13 mL of NMP sonication for 15 min. HTO/MXene@PVC precursor: precursor and 3 g of PVC at 80 °C. HTO/MXene@PVC LIS: 0.1 M HCl for 24 h | 200 mg/L of Li+, for 24 h at 30 °C, pH 9 | 25.4 | [219] |
Synthetic Li-ion battery waste leachate (2.45 g/L) | --- | Commercial chelating resin with aminomethylphosphonic acid functional group Lewatit® MDS TP 260 | --- | Simulated moving bed with 6 jacketed glass columns arranged in 1-1-1-3, 15 mm diameter, switch time 25 min, 1.64 L/h | 100% | [146] |
4.4. Solvent Extraction
5. Lithium Recycling from Spent Products and Waste Streams
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Balaram, V.; Santosh, M.; Satyanarayanan, M.; Srinivas, N.; Gupta, H. Lithium: A review of applications, occurrence, exploration, extraction, recycling, analysis, and environmental impact. Geosci. Front. 2024, 15, 101868. [Google Scholar] [CrossRef]
- United States Geological Survey 2025; Mineral Commodity Summaries; U.S. Geological Survey: Reston, VA, USA, 2025; 212p. [CrossRef]
- RSC (Royal Society of Chemistry). Available online: https://www.rsc.org/periodic-table/element/3/lithium (accessed on 10 June 2025).
- da Silva, L.; Wu, J.; Cadena, E.; Groombridge, A.S.; Dewulf, J. Towards environmentally sustainable battery anode materials: Life cycle assessment of mixed niobium oxide (XNOTM) and lithium-titanium-oxide (LTO). Sustain. Mater. Technol. 2023, 37, ie00654. [Google Scholar]
- Bi, Z.; Guo, X. Solidification for solid-state lithium batteries with high energy density and long cycle life. Energy Mater. 2022, 2, 200011. [Google Scholar] [CrossRef]
- Gavrilescu, M. Microbial recovery of critical metals from secondary sources. Bioresour. Technol. 2022, 344, 126208. [Google Scholar] [CrossRef]
- Tomascak, P. Developments in the understanding and application of lithium isotopes in the Earth and planetary sciences. Rev. Mineral. Geochem. 2004, 55, 153–195. [Google Scholar] [CrossRef]
- Mihalasky, M.; Briggs, D.; Baker, M.; Jaskula, B.; Cheriyan, K.; Deloach-Overton, S. Lithium Occurrences and Processing Facilities of Argentina, and Salars of the Lithium Triangle, Central South America. U.S. Geological Survey Data Release, 2020. Available online: https://www.usgs.gov/data/lithium-occurrences-and-processing-facilities-argentina-and-salars-lithium-triangle-central?utm_source=chatgpt.com (accessed on 25 July 2025).
- Hudson-Edwards, K. Geochemistry and mineralogy of wastes from lithium-bearing granite-pegmatite mining: Resource potential and environmental risks. Front. Geochem. 2024, 2, 1378996. [Google Scholar] [CrossRef]
- Oliviera, G.A.; Bustillos, J.O.; Ferreira, J.; Bergamaschi, V.; Moraes, R.; Gimenez, M.; Miyamoto, F.; Seneda, J. Applications of lithium in nuclear energy. In Proceedings of the International Nuclear Atlantic Conference (INAC 2017), Belo Horizonte, Brazil, 22–27 October 2017. [Google Scholar]
- Aylmore, M.G.; Merigot, K.; Quadir, Z.; Rickard, W.; Evans, N.; McDonald, B.; Catovic, E.; Spitalny, P. Applications of advanced analytical and mass spectroscopy techniques to the characterization of micaceous lithium-bearing ores. Miner. Eng. 2018, 116, 182–195. [Google Scholar] [CrossRef]
- Krishnan, R.; Gopan, G. A comprehensive review of lithium extraction: From historical perspectives to emerging technologies, storage, and environmental considerations. Clean. Eng. Technol. 2024, 20, 100749. [Google Scholar] [CrossRef]
- Kesler, S.; Gruber, P.W.; Medina, P.; Keoleian, G.; Everson, M.; Wallington, T. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geol. Rev. 2012, 48, 55–69. [Google Scholar] [CrossRef]
- WEF (World Economic Forum) 2023. Available online: https://www.weforum.org/stories/2023/01/chart-countries-produce-lithium-world/ (accessed on 27 July 2025).
- Halkes, R.T.; Hughes, A.; Wall, F.; Petavratzi, E.; Pell, R.; Lindsay, J.J. Life cycle assessment and water use impacts of lithium production from salar deposits: Challenges and opportunities. Resour. Conserv. Recycl. 2024, 207, 107554. [Google Scholar] [CrossRef]
- IEA. Global EV Outlook 2025; IEA: Paris, France, 2025; Available online: https://www.iea.org/reports/global-ev-outlook-2025 (accessed on 25 July 2025).
- Dugamin, E.J.; Richard, A.; Cathelineau, M.; Boiron, M.C.; Despinois, F.; Brisset, A. Groundwater in sedimentary basins as potential lithium resource: A global prospective study. Sci. Rep. Nat. 2021, 11, 21091. [Google Scholar] [CrossRef]
- Miatto, A.; Reck, B.K.; West, J.; Graedel, T.E. The rise and fall of American lithium. Resour. Conserv. Recycl. 2020, 162, 105034. [Google Scholar] [CrossRef]
- He, M.; Luo, C.; Yang, H.; Kong, F.; Li, Y.; Deng, L.; Zhang, X.; Yang, K. Sources and a proposal for comprehensive exploitation of lithium brine deposits in the Qaidam Basin on the northern Tibetan Plateau, China: Evidence from Li isotopes. Ore Geol. Rev. 2020, 117, 103277. [Google Scholar] [CrossRef]
- Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308. [Google Scholar] [CrossRef]
- Lin, H.; Jin, Y.; Tao, M.; Zhou, Y.; Shan, P.; Zhao, D.; Yang, Y. Magnetic resonance imaging techniques for lithium-ion batteries: Principles and applications. Magn. Reson. Lett. 2024, 4, 200113. [Google Scholar] [CrossRef]
- Bustos-Gallardo, B.; Bridge, G.; Prieto, M. Harvesting Lithium: Water, brine and the industrial dynamics of production in the Salar de Atacama. Geoforum 2021, 119, 177–189. [Google Scholar] [CrossRef]
- Das, A.; Sahu, S.; Mohapatra, M.; Verma, S.; Bhattacharyya, A.J.; Basu, S. Lithium-ion conductive glass-ceramic electrolytes enable safe and practical Li batteries. Mater. Today Energy 2022, 29, 101118. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, S.; Zhang, X.; Guo, S.; Li, P.; Yan, S. Glass and glass ceramic electrodes and solid electrolyte materials for lithium ion batteries: A review. J. Non-Cryst. Solids 2023, 619, 122581. [Google Scholar] [CrossRef]
- Zagorodny, J.P. Gestión Integral de Las Baterías Fuera de Uso de Vehículos Eléctricos en el Marco de Una Estrategia de Economía Circular; Serie Medio Ambiente y Desarrollo, N° 173 (LC/TS.2023/36); Comisión Económica para América Latina y el Caribe (CEPAL): Santiago, Chile, 2023. [Google Scholar]
- Askarzadeh, N.; Shokrollhi, H. A review on synthesis, characterization and properties of lithium ferrites. Results Chem. 2024, 10, 101679. [Google Scholar] [CrossRef]
- Chevalier, N.; Guillou, P.; Viguié, C.; Fini, J.B.; Sachs, L.M.; Michel-Caillet, C.; Mhaouty-Kodja, S. Lithium and endocrine disruption: A concern for human health? Environ. Int. 2024, 190, 108861. [Google Scholar] [CrossRef]
- Arharbi, A.; Ez-Zahraouy, H. Fluorine, nitrogen doping, and triaxial strain effects on the structural stability and hydrogen storage properties of lithium hydride LiH: DFT investigation. Int. J. Hydrogen Energy 2024, 65, 262–270. [Google Scholar] [CrossRef]
- Biswas, P.; Suresh, M.B.; Jana, D.C.; Saha, B.P.; Johnson, R. Processing of lithium aluminium silicate glass-ceramics and investigations of fracture behaviour and its correlation with the microstructural features. Ceram. Int. 2024, 50, 4708–4714. [Google Scholar] [CrossRef]
- Lohbauer, U.; Niero, D.C.; Lubauer, J.; Abdelmaseh, S.; Cicconi, M.R.; Hurle, K.; de Ligny, D.; Goetz-Neunhoeffer, F. Glass science behind lithium silicate glass-ceramics. Dent. Mater. 2024, 40, 842–857. [Google Scholar] [CrossRef]
- Sánchez-López, M.D. Geopolitics of the Li-ion battery value chain and the Lithium Triangle in South America. Lat. Am. Policy 2023, 14, 22–45. [Google Scholar] [CrossRef]
- Leelaponglit, S.; Angkananuwat, C.; Krajangta, N.; Paaopanchon, C.; Ackapolpanich, T.; Champakerdsap, C.; Klaisiri, A. Comparison of mechanical properties between zirconia-reinforced lithium silicate glass-ceramic and lithium disilicate glass-ceramic: A literature review. Oral Sci. Rep. 2024, 45, 13–21. [Google Scholar] [CrossRef]
- Gomes, G.H.; Oliveira, G.; Rodas, A.; Barbosa, M.T.; Costa, F.; Rodrigues, M.F.; Santos, C.; Barboza, J. In vitro biodegradation, blood and cytocompatibility studies of a bioactive lithium silicate glass-ceramic. Mater. Chem. Phys. 2024, 314, 128828. [Google Scholar] [CrossRef]
- Lee, I.; Kim, H. A study on high speed machining distortion characteristics of aluminum lithium alloys wing rib. J. Korean Soc. Manuf. Process. Eng. 2014, 13, 111–118. [Google Scholar]
- Kablov, E.N.; Antipov, V.V.; Oglodkova, J.S.; Oglodkov, M.S. Development and application prospects of aluminum-lithium alloys in aircraft and space technology. Metallurgies 2021, 65, 72–81. [Google Scholar] [CrossRef]
- Abdalwahid, K.; Enass, R.; Ali, L. Influence of alloying element on corrosion behavior of (Al-Li) alloys used in aerospace industries. J. Eng. Appl. Sci. 2019, 14, 9950–9954. [Google Scholar] [CrossRef]
- Wanhill, R.J.H. Aerospace applications of aluminum–lithium alloys. In Aluminum-Lithium Alloys; Elsevier: Amsterdam, The Netherlands, 2014; pp. 503–535. [Google Scholar]
- Muduli, R.C.; Kale, P. Silicon nanostructures for solid-state hydrogen storage: A review. Int. J. Hydrogen Energy 2023, 48, 1401–1439. [Google Scholar] [CrossRef]
- Tan, H.; Li, M.; He, X.; Su, Y.; Yang, J.; Zhao, H. Effect of wet grinded lithium slag on compressive strength and hydration of sulphoaluminate cement system. Constr. Build. Mater. 2021, 267, 120465. [Google Scholar] [CrossRef]
- Vijayakumar, V.; Anothumakkool, B.; Kurungot, S.; Winter, M.; Nair, J.R. In situ polymerization process: An essential design tool for lithium polymer batteries. Energy Environ. Sci. 2021, 14, 2708–2788. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, B.; Jing, M.; Shen, X.; Wang, L.; Xu, H.; Yan, X.; He, X. In situ catalytic polymerization of a highly homogeneous PDOL composite electrolyte for long-cycle high-voltage solid-state lithium batteries. Adv. Energy Mater. 2022, 12, 2201762. [Google Scholar] [CrossRef]
- Pei, H.; Yan, F.; Liu, H.; He, B.; Li, J. The selective complexation of crown ethers for lithium isotope separation: A critical review. Sep. Purif. Technol. 2024, 341, 126857. [Google Scholar] [CrossRef]
- Badea, S.L.; Niculescu, V.C.; Iordache, A.M. New trends in separation techniques of lithium isotopes: A review of chemical separation methods. Mater. 2023, 16, 3817. [Google Scholar] [CrossRef]
- Guo, X.; Wang, H. Preparation Method and Application of Lithium Hydroxy Fatty Acid. Patent CN110205179B, 17 August 2021. [Google Scholar]
- Xue, M.; Yan, D.; Xu, X.; Zhu, Z.; Wu, Z.; Sheng, Q. Applications of Lithium Anilide in Catalyzing Hydroboration Reaction of Imine and Borane. Patent WO/2020/073178, 16 April 2020. [Google Scholar]
- Lin, K.; Zhao, Z.; Li, Y.; Zeng, Z.; Wei, X.; Fan, X.; Zhu, M. Well-dispersed graphene enhanced lithium complex grease toward high-efficient lubrication. Chin. J. Mech. Eng. 2023, 36, 133. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Yang, T.; Su, H.; Wang, X.; Zhang, S.; Lou, W. Rheological behaviors and tribological properties of nano-silica grease: A study compared with lithium grease and polyurea grease. Tribol. Int. 2023, 186, 108657. [Google Scholar] [CrossRef]
- Sahul, M.; Sahul, M.; Harsani, M.; Domankova, M. On the microstructure and mechanical properties of AW2099 aluminium lithium alloy joints produced with electron beam welding. Mater. Lett. 2020, 276, 128276. [Google Scholar] [CrossRef]
- Han, C.; Jiang, P.; Geng, S.; Mi, G.; Wang, C.; Li, Y. Nucleation mechanisms of equiaxed grains in the fusion zone of aluminum-lithium alloys by laser welding. J. Mater. Res. Technol. 2021, 14, 2219–2232. [Google Scholar] [CrossRef]
- Bai, H.; Wee, M.G.V.; Chinnappan, A.; Li, J.; Shang, R.; Ramakrishna, S. Effect of polyvinylpyrrolidone and lithium chloride composite desiccant-coated heat exchangers on dehumidification studies. Appl. Therm. Eng. 2024, 248, 123318. [Google Scholar] [CrossRef]
- Yang, C.H.; Chen, Y.S.; Lin, S.T.; Chen, J.L.; Hung, C.S.; Chen, H.P.; Hu, C.C.; Cheng, C.C.; Chen, H.; Li, M.H. Air/water vapor control with lithium chloride/polyvinyl alcohol/sulfone composite films. Surf. Coat. Technol. 2024, 482, 130739. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Pressman, P.; Hayes, A.W.; Dhawan, G.; Kapoor, R.; Agathokleous, E.; Calabrese, V. Lithium and hormesis: Enhancement of adaptive responses and biological performance via hormetic mechanisms. J. Trace Elem. Med. Biol. 2023, 78, 127156. [Google Scholar] [CrossRef] [PubMed]
- Ng, V.; Leung, M.; Lau, W.; Chan, E.; Hayes, J.; Osborn, D.; Cheung, C.; Wong, I.; Man, K. Lithium and the risk of fractures in patients with bipolar disorder: A population-based cohort study. Psychiatry Res. 2024, 339, 116075. [Google Scholar] [CrossRef] [PubMed]
- Villegas-Vázquez, E.; Quintas-Granados, L.; Cortés, H.; González-Del Carmen, M.; Leyva-Gómez, G.; Rodríguez-Morales, M.; Bustamante-Montes, L.; Silva-Adaya, D.; Pérez-Pasencia, C.; Jacobo-Herrera, N.; et al. Lithium: A promising anticancer agent. Life 2023, 13, 537. [Google Scholar] [CrossRef]
- Almatari, M.; Agar, O.; Altunsoy, E.E.; Kilicoglu, O.; Sayyed, M.I.; Tekin, H.O. Photon and neutron shielding characteristics of samarium doped lead alumino borate glasses containing barium, lithium and zinc oxides determined at medical diagnostic energies. Results Phys. 2019, 12, 2123–2128. [Google Scholar] [CrossRef]
- Hoey, O.; Moudud, H.; Struelens, L.; Schoonjans, W.; Dabin, J.; Castillo, D.; Block, S.; Vanhavere, F. Evaluation of different types of lithium fluoride thermoluminescent detectors for ring dosimetry in nuclear medicine. Radiat. Meas. 2022, 159, 106866. [Google Scholar] [CrossRef]
- Saray, A.A.; Kaviani, P.; Shahbazi-Gahrouei, D. Dosimetric characteristics of lithium triborate (LiB3O5) nanophosphor for medical applications. Radiat. Meas. 2021, 140, 106502. [Google Scholar] [CrossRef]
- Khalilzadeh, N.; Saion, E.B.; Mirabolghasemi, H.; Soltani, N.; Shaari, A.; Hashim, M.; Ali, N.; Dehzangi, A. Formation and characterization of ultrafine nanophosphors of lithium tetraborate (Li2B4O7) for personnel and medical dosimetry. J. Mater. Res. Technol. 2016, 5, 206–212. [Google Scholar] [CrossRef]
- Ren, P.; Yin, Z.; Wang, G.; Zhao, H.; Ji, P. The sustainable supply of lithium resources from the Qinghai-Tibet plateau salt group: The selection of extraction methods and the assessment of adsorbent application prospects. Desalination 2024, 583, 117659. [Google Scholar] [CrossRef]
- Mas-Fons, A.; Horta Arduin, R.; Loubet, P.; Pereira, T.; Parvez, A.M.; Sonnemann, G. Carbon and water footprint of battery-grade lithium from brine and spodumene: A simulation-based LCA. J. Clean. Prod. 2024, 452, 142108. [Google Scholar] [CrossRef]
- Rentier, E.S.; Hoorn, C.; Seijmonsbergen, A.C. Lithium brine mining affects geodiversity and sustainable development goals. Renew. Sustain. Energy Rev. 2024, 202, 114642. [Google Scholar] [CrossRef]
- Kölbel, L.; Kölbel, T.; Herrmann, L.; Kaymakci, E.; Ghergut, I.; Poirel, A.; Schneider, J. Lithium extraction from geothermal brines in the Upper Rhine Graben: A case study of potential and current state of the art. Hydrometallurgy 2023, 221, 106131. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, J.H.; Moon, S.J.; Jung, J.T.; Wang, H.H.; Ali, A.; Quist-Jensen, C.A.; Macedonio, F.; Drioli, E.; Lee, Y.M. Lithium recovery from artificial brine using energy-efficient membrane distillation and nanofiltration. J. Membr. Sci. 2020, 598, 117683. [Google Scholar] [CrossRef]
- Xu, S.; Song, J.; Bi, Q.; Chen, Q.; Zhang, W.M.; Qian, Z.; Zhang, L.; Xu, S.; Tang, N.; He, T. Extraction of lithium from Chinese salt-lake brines by membranes: Design and practice. J. Membr. Sci. 2021, 635, 119441. [Google Scholar] [CrossRef]
- Ambrose, H.; Kendall, A. Understanding the future of lithium: Part 2, temporally and spatially resolved life-cycle assessment modeling. J. Ind. Ecol. 2019, 224, 90–100. [Google Scholar] [CrossRef]
- Ibarra-Gutiérrez, S.; Bouchard, J.; Laflamme, M.; Fytas, K. Perspectives of lithium mining in Quebec, potential and advantages of integration into a local battery production chain for electric vehicles. Mater. Proc. 2021, 5, 33. [Google Scholar]
- Toupal, J.; Vann, D.R.; Zhu, C.; Gieré, R. Geochemistry of surface waters around four hard-rock lithium deposits in Central Europe. J. Geochem. Explor. 2022, 234, 106937. [Google Scholar] [CrossRef]
- Bazamad, M.; Tangestani, M.H.; Asadi, S.; Staubwasser, M. Investigating the geochemical behavior and exploration potential of lithium in brines; a case study of Bam salt plug, Zagros Zone, southern Iran. Sci. Rep. 2023, 13, 21567. [Google Scholar] [CrossRef]
- Necke, T.; Stein, J.; Kleebe, H.; Balke-Grünewald, B. Lithium extraction and zeolite synthesis via mechanochemical treatment of the silicate minerals lepidolite, spodumene, and petalite. Minerals 2023, 13, 1030. [Google Scholar] [CrossRef]
- Yang, X.; Wen, H.; Lin, Y.; Zhang, H.; Liu, Y.; Fu, J.; Liu, Q.; Jiang, G. Emerging research needs for characterizing the risks of global lithium pollution under carbon neutrality strategies. Environ. Sci. Technol. 2023, 57, 5103–5106. [Google Scholar] [CrossRef]
- Liu, W.; Agusdinata, F.B.; Myint, S.W. Spatiotemporal patterns of lithium mining and environmental degradation in the Atacama Salt Flat, Chile. Int. J. Appl. Earth Observ. Geoinf. 2019, 80, 145–156. [Google Scholar] [CrossRef]
- Mousavinezhad, S.; Nili, S.; Fahimi, A.; Vahidi, E. Environmental impact assessment of direct lithium extraction from brine resources: Global warming potential, land use, water consumption, and charting sustainable scenarios. Resour. Conserv. Recycl. 2024, 205, 107583. [Google Scholar] [CrossRef]
- Yang, X.; Wen, H.; Liu, Y.; Huang, Y.; Zhang, Q.; Wang, W.; Zhang, H.; Fu, J.; Li, G.; Liu, Q.; et al. Lithium pollution and its associated health risks in the largest lithium extraction industrial area in China. Environ. Sci. Technol. 2024, 58, 11637–11648. [Google Scholar] [CrossRef]
- Ma, G.; Jiang, J.; Wei, Y.; Cai, A.; Wang, L.; Zhou, H. Lithium extraction from salt lake via rocking-chair flow electrode capacitive deionization with monovalent selective membrane. Desalination 2025, 600, 118516. [Google Scholar] [CrossRef]
- Kelly, J.; Wang, M.; Dai, Q.; Winjobi, O. Energy, greenhouse gas, and water life cycle analysis of lithium carbonate and lithium hydroxide monohydrate from brine and ore resources and their use in lithium ion battery cathodes and lithium ion batteries. Resour. Conserv. Recycl. 2021, 174, 105762. [Google Scholar] [CrossRef]
- Nikfar, S.; Fahimi, A.; Vahidi, E. Unlocking sustainable lithium: A comparative life cycle assessment of innovative extraction methods for brine. Resour. Conserv. Recycl. 2025, 212, 107977. [Google Scholar] [CrossRef]
- Blumenstiel, D.; McDonald, M.; Arriaza, B.; Amarasiriwardena, D. Exposure to geogenic lithium in ancient Andeans: Unraveling lithium in mummy hair using LA-ICP-MS. J. Archaeol. Sci. 2020, 113, 105062. [Google Scholar] [CrossRef]
- Adeel, M.; Zain, M.; Shakoor, N.; Ahmad, M.A.; Azeem, I.; Aziz, M.A.; Tulcan, R.X.S.; Rathore, A.; Tahir, M.; Horton, R.; et al. Global navigation of Lithium in water bodies and emerging human health crisis. npj Clean Water 2023, 6, 33. [Google Scholar] [CrossRef]
- Hewitt, A.E.; Balks, M.R.; Lowe, D.J. Soils in the Ross Sea Region of Antarctica. In The Soils of Aotearoa New Zealand; World Soils Book Series; Springer: Cham, Switzerland, 2021; pp. 267–287. [Google Scholar]
- Coffey, D.M.; Munk, L.A.; Ibarra, D.E.; Butler, K.L.; Boutt, D.F.; Jenckes, J. Lithium storage and release from lacustrine sediments: Implications for lithium enrichment and sustainability in continental brines. Geochem. Geophys. Geosyst. 2021, 22, e2021GC009916. [Google Scholar] [CrossRef]
- Figueroa, L.; Barton, S.; Schull, W.; Razmilic, B.; Zumaeta, O.; Young, A.; Kamiya, Y.; Hoskins, J.; Ilgren, E. Environmental lithium exposure in the North of Chile—I. Natural water sources. Biol. Trace Elem. Res. 2012, 149, 280–290. [Google Scholar] [CrossRef]
- Sarchi, C.; Lucassen, F.; Meixner, A.; Caffe, P.J.; Becchio, R.; Kasemann, S.A. Lithium enrichment in the Salar de Diablillos, Argentina, and the influence of Cenozoic volcanism in a basin dominated by Paleozoic basement. Miner. Deposita 2023, 58, 1351–1370. [Google Scholar] [CrossRef]
- Alam, M.A.; Muñoz, A. A critical evaluation of the role of a geothermal system in lithium enrichment of brines in the salt flats: A case study from Laguna Verde in the Atacama Region of Chile. Geothermics 2024, 119, 102970. [Google Scholar] [CrossRef]
- Shakoor, N.; Adeel, M.; Ahmad, M.A.; Zain, M.; Waheed, U.; Javaid, R.A.; Haider, F.U.; Azeem, I.; Zhou, P.; Li, Y.; et al. Reimagining safe lithium applications in the living environment and its impacts on human, animal, and plant system. Environ. Sci. Ecotechnol. 2023, 15, 100252. [Google Scholar] [CrossRef] [PubMed]
- Aral, A.; Vecchio-Sadus, A. Toxicity of lithium to humans and the environment—A literature review. Ecotoxicol. Environ. Saf. 2008, 70, 349–356. [Google Scholar] [CrossRef]
- Millot, R.; Négrel, P. Lithium isotopes in the Loire River Basin (France): Hydrogeochemical characterizations at two complementary scales. Appl. Geochem. 2021, 125, 104831. [Google Scholar] [CrossRef]
- King, S.; Boxall, N.J. Lithium battery recycling in Australia: Defining the status and identifying opportunities for the development of a new industry. J. Clean. Prod. 2019, 215, 1279–1287. [Google Scholar] [CrossRef]
- Robinson, B.H.; Yalamanchali, R.; Reiser, R.; Dickinson, N.M. Lithium as an emerging environmental contaminant: Mobility in the soil-plant system. Chemosphere 2018, 197, 1–6. [Google Scholar] [CrossRef]
- Ishchenko, V. Heavy metals in municipal waste: The content and leaching ability by waste fraction. J. Environ. Sci. Health Part A 2019, 54, 1448–1456. [Google Scholar] [CrossRef]
- Kilgo, M.K.; Anctil, A.; Kennedy, M.S.; Powell, B.A. Metal leaching from Lithium-ion and Nickel-metal hydride batteries and photovoltaic modules in simulated landfill leachates and municipal solid waste materials. Chem. Eng. J. 2022, 431, 133825. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B.; Proctor, K.; Jagadeesan, K.; Watkins, S.; Standerwick, R.; Barden, R.; Barnett, J. Diagnosing down-the-drain disposal of unused pharmaceuticals at a River Catchment level: Unrecognized sources of environmental contamination that require nontechnological solutions. Contam. Aquat. Terr. Environ. 2021, 5, 11657–11666. [Google Scholar] [CrossRef]
- Boafo, J.; Obodai, J.; Stemn, E.; Nkrumah, P.N. The race for critical minerals in Africa: A blessing or another resource curse? Resour. Policy 2024, 93, 105046. [Google Scholar] [CrossRef]
- Viana, T.; Ferreira, N.; Henriques, B.; Leite, C.; De Marchi, L.; Amaral, J.; Freitas, R.; Pereira, E. How safe are the new green energy resources for marine wildlife? The case of lithium. Environ. Pollut. 2020, 267, 115458. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.P.; Yadav, V.; Rajput, A.; Gupta, H.; Saravaia, H.; Kulshrestha, V. Sulfonated poly (ether ether ketone) composite cation exchange membrane for selective recovery of lithium by electrodialysis. Desalination 2020, 496, 114755. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Drinking Water Contaminant Candidate List 5-Final; Environmental Protection Agency: Washington, DC, USA, 2022.
- Bradley, D.; Stillings, L.L.; Jaskula, B.W.; Munk, L.; McCauley, A.D. Lithium; Report 1802K; Professional Paper; USGS Publications Warehouse: Reston, VA, USA, 2017; p. 34.
- McKnight, R.F.; Adida, M.; Budge, K.; Stockton, S.; Goodwin, G.M.; Geddes, J.R. Lithium toxicity profile: A systematic review and meta-analysis. Lancet 2012, 379, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sands, M.; Lin, M.; Guelfo, J.; Irudayaraj, J. In Vitro Toxicity of Lithium Bis(Trifluoromethanesulfonyl)Imide (LiTFSI) on Human Renal and Hepatoma Cells. Toxicol. Rep. 2024, 12, 280–288. [Google Scholar] [CrossRef]
- Cipriani, A.; Hawton, K.; Stockton, S.; Geddes, J.R. Lithium in the prevention of suicide in mood disorders: Updated systematic review and meta-analysis. BMJ Br. Med. J. 2013, 346, f3646. [Google Scholar] [CrossRef]
- Tkatcheva, V.; Poirier, D.; Chong-Kit, R.; Furdui, V.L.; Burr, C.; Leger, R.; Parmar, J.; Switzer, T.; Maedler, S.; Reiner, E.J.; et al. Lithium an emerging contaminant: Bioavailability, effects on protein expression, and homeostasis disruption in short-term exposure of rainbow trout. Aquat. Toxicol. 2015, 161, 85–93. [Google Scholar] [CrossRef]
- Dwyer, F.J.; Burch, S.A.; Ingersoll, C.G.; Hunn, J.B. Toxicity of trace element and salinity mixtures to striped bass (Morone saxatilis) and Daphnia magna. Environ. Toxicol. Chem. 1992, 11, 513–520. [Google Scholar] [CrossRef]
- Hamilton, S.J. Hazard Assessment of Inorganics to Three Endangered Fish in the Green River, Utah. Ecotoxicol. Environ. Saf. 1995, 30, 134–142. [Google Scholar] [CrossRef]
- Kim, D.; Choi, J.H.; Hong, Y.P.; Ryoo, K.S. Use of loess as adsorbent for recovery of Li⁺ from seawater. Bull. Korean Chem. Soc. 2017, 38, 5–11. [Google Scholar] [CrossRef]
- Fraga, N.; Benito, D.; Briaudeau, T.; Izagirre, U.; Ruiz, P. Toxicopathic effects of lithium in mussels. Chemosphere 2022, 307, 136022. [Google Scholar] [CrossRef]
- Peltzer, P.M.; Cuzziol Boccioni, A.P.; Attademo, A.M.; Simoniello, M.F.; Lener, G.; Lajmanovich, R.C. Ecotoxicological characterization of lithium as a “timebomb” in aquatic systems: Tadpoles of the South American toad Rhinella arenarum (Hensel, 1867) as model organisms. Toxics 2024, 12, 176. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Le, Q. Synthesis and performance of cerium oxide as anode materials for lithium ion batteries by a chemical precipitation method. J. Alloys Compd. 2016, 669, 142973. [Google Scholar] [CrossRef]
- Wu, L.; Hu, J.; Chen, S.; Yang, X.; Liu, L.; Foord, J.S.; Pobedinskas, P.; Haenen, K.; Hou, H.; Yang, J. Lithium nitrate mediated dynamic formation of solid electrolyte interphase revealed by in situ Fourier transform infrared spectroscopy. Electrochim. Acta 2023, 466, 142973. [Google Scholar] [CrossRef]
- Virolainen, S.; Wesselborg, T.; Kaukinen, A.; Sainio, T. Removal of iron, aluminium, manganese and copper from leach solutions of lithium-ion battery waste using ion exchange. Hydrometallurgy 2021, 202, 105602. [Google Scholar] [CrossRef]
- Chen, J.; Lin, S.; Yu, J. High-selective cyclic adsorption and magnetic recovery performance of magnetic lithium-aluminum layered double hydroxides (MLDHs) in extracting Li+ from ultrahigh Mg/Li ratio brines. Sep. Purif. Technol. 2021, 255, 117710. [Google Scholar] [CrossRef]
- Quilaqueo, M.; Seriche, G.; González, C.; Piaggio, G.; Barros, L.; Gallardo, F.; Díaz-Quezada, S.; Zamora, D.; Barraza, B.; Ruby-Figueroa, R.; et al. Membrane distillation-crystallization applied to a multi-ion hypersaline lithium brine for water recovery and crystallization of potassium and magnesium salts. Desalination 2024, 586, 117895. [Google Scholar] [CrossRef]
- Ni, C.; Liu, C.; Han, Z.; Wang, J.; Liang, Y.; Zhong, H.; He, Z. Sustainable and efficient recovery of lithium from rubidium raffinate via solvent extraction. J. Environ. Chem. Eng. 2024, 12, 113374. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, Z.; Xu, W.; Xiong, J.; He, L. A closed-loop process for selective lithium recovery from brines via electrochemical and precipitation. Desalination 2021, 519, 115302. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y.; Meng, Q.; Dong, P.; Ning, P.; Li, Q. Recovery of valuable metals from mixed spent lithium-ion batteries by multi-step directional precipitation. RSC Adv. 2021, 11, 268–277. [Google Scholar] [CrossRef]
- Shin, J.; Jeong, J.M.; Lee, J.B.; Cho, H.J.; Kim, Y.H.; Ryu, T. Preparation of lithium carbonate from waste lithium solution through precipitation and wet conversion methods. Hydrometallurgy 2022, 210, 105863. [Google Scholar] [CrossRef]
- Xiao, C.; Zeng, L. Thermodynamic study on recovery of lithium using phosphate precipitation method. Hydrometallurgy 2018, 178, 283–286. [Google Scholar] [CrossRef]
- Huang, Y.; Han, G.; Liu, J.; Chai, W.; Wang, W.; Yang, S.; Su, S. A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process. J. Power Sour. 2016, 325, 555–564. [Google Scholar] [CrossRef]
- Wang, S.; Chen, X.; Zhang, Y.; Zhang, Y.; Zheng, S. Lithium adsorption from brine by iron-doped titanium lithium ion sieves. Particuology 2018, 41, 40–47. [Google Scholar] [CrossRef]
- Lv, Y.; Xing, P.; Ma, B.; Liu, Y.; Wang, C.; Zhang, W.; Chen, Y. Efficient extraction of lithium and rubidium from polylithionite via alkaline leaching combined with solvent extraction and precipitation. ACS Sustain. Chem. Eng. 2020, 8, 14462–14470. [Google Scholar] [CrossRef]
- Mahandra, H.; Ghahreman, A. A sustainable process for selective recovery of lithium as lithium phosphate from spent LiFePO4 batteries. Resour. Conserv. Recycl. 2021, 175, 105883. [Google Scholar] [CrossRef]
- Manikandan, S.; Inbakandan, D.; Nachiyar, C.V.; Namasivayam, S.K.R. Towards sustainable metal recovery from e-waste: A mini review. Sustain. Chem. Environ. 2023, 2, 100001. [Google Scholar] [CrossRef]
- Nikkhah, H.; Ipekci, D.; Xiang, W.; Stoll, Z.; Xu, P.; Li, B.; McCutcheon, J.R.; Beykal, B. Challenges and opportunities of recovering lithium from seawater, produced water, geothermal brines, and salt lakes using conventional and emerging technologies. Chem. Eng. J. 2024, 498, 155349. [Google Scholar] [CrossRef]
- Qiu, Y.; Ruan, H.; Tang, C.; Yao, L.; Shen, J.; Scotto, A. Study on recovering high-concentration lithium salt from lithium-containing wastewater using a hybrid reverse osmosis (RO)–electrodialysis (ED) process. ACS Sustain. Chem. Eng. 2019, 7, 13481–13490. [Google Scholar] [CrossRef]
- Pramanik, B.K.; Asif, M.B.; Kentish, S.; Nghiem, L.D.; Hai, F.I. Lithium enrichment from a simulated salt lake brine using an integrated nanofiltration-membrane distillation process. J. Environ. Chem. Eng. 2019, 7, 103395. [Google Scholar] [CrossRef]
- Mahto, A.; Aruchamy, K.; Meena, R.; Kamali, M.; Kotrappanavar, N.S.; Aminabhavi, T.M. Forward osmosis for industrial effluents treatment—Sustainability considerations. Sep. Purif. Technol. 2021, 254, 117568. [Google Scholar] [CrossRef]
- Martins, G.C.; Choo, Y.; Park, M.J.; Shon, H.K.; Naidu, G. Rare earth europium recovery using selective metal-organic framework incorporated mixed-matrix membrane. Chemosphere 2024, 364, 143272. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Kim, S.H.; Yoo, C.H.; Lee, H.J.; Nguyen, B.T.D.; Lee, G.G.; Kim, J.F.; Lee, J.S. Valorization of battery manufacturing wastewater: Recovery of high-value metal ions through reaction-enhanced membrane cascade. Chem. Eng. J. 2024, 493, 152247. [Google Scholar] [CrossRef]
- Cao, D.Q.; Jin, Y.; Liu, H.; Lei, S.C.; Song, Y.X.; Han, J.L.; Hao, X.D.; Ma, M.G.; Zhang, Z.; Wu, R. Concentration properties of biopolymers via dead-end forward osmosis. Int. J. Biol. Macromol. 2024, 270, 132338. [Google Scholar] [CrossRef] [PubMed]
- Humudat, Y.R.; Abdul-Majeed, M.A.; Khraibet, A.C. Membrane filtration enhanced by magnetic field for reducing endotoxin from dialysis water. Desalination Water Treat. 2024, 318, 100315. [Google Scholar] [CrossRef]
- Han, B.; Chevrier, S.M.; Yan, Q.; Gabriel, J.C.P. Tailorable metal–organic framework based thin film nanocomposite membrane for lithium recovery from wasted batteries. Sep. Purif. Technol. 2024, 334, 125943. [Google Scholar] [CrossRef]
- Ma, W.; Han, G.; Li, J.; An, X.; Gao, F.; Du, X.; Li, J.; Liu, Z.; Guan, G.; Hao, X. Hierarchical electroactive ion permselective membrane with electrochemical switched ion pump effect for continuous lithium-ion recovery. J. Membr. Sci. 2024, 700, 122719. [Google Scholar] [CrossRef]
- Alkenani, A.; Saleh, T.A. Synthesis of amine-modified graphene integrated membrane as protocols for simultaneous rejection of hydrocarbons pollutants, metal ions, and salts from water. J. Mol. Liq. 2022, 367, 120291. [Google Scholar] [CrossRef]
- Shi, C.; Jing, Y.; Jia, Y. Solvent extraction of lithium ions by tri-n-butyl phosphate using a room temperature ionic liquid. J. Mol. Liq. 2016, 215, 640–646. [Google Scholar] [CrossRef]
- Luo, X.; Guo, B.; Luo, J.; Deng, F.; Zhang, S.; Luo, S.; Crittenden, J. Recovery of lithium from wastewater using development of Li ion-imprinted polymers. ACS Sustain. Chem. Eng. 2015, 3, 460–467. [Google Scholar] [CrossRef]
- Almousa, M.; Lim, Y.; AlMubaidin, M.; Alshami, A.; Al-Tayyem, B.; Tomomewo, O.; Khalifa, H. Comparative feasibility of lithium extraction technologies in U.S. oilfields. Desalination Water Treat. 2025, 322, 101128. [Google Scholar] [CrossRef]
- Hosseini, N.; Saadmohammadi, A.; Kianoush, P. Innovative approaches to lithium extraction in Iran: Assessing resource potential and sustainable practices for a competitive future. Results Eng. 2025, 27, 105745. [Google Scholar] [CrossRef]
- Younas, F.; Mustafa, A.; Farooqi, Z.U.R.; Wang, X.; Younas, S.; Mohy-Ud-Din, W.; Hameed, M.A.; Abrar, M.M.; Maitlo, A.A.; Noreen, S.; et al. Current and emerging adsorbent technologies for wastewater treatment: Trends, limitations, and environmental implications. Water 2021, 13, 215. [Google Scholar] [CrossRef]
- Santos, D.H.S.; Santos, J.P.T.S.; Duarte, J.L.S.; Oliveira, L.M.T.M.; Tonholo, J.; Meili, L.; Zanta, C.L.P.S. Regeneration of activated carbon adsorbent by anodic and cathodic electrochemical process. Process. Saf. Environ. Prot. 2022, 159, 1150–1163. [Google Scholar] [CrossRef]
- Xu, X.; Chen, Y.; Wan, P.; Gasem, K.; Wang, K.; He, T.; Adidharma, H.; Fan, M. Extraction of lithium with functionalized lithium ion-sieves. Prog. Mater. Sci. 2016, 84, 276–313. [Google Scholar] [CrossRef]
- Wang, S.; Li, P.; Zhang, X.; Zheng, S.; Zhang, Y. Selective adsorption of lithium from high Mg-containing brines using HxTiO3 ion sieve. Hydrometallurgy 2017, 174, 21–28. [Google Scholar] [CrossRef]
- Liang, Q.; Zhang, E.H.; Yan, G.; Yang, Y.Z.; Liu, W.F.; Liu, X.G. A lithium ion-imprinted adsorbent using magnetic carbon nanospheres as a support for the selective recovery of lithium ions. New Carbon Mater. 2020, 35, 696–706. [Google Scholar] [CrossRef]
- Huangfu, C.; Yu, S.; Tong, B.; Yang, A.; Lyu, J.; Guo, X. Efficient lithium extraction from aqueous solutions by MIL-100(Fe): A study on adsorption kinetics, thermodynamics and mechanism. Sep. Purif. Technol. 2023, 322, 124365. [Google Scholar] [CrossRef]
- Kamran, U.; Park, S.J. Functionalized titanate nanotubes for efficient lithium adsorption and recovery from aqueous media. J. Solid State Chem. 2020, 283, 121157. [Google Scholar] [CrossRef]
- Liu, J.; An, X.; Huang, L.; Zhou, H.; Liang, D.; Xie, Q.; Fan, M. In-situ magnetization of porous carbon beads for lithium-ion adsorption from strongly acidic solution. J. Clean. Prod. 2024, 435, 140625. [Google Scholar] [CrossRef]
- Wahib, S.A.; Da’na, D.A.; Zaouri, N.; Hijji, Y.M.; Al-Ghouti, M.A. Adsorption and recovery of lithium ions from groundwater using date pits impregnated with cellulose nanocrystals and ionic liquid. J. Hazard. Mater. 2022, 421, 126657. [Google Scholar] [CrossRef] [PubMed]
- Cunha, L.; Monteiro, J.; Futuro, A.; Fiúza, A. Lithium sorption by ion exchange. Miner. Eng. 2024, 214, 108786. [Google Scholar] [CrossRef]
- Wesselborg, T.; Asumalahti, S.; Virolainen, S.; Sainio, T. Continuous multicolumn ion exchange process for spent lithium-ion battery leachate: Recovery and purification of a Li+Ni+Co mixture. Sep. Purif. Technol. 2025, 353, 128351. [Google Scholar] [CrossRef]
- Yang, S.; Liu, G.; Wang, J.; Cui, L.; Chen, Y. Recovery of lithium from alkaline brine by solvent extraction with functionalized ionic liquid. Fluid Phase Equilibria 2019, 493, 129–136. [Google Scholar] [CrossRef]
- Neves, H.P.; Ferreira, G.M.D.; de Lemos, L.R.; Rodrigues, G.D.; Leã, V.A.; Mageste, A.B. Liquid-liquid extraction of rare earth elements using systems that are more environmentally friendly: Advances, challenges and perspectives. Sep. Purif. Technol. 2022, 282, 120064. [Google Scholar] [CrossRef]
- Riaño, S.; Foltova, S.S.; Binnemans, K. Separation of neodymium and dysprosium by solvent extraction using ionic liquids combined with neutral extractants: Batch and mixer-settler experiments. RSC Adv. 2019, 10, 307–316. [Google Scholar] [CrossRef]
- Waengwan, P.; Eksangsri, T. Recovery of lithium from simulated secondary resources (LiCO3) through solvent extraction. Sustainability 2020, 12, 7179. [Google Scholar] [CrossRef]
- Niu, Z.; Xu, T.; Zhang, L.; Ji, L.; Li, L. Mechanism and process study of lithium extraction by 2-ethylhexyl salicylate extraction system. J. Clean. Prod. 2024, 446, 141351. [Google Scholar] [CrossRef]
- Yuan, H.; Li, M.; Cui, L.; Wang, L.; Chen, F. Electrochemical extraction technologies of lithium: Development and challenges. Desalination 2025, 598, 118419. [Google Scholar] [CrossRef]
- Qu, B.; Liang, J.; Huo, D.; Li, H. Application of electrochemical methods in the recycling of spent lithium-ion batteries. J. Energy Storage 2025, 127, 117180. [Google Scholar] [CrossRef]
- Choudhary, N.; Rajpurohit, D.; Saha, A.; Yadav, S.; Tothadi, S.; Ganguly, B.; Paital, A. Lithium sequestration from dilute solutions and sea bittern inspired by the self-assembled complexation. Chem. Eng. J. 2023, 470, 144408. [Google Scholar] [CrossRef]
- Yu, H.; Wang, C.; Phuntsho, S.; He, T.; Naidu, G.; Han, D. Highly selective lithium recovery from seawater desalination brine using Li2TiO3 membrane-coated capacitive deionization. Water Res. 2025, 285, 124113. [Google Scholar] [CrossRef]
- Alera, A.; Benitez, J.P.; Fernandez, R.; Pascual, C.; Policarpio, F.; Lopez, E. Recent advances in lithium extraction. Eng. Proc. 2024, 67, 52. [Google Scholar]
- Hwang, C.W.; Jeong, M.H.; Kim, Y.J.; Son, W.K.; Kang, K.S.; Lee, C.S.; Hwang, T.S. Process design for lithium recovery using bipolar membrane electrodialysis system. Sep. Purif. Technol. 2016, 166, 34–40. [Google Scholar] [CrossRef]
- Biswal, B.K.; Jadhav, U.U.; Madhaiyan, M.; Ji, L.; Yang, E.H.; Cao, B. Biological leaching and chemical precipitation methods for recovery of Co and Li from spent lithium-ion batteries. ACS Sustain. Chem. Eng. 2018, 9, 12343–12352. [Google Scholar] [CrossRef]
- Shi, P.; Yang, S.; Wu, G.; Chen, H.; Chang, D.; Jie, Y.; Fang, G.; Mo, C.; Chen, Y. Efficient separation and recovering of lithium and manganese from spent lithium-ion batteries powder leaching solution. Sep. Purif. Technol. 2023, 309, 123063. [Google Scholar] [CrossRef]
- Velázquez, L.E.R.; Palos, L.; Mostefa, M.L.P.; Muhr, H. Recovery of lithium from Li-ion battery leachate by gas-liquid precipitation. J. Cryst. Growth 2024, 631, 127625. [Google Scholar] [CrossRef]
- Tawonezvi, T.; Zide, D.; Nomnqa, M.; Madondo, M.; Petrik, L.; Bladergroen, B.J. Recovery of NixMnyCoz(OH)2 and Li2CO3 from spent Li-ion cathode leachates using non-Na precipitant-based chemical precipitation for sustainable recycling. Chem. Eng. J. Adv. 2024, 17, 100582. [Google Scholar] [CrossRef]
- Chen, X.; Fan, B.; Zhou, T.; Kong, J. An atom-economic process for the recovery of high value-added metals from spent lithium-ion batteries. J. Clean. Prod. 2016, 112, 3562–3570. [Google Scholar] [CrossRef]
- Guo, X.; Cao, X.; Huang, G.; Tian, Q.; Sun, H. Recovery of lithium from the effluent obtained in the process of spent lithium-ion batteries recycling. J. Environ. Manag. 2017, 198, 84–89. [Google Scholar] [CrossRef]
- Wang, H.; Zhong, Y.; Du, B.; Zhao, Y.; Wang, M. Recovery of both magnesium and lithium from high Mg/Li ratio brines using a novel process. Hydrometallurgy 2018, 175, 102–108. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, Y.; Cao, H.; Zheng, X.; Gerven, T.V.; Hu, Y.; Sun, Z. Lithium carbonate recovery from lithium-containing solution by ultrasound assisted precipitation. Ultrason. Sonochem. 2019, 52, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; He, M.; Cao, H.; Zheng, X.; Gao, W.; Sun, Y.; Zhao, H.; Liu, D.; Zhang, Y.; Sun, Z. Investigation of solution chemistry to enable efficient lithium recovery from low-concentration lithium-containing wastewater. Front. Chem. Sci. Eng. 2020, 14, 639–650. [Google Scholar] [CrossRef]
- Han, B.; Haq, R.A.U.; Louhi-Kultanen, M. Lithium carbonate precipitation by homogeneous and heterogeneous reactive crystallization. Hydrometallurgy 2020, 195, 105386. [Google Scholar] [CrossRef]
- Alsabbagh, A.; Aljarrah, S.; Almahasneh, M. Lithium enrichment optimization from Dead Sea end brine by chemical precipitation technique. Miner. Eng. 2021, 170, 107038. [Google Scholar] [CrossRef]
- Mulwanda, J.; Senanayake, G.; Oskierski, H.; Altarawneh, M.; Dlugogorski, B.Z. Leaching of lepidolite and recovery of lithium hydroxide from purified alkaline pressure leach liquor by phosphate precipitation and lime addition. Hydrometallurgy 2021, 201, 105538. [Google Scholar] [CrossRef]
- Battaglia, G.; Berkemeyer, L.; Cipollina, A.; Cortina, J.L.; de Labastida, M.F.; López-Rodríguez, J.; Winter, D. Recovery of lithium carbonate from dilute Li-rich brine via homogenous and heterogeneous Precipitation. Ind. Eng. Chem. Res. 2022, 61, 13589–13602. [Google Scholar] [CrossRef]
- Guan, J.; Zhou, Z.; Li, N.; Liu, Z.; Wen, H.; Li, J.; Hu, L.; Liu, L.; Luo, C. Extracting lithium from the H2SO4 leaching solution of bauxitic claystone via co-precipitation methods without addition of Al source. Chem. Eng. J. Adv. 2022, 9, 100223. [Google Scholar] [CrossRef]
- Pavón, S.; Kah, M.; Hippman, S.; Bertau, M. Lithium recovery from production waste by thermal pre-treatment. Sustain. Chem. Pharm. 2022, 28, 100725. [Google Scholar] [CrossRef]
- Gu, K.; Feng, W.; Wei, H.; Dang, L. The factors influencing lithium carbonate crystallization in spent lithium-ion battery leachate. Processes 2024, 12, 753. [Google Scholar] [CrossRef]
- Lawagon, C.P.; Nisola, G.M.; Cuevas, R.A.I.; Kim, H.; Lee, S.P.; Chung, W.J. Li1−xNi0.33Co1/3Mn1/3O2/Ag for electrochemical lithium recovery from brine. Chem. Eng. J. 2018, 348, 1000–1011. [Google Scholar] [CrossRef]
- Chang, H.; Lin, J.; Cheng, T.; Lai, C. Advanced absolute chemical precipitation for high-purity metal recovery in all-types of lithium-ion battery recycling. Sep. Purif. Technol. 2025, 361, 131454. [Google Scholar] [CrossRef]
- Shokri, Z.; Mousavi, S.; Omidkhah, M. Advancing sustainable lithium recovery from spent laptop lithium-ion battery cathodes through high pulp density bioleaching followed by Li2CO3 precipitation: Process intensification and environmental insights. J. Environ. Chem. Eng. 2025, 13, 117014. [Google Scholar] [CrossRef]
- Lei, F.; Xu, X.; Wang, Q.; Xie, H.; Gan, W. Selective and efficient recovery of lithium from mother liquor from lithium carbonate precipitation process. JOM 2024, 76, 539–5407. [Google Scholar] [CrossRef]
- Jin, Y.; Xu, Q.; Zheng, F.; Lu, J. Enhancement in CO2 adsorption by zeolite synthesized from co-combustion ash of coal and rice husk modified with lithium ion. J. Energy Inst. 2023, 110, 101348. [Google Scholar] [CrossRef]
- Zhang, K.; Wei, B.; Zeng, B.; Qiu, S.; Zhong, X.; Wang, R. Recovery of transition metals (Ni, Co, and Mn) and Li from the sulfate leach solutions of spent ternary lithium-ion batteries by stepwise solvent extraction and precipitation. Hydrometallurgy 2025, 236, 106519. [Google Scholar] [CrossRef]
- Wang, K.; Arcisauskaite, V.; Jiao, J.; Zhang, J.; Zhang, T.; Zhou, Z.-N. Structural prediction, analysis and decomposition mechanism of solid M(NH2BH3)n (M = Mg, Ca and Al). RSC Adv. 2014, 28, 14624–14632. [Google Scholar] [CrossRef]
- Xiao, W.; Peng, H.; Wang, H.; Bian, Z. Impact of interfering ions on λ-MnO2 for lithium recovery from brine. Sep. Purif. Technol. 2025, 365, 132657. [Google Scholar] [CrossRef]
- Quintero, C.; Dahlkamp, J.; Fierro, F.; Thennis, T.; Zhang, Y.; Videla, A.; Rojas, R. Development of a co-precipitation process for the preparation of magnesium hydroxide containing lithium carbonate from Li-enriched brines. Hydrometallurgy 2020, 198, 105515. [Google Scholar] [CrossRef]
- Zou, J.; Zhang, R.; Huang, Y.; Wang, X.; Chen, L.; Sun, X.; Wang, M.; Zhang, Y.; Wu, K. High efficiency leaching of black powder from spent lithium-ion battery by ternary deep eutectic solvent and recovery of metals by precipitation and electrodeposition. Sep. Purif. Technol. 2025, 364, 132438. [Google Scholar] [CrossRef]
- Wang, W.Y.; Yen, C.H.; Lin, J.L.; Xu, R.B. Recovery of high-purity metallic cobalt from lithium nickel manganese cobalt oxide (NMC)-type Li-ion battery. J. Mater. Cycles Waste Manag. 2019, 21, 300–307. [Google Scholar] [CrossRef]
- Aprilianto, D.; Perdana, I.; Aluicius, I.; Adi-Kusumo, F.; Rochmadi; Petrus, H.T. Controlled particle size distribution in ultrasound-assisted lithium carbonate precipitation. ACS Omega 2025, 10, 32226–32245. [Google Scholar] [CrossRef]
- Mrozik, W.; Rajaeifar, M.A.; Heidrich, O.; Christensen, P. Environmental impacts, pollution sources and pathways of spent lithium-ion batteries. Energy Environ. Sci. 2021, 14, 6099–6121. [Google Scholar] [CrossRef]
- Sahu, L.; Yadav, D.; Ingole, P. Recent developments and innovations in thin-film nanocomposite nanofiltration: The next generation selective membrane for heavy metal ion removal from water. Chem. Eng. J. 2025, 513, 162579. [Google Scholar] [CrossRef]
- Zhu, Y.; Gao, F.; Jia, H.; Chen, Z.; Ni, B. Applications of membrane technology in the resource recovery of power lithium-ion battery precursor wastewater: A review. Environ. Res. 2025, 275, 121372. [Google Scholar] [CrossRef] [PubMed]
- Tawalbeh, M.; Qalyoubi, L.; Al-Othman, A.; Qasim, M.; Shirazi, M. Insights on the development of enhanced antifouling reverse osmosis membranes: Industrial applications and challenges. Desalination 2023, 553, 116460. [Google Scholar] [CrossRef]
- Li, X.; Chen, X.; Zou, P.; Ye, R.; Wang, L. Synthesis and application of anthraquinone quaternary phosphonium salt electroplating copper leveler based on expanded electrostatic adsorption area strategy and physicochemical salt bridge mechanism. Appl. Suf. Sci. 2024, 664, 160259. [Google Scholar] [CrossRef]
- Li, X.; Mo, Y.; Qing, W.; Shao, S.; Tang, C.; Li, J. Membrane-based technologies for lithium recovery from water lithium resources: A review. J. Membr. Sci. 2019, 291, 117317. [Google Scholar] [CrossRef]
- Sonoc, A.C.; Jeswiet, J.; Murayama, N.; Shibata, J. A study of the application of Donnan dialysis to the recycling of lithium ion batteries. Hydrometallurgy 2018, 175, 133–143. [Google Scholar] [CrossRef]
- He, R.; Xu, S.; Wang, R.; Bai, B.; Lin, S.; He, T. Polyelectrolyte-based nanofiltration membranes with exceptional performance in Mg2+/Li+ separation in a wide range of solution conditions. J. Membr. Sci. 2022, 663, 121027. [Google Scholar] [CrossRef]
- Bunani, S.; Arda, M.; Kabay, N.; Yoshizuka, K.; Nishihama, S. Effect of process conditions on recovery of lithium and boron from water using bipolar membrane electrodialysis (BMED). Desalination 2017, 416, 10–15. [Google Scholar] [CrossRef]
- He, S.; Zuo, Q.; Shi, H.; Geng, Z.; Liu, C.; Ding, L.; Li, X.; Shao, P.; Yang, L.; Luo, X. Direct recovery of high-purity lithium via nanofiltration membranes from leaching solution of spent lithium batteries. Resour. Conserv. Recycl. 2024, 210, 107846. [Google Scholar] [CrossRef]
- Ji, Z.Y.; Chen, Q.B.; Yuan, J.S.; Liu, J.; Zhao, Y.Y.; Feng, W.X. Preliminary study on recovering lithium from high Mg2+/Li+ ratio brines by electrodialysis. Sep. Purif. Technol. 2017, 172, 168–177. [Google Scholar] [CrossRef]
- Nie, X.Y.; Sun, S.Y.; Sun, Z.; Song, X.; Yu, J.G. Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes. Desalination 2017, 403, 128–135. [Google Scholar] [CrossRef]
- Ípekçi, D.; Altiok, E.; Bunani, S.; Yoshizuka, K.; Nishihama, S.; Arda, M.; Kabay, N. Effect of acid-base solutions used in acid-base compartments for simultaneous recovery of lithium and boron from aqueous solution using bipolar membrane electrodialysis (BMED). Desalination 2018, 448, 69–75. [Google Scholar] [CrossRef]
- Ounissi, T.; Dammak, L.; Fauvarque, J.F.; Hmida, E.S.B.H. Ecofriendly lithium-sodium separation by diffusion processes using lithium composite membrane. Sep. Purif. Technol. 2021, 275, 119134. [Google Scholar] [CrossRef]
- Pham, M.T.; Nishihama, S.; Yoshizuka, K. Concentration of lithium by forward osmosis. Hydrometallurgy 2020, 197, 105485. [Google Scholar] [CrossRef]
- Jarma, Y.; Cermikli, E.; Ipekci, D.; Altiok, E.; Kabay, N. Comparison of two electrodialysis stacks having different ion exchange and bipolar membranes for simultaneous separation of boron and lithium from aqueous solution. Desalination 2021, 500, 114850. [Google Scholar] [CrossRef]
- Mustika, P.C.B.W.; Astuti, W.; Sumardi, S.; Petrus, H.T.B.M. Separation characteristic and selectivity of lithium from geothermal brine using forward osmosis. J. Sustain. Metall. 2022, 8, 1769–1784. [Google Scholar] [CrossRef]
- Jiang, Z.; Kong, W.; Zhao, F.; Han, Q.; Liu, Y.; Wang, S.; Wang, H. Li1.5Al0.5Ge1.5(PO4)3 membrane electrodialysis for lithium enrichment. J. Membr. Sci. 2023, 670, 121353. [Google Scholar] [CrossRef]
- Jeon, S.; Min, T.; Kim, C.; Lim, S.; Yoon, H. Chemical free pH control for efficient lithium recovery via redox-couple mediated bipolar membrane electrodialysis. Desalination 2025, 614, 119145. [Google Scholar] [CrossRef]
- Ma, Q.; Mu, J.; Lv, X.; Meng, J.; Cui, H.; Qiu, Y.; Ruan, H.; Shen, J. Sustainable recovery of ionic resources from resin regeneration wastewater: Long-term evaluation, membrane fouling analysis, and cleaning. ACS EST Water 2022, 3, 1855–1864. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, M.; Zhang, Y.; Zhang, Y.; Qiao, S.; Zheng, S. High adsorption performance of the Mo-doped titanium oxide sieve for lithium ions. Hydrometallurgy 2019, 187, 30–37. [Google Scholar] [CrossRef]
- Wang, H.; Huang, K.; Zhang, Y.; Chen, X.; Jin, W.; Zheng, S.; Zhang, Y.; Li, P. Recovery of lithium, nickel, and cobalt from spent lithium-ion battery powders by selective ammonia leaching and an adsorption separation system. ACS Sustain. Chem. Eng. 2017, 5, 11489–11495. [Google Scholar] [CrossRef]
- Gao, J.M.; Du, Z.; Zhao, Q.; Guo, Y.; Cheng, F. Enhanced Li+ adsorption by magnetically recyclable iron-doped lithium manganese oxide ion-sieve: Synthesis, characterization, adsorption kinetics and isotherm. J. Mater. Res. Technol. 2021, 13, 228–240. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, S.; Wang, Z.; Cui, W.; Zhang, H.; Yang, L.; Zhang, Y.; Li, P. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves. Chem. Eng. J. 2018, 332, 160–168. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, R. An efficient lithium ion imprinted adsorbent using multi-wall carbon nanotubes as support to recover lithium from water. J. Clean. Prod. 2018, 205, 201–209. [Google Scholar] [CrossRef]
- Arroyo, F.; Morillo, J.; Usero, J.; Rosado, D.; El Bakouri, H. Lithium recovery from desalination brines using specific ion-exchange resins. Desalination 2019, 468, 114073. [Google Scholar] [CrossRef]
- Xue, F.; Wang, B.; Chen, M.; Yi, C.; Ju, S.; Xing, W. Fe3O4-doped lithium ion-sieves for lithium adsorption and magnetic separation. Sep. Purif. Technol. 2019, 228, 115750. [Google Scholar] [CrossRef]
- Zhu, X.; Yue, H.; Sun, W.; Zhang, L.; Cui, Q.; Wang, H. Study on adsorption extraction process of lithium ion from West Taijinar brine by shaped titanium-based lithium ion sieves. Sep. Purif. Technol. 2021, 274, 119099. [Google Scholar] [CrossRef]
- Alshuiael, A.M.; Al-Ghouti, M.A. Development of a novel tailored ion-imprinted polymer for recovery of lithium and strontium from reverse osmosis concentrated brine. Sep. Purif. Technol. 2022, 295, 121320. [Google Scholar] [CrossRef]
- Ryu, J.C.; Shin, J.; Lim, C.; Kim, K.H.; Ryu, T.; Lee, Y.S. Lithium ion adsorption characteristics of porous Li1.33Mn1.67O4 adsorbent prepared using petroleum-based pitch as a binder. Hydrometallurgy 2022, 209, 105837. [Google Scholar] [CrossRef]
- Zhou, S.; Guo, X.; Yan, X.; Chen, Y.; Lang, W. Zr-doped titanium lithium ion sieve and EP-granulated composite: Superb adsorption and recycling performance. Particuology 2022, 69, 100–110. [Google Scholar] [CrossRef]
- Liu, L.; Kuang, Q.; Xu, S.; Pan, W.; Liu, Y.; Zhou, J.; Tang, A.; Xue, J. Enhanced lithium-ion adsorption by recyclable lithium manganese oxide-sepiolite composite microsphere from aqueous media: Fabrication, structure, and adsorption characteristics. J. Molec. Liq. 2023, 380, 121780. [Google Scholar] [CrossRef]
- Jin, Z.H.; Ma, T.T.; Liu, Y.Y.; Jia, Z.Q.; Tan, H.W.; Peng, W.J. Preparation of tungsten-doped Ti-based lithium ion sieves with excellent adsorption performance by hydrothermal method. J. Alloys Compd. 2024, 1005, 176058. [Google Scholar] [CrossRef]
- Chen, Z.; Du, J.; Shi, J. Mxene-based lithium-ion sieve polymer membrane for sustainable lithium adsorption. Sep. Purif. Technol. 2025, 354, 129316. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Q.; Wang, Y.; Yun, R.; Xiang, X. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine. Sep. Purif. Technol. 2021, 256, 117807. [Google Scholar] [CrossRef]
- Adrah, K.; Dawood, S.; Rathnayake, H. Mechanistic understanding of sieving lithium ions using a biobased sorbent technology for sustainable lithium reclamation and cleansing brines. ACS Omega 2024, 9, 21917–21929. [Google Scholar] [CrossRef]
- Ren, Y.; Han, Y.; Lei, X.; Lu, C.; Liu, J.; Zhang, G.; Zhang, B.; Zhang, Q. A magnetic ion exchange resin with high efficiency of removing Cr (VI). Colloids Surf. A 2020, 604, 125279. [Google Scholar] [CrossRef]
- Atif, M.; Haider, H.Z.; Bongiovanni, R.; Fayyaz, M.; Razzaq, T.; Gul, S. Physisorption and chemisorption trends in surface modification of carbon black. Surf. Interfaces 2022, 31, 102080. [Google Scholar] [CrossRef]
- Tang, Y.; Li, Y.; Zhan, L.; Wu, D.; Zhang, S.; Pang, R.; Xie, B. Removal of emerging contaminants (bisphenol A and antibiotics) from kitchen wastewater by alkali-modified biochar. Sci. Total Environ. 2022, 805, 150158. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Qi, Y.; Yang, L.; Wu, L.; Li, P.; Gao, F.; Qi, X.; Zhang, Z. Adsorptive removal of imidacloprid by potassium hydroxide activated magnetic sugarcane bagasse biochar: Adsorption efficiency, mechanism and regeneration. J. Clean. Prod. 2021, 292, 126005. [Google Scholar] [CrossRef]
- Shoghi, A.; Ghasemi, S.; Askari, M.; Khosravi, A.; Hasan-Zadeh, A.; Almolhoda, A. Spinel H4Ti5O12 nanotubes for Li recovery from aqueous solutions: Thermodynamics and kinetics study. J. Environ. Chem. Eng. 2021, 9, 104679. [Google Scholar] [CrossRef]
- Marthi, R.; Asgar, H.; Gadikota, G.; Smith, Y. On the structure and lithium adsorption mechanism of layered H2TiO3. Energy Environ. Catal. Appl. 2021, 13, 8361–8369. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Chen, G.; Li, H.; Duan, Y.; Sun, Y.; Tiraferri, A.; Liu, B. Efficient recovery of lithium from spent lithium-ion battery raffinate by Mn and Al-based adsorbents: Pretreatment, adsorption mechanism, and performance comparison. Sep. Purif. Technol. 2025, 354, 128652. [Google Scholar] [CrossRef]
- Kotsupalo, N.P.; Ryabtsev, A.D.; Poroshina, I.A.; Kurakov, A.A.; Mamylova, E.V.; Menzheres, L.T.; Korchagin, A. Effect of structure on the sorption properties of chlorine-containing form of double aluminum lithium hydroxide. Inorg. Synth. Ind. Inorg. Chem. 2013, 86, 482–487. [Google Scholar] [CrossRef]
- Baskar, A.; Bolan, N.; Hoang, S.; Sooriyakumar, P.; Kumar, M.; Singh, L.; Jasemizad, T.; Padhye, L.; Singh, G.; Vinu, A.; et al. Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: A review. Sci. Total Environ. 2022, 822, 153555. [Google Scholar] [CrossRef]
- Zante, G.; Braun, A.; Masmoudi, A.; Barrillon, R.; Trébouet, D.; Boltoeva, M. Solvent extraction fractionation of manganese, cobalt, nickel and lithium using ionic liquids and deep eutectic solvents. Miner. Eng. 2020, 156, 106512. [Google Scholar] [CrossRef]
- Ivanović, M.; Razboršek, M.I.; Kolar, M. Innovative extraction techniques using deep eutectic solvents and analytical methods for the isolation and characterization of natural bioactive compounds from plant material. Plants 2020, 9, 1428. [Google Scholar] [CrossRef]
- Wesselborg, T.; Virolainen, S.; Sainio, T. Recovery of lithium from leach solutions of battery waste using direct solvent extraction with TBP and FeCl3. Hydrometallurgy 2021, 202, 105593. [Google Scholar] [CrossRef]
- Hanada, T.; Goto, M. Synergistic deep eutectic solvents for lithium extraction. ACS Sustain. Chem. Eng. 2021, 9, 2152–2160. [Google Scholar] [CrossRef]
- Yu, L.Y.; Wu, K.J.; He, C.H. Tailoring hydrophobic deep eutectic solvent for selective lithium recovery from dilute aqueous solutions. Sep. Purif. Technol. 2022, 281, 119928. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Rutkowska, M.; Owczarek, K.; Tobiszewski, M.; Namieśnik, J. Extraction with environmentally friendly solvents. TrAC Trends Anal. Chem. 2017, 91, 12–25. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Best Management Practices (BMPs) for Soils Treatment Technologies: Suggested Operational Guidelines to Prevent Cross-Media Transfer of Contaminants; EPA-530-R-97-007; U.S. Environmental Protection Agency: Washington, DC, USA, 1997.
- Harvianto, G.R.; Kim, S.H.; Ju, C.S. Solvent extraction and stripping of lithium ion from aqueous solution and its application to seawater. Rare Met. 2016, 35, 948–953. [Google Scholar] [CrossRef]
- Jang, E.; Jang, Y.; Chung, E. Lithium recovery from shale gas produced water using solvent extraction. Appl. Geochem. 2017, 78, 343–350. [Google Scholar] [CrossRef]
- Lee, J.; Chung, E. Lithium recovery from a simulated geothermal fluid by a combined selective precipitation and solvent extraction method. Geothermics 2022, 102, 102388. [Google Scholar] [CrossRef]
- Xiang, W.; Liang, S.; Zhou, Z.; Qin, W.; Fei, W. Lithium recovery from salt lake brine by counter-current extraction using tributyl phosphate/FeCl3 in methyl isobutyl ketone. Hydrometallurgy 2017, 171, 27–32. [Google Scholar] [CrossRef]
- Zhang, L.; Li, L.; Shi, D.; Peng, X.; Song, F.; Nie, F.; Han, W. Recovery of lithium from alkaline brine by solvent extraction with β-diketone. Hydrometallurgy 2018, 175, 35–42. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, H.; Duan, M.; Huang, X. Liquid-liquid extraction of lithium from aqueous solution using novel ionic liquid extractants via COSMO-RS and experiments. Fluid Ph. Equilib 2018, 459, 129–137. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Fan, J.; Liu, X.; Hu, Y.; Hu, Y.; Zhou, Z.; Ren, Z. Recovery of lithium ions from salt lake brine with a high magnesium/lithium ratio using heteropolyacid ionic liquid. ACS Sustain. Chem. Eng. 2019, 7, 3062–3072. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, D.; Li, L.; Peng, X.; Song, F.; Rui, H. Solvent extraction of lithium from ammoniacal solution using thenoyltrifluoroacetone and neutral ligands. J. Mol. Liq. 2019, 274, 746–751. [Google Scholar] [CrossRef]
- Zhang, L.; Lijuan, L.; Rui, H.; Shi, D.; Peng, X.; Ji, L.; Song, X. Lithium recovery from effluent of spent lithium battery recycling process using solvent extraction. J. Hazard. Mater. 2020, 398, 122840. [Google Scholar] [CrossRef]
- Punt, T.; Akdogan, G.; Bradshaw, S.; van Wyk, P. Development of a novel solvent extraction process using citric acid for lithium-ion battery recycling. Miner. Eng. 2021, 173, 107204. [Google Scholar] [CrossRef]
- Han, Z.; Wu, S.; Wu, X.; Guan, W.; Cao, Z.; Li, Q.; Wang, M.; Zhang, G. Recycling of lithium and fluoride from LiF wastewater from LiF synthesis industry by solvent extraction. J. Environ. Chem. Eng. 2023, 11, 110557. [Google Scholar] [CrossRef]
- Raiguel, S.; Nguyen, V.T.; Rodrigues, I.R.; Deferm, C.; Riaño, S.; Binnemans, K. Recovery of lithium from simulated nanofiltration-treated seawater desalination brine using solvent extraction and selective precipitation. Solvent Extr. Ion. Exch. 2023, 41, 425–448. [Google Scholar] [CrossRef]
- Xue, K.; Fan, D.; Wang, X.; Dong, Z.; Zhu, Z.; Chi, P.; Meng, F.; Wang, Y.; Qi, J. Lithium extraction from aqueous medium using hydrophobic deep eutectic solvents. J. Environ. Chem. Eng. 2023, 11, 110490. [Google Scholar] [CrossRef]
- Zhao, Y.; Duan, C.; Xiao, Y.; Gong, W.; Wang, Y.; Zhang, H.; Ku, P.; Nie, X. Water acidification aggravates lithium-induced toxicity represented by energy supply, oxidative stress, and cell fate in Daphnia magna neonates. Sci. Total Environ. 2024, 955, 177143. [Google Scholar] [CrossRef]
- Stephens, N.M.; Smith, E.A. Structure of deep eutectic solvents (DESs): What we know, what we want to know, and why we need to know it. Langmuir 2022, 38, 14017–14024. [Google Scholar] [CrossRef]
- Omar, K.A.; Sadehi, R. Physicochemical properties of deep eutectic solvents: A review. J. Mol. Liq. 2022, 360, 119524. [Google Scholar] [CrossRef]
- Kumar, A.; Fukuda, H.; Hatton, T.A.; Lienhard, J.H. Lithium recovery from oil and gas produced water: A need for a growing energy industry. ACS Energy Lett. 2019, 4, 1471–1474. [Google Scholar] [CrossRef]
- Pham, T.K.; Shin, J.H.; Karima, N.C.; Jun, Y.S.; Jeong, S.K.; Cho, N.; Lee, Y.W.; Cho, Y.; Lim, S.N.; Ahn, W. Application of recycled Si from industrial waste towards Si/rGO composite material for long lifetime lithium-ion battery. J. Power Sources 2021, 506, 230244. [Google Scholar] [CrossRef]
- Lu, Q.; Zhou, J.I.; Zhou, X.Y.; Guo, R.; Yu, Y.F.; Hu, Z.; Zhao, H.Y.; Yang, S.H.; Wu, Y.W. Evaluation of optimal waste lithium-ion battery recycling technology driven by multiple factors. J. Energy Storage 2024, 86, 111229. [Google Scholar] [CrossRef]
- Sanginesi, F.; Millacci, G.; Giaccherini, A.; Buccianti, A.; Fusi, L.; Di Benedetto, F.; Pardi, L. Long term lithium availability and electric mobility: What can we learn from resource assessment? J. Geochem. Explor. 2023, 249, 107212. [Google Scholar] [CrossRef]
- Fleming, M.; Kannan, S.G.; Eggert, R. Long-run availability of mineral resources: The dynamic case of lithium. Resour. Policy 2024, 97, 105226. [Google Scholar] [CrossRef]
- Tripathy, A.; Bhuyan, A.; Padhy, R.K.; Mangla, S.K.; Roopak, R. Drivers of lithium-ion batteries recycling industry toward circular economy in industry 4.0. Comput. Ind. Eng. 2023, 179, 109157. [Google Scholar] [CrossRef]
- Ni, H.; Arslan, M.; Liang, Z.; Wang, C.; Luo, Z.; Qian, J.; Wu, Z.; El-Din, M.G. Mixotrophic denitrification processes in basalt fiber bio-carriers drive effective treatment of low carbon/nitrogen lithium slurry wastewater. J. Hazard. Mater. 2022, 364, 128036. [Google Scholar] [CrossRef]
- Le, W.; Zhao, W.; Zhu, Y.; Wei, Z.; Liu, Z.; Liu, D.; Jiao, Q. Stable aluminum-lithium alloy fuels for solid propellants by facile surface modifying. Chem. Eng. J. 2024, 497, 154451. [Google Scholar] [CrossRef]
- Schaller, J.; Headley, T.; Prigent, S.; Breuer, R. Potential mining of lithium, beryllium and strontium from oilfield wastewater after enrichment in constructed wetlands and ponds. Sci. Total Environ. 2014, 493, 910–913. [Google Scholar] [CrossRef]
- Weinand, J.M.; Vandenberg, G.; Risch, S.; Behrens, J.; Pflugradt, N.; Linßen, J.; Stolten, D. Low-carbon lithium extraction makes deep geothermal plants cost-competitive in future energy systems. Adv. Appl. Energy 2023, 11, 100148. [Google Scholar] [CrossRef]
- Toprak, S.; Öncel, C.; Yılmaz, S.; Baba, A.; Koç, G.A.; Demir, M.M. Lithium extraction from geothermal brine using γ-MnO2 A case study for Tuzla geothermal power plant. Heliyon 2024, 10, e39656. [Google Scholar] [CrossRef]
- Kumari, A.; Choubey, P.K.; Gupta, R.; Jha, M.K. Recovery of lithium (Li) salts from industrial effluent of recycling plant. In Rare Metal Technology; Springer International Publishing: Cham, Switzerland, 2021; pp. 91–100. [Google Scholar]
- Qiu, B.; Liu, M.; Qu, X.; Zhou, F.; Xie, H.; Wang, D.; Lee, L.S.; Yin, H. Waste plastics upcycled for high-efficiency H2O2 production and lithium recovery via Ni-Co/carbon nanotubes composites. Nat. Commun. 2024, 15, 6473. [Google Scholar] [CrossRef]
- Khan, M.T.; Shah, I.A.; Ihsanullah, I.; Naushad, M.; Ali, S.; Shah, S.H.A.; Mohammad, A.W. Hospital wastewater as a source of environmental contamination: An overview of management practices, environmental risks, and treatment processes. J. Water Process Eng. 2021, 41, 101990. [Google Scholar] [CrossRef]
- Shi, J.; Huang, W.; Han, J.; Xu, C. Pollution control of wastewater from the coal chemical industry in China: Environmental management policy and technical standards. Renew. Sustain. Energy Rev. 2021, 143, 110883. [Google Scholar] [CrossRef]
- Xu, R.; Yang, Z.; Niu, Y.; Xu, D.; Wang, J.; Han, J.; Wang, H. Removal of microplastics and attached heavy metals from secondary effluent of wastewater treatment plant using interpenetrating bipolar plate electrocoagulation. Sep. Purif. Technol. 2022, 290, 120905. [Google Scholar] [CrossRef]
- Lindsey, B.; Belitz, K.; Cravotta, C.; Toccalino, P.; Dubrovsky, N. Lithium in groundwater used for drinking-water supply in the United States. Sci. Total Environ. 2021, 767, 144691. [Google Scholar] [CrossRef]
- Rajaeifar, M.A.; Raugei, M.; Steubing, B.; Hartwell, A.; Anderson, P.A.; Heidrich, O. Life cycle assessment of lithium-ion battery recycling using pyrometallurgical technologies. J. Ind. Ecol. 2021, 25, 1560–1571. [Google Scholar] [CrossRef]
- Kim, Y.; Han, Y.; Kim, S.; Jeon, H.S. Green extraction of lithium from waste lithium aluminosilicate glass-ceramics using a water leaching process. Process Saf. Environ. Prot. 2021, 148, 765–774. [Google Scholar] [CrossRef]
- Tao, X.; Li, B.; Zhang, H.; Peng, A.; Wang, J.; Zheng, Y.; Yang, L.; Luo, X.; Luo, S.; Shao, P. High-efficiency, environment-friendly extraction of lithium from waste LAS glass-ceramics by roasting with KOH at low temperature. Resour. Conserv. Recycl. 2024, 209, 107775. [Google Scholar] [CrossRef]
- Jang, Y.; Hou, C.H.; Park, S.; Kwon, K.; Chung, E. Direct electrochemical lithium recovery from acidic lithium-ion battery leachate using intercalation electrodes. Resour. Conserv. Recycl. 2021, 175, 105837. [Google Scholar] [CrossRef]
- Morita, Y.; Saito, Y.; Yoshioka, T.; Shiratori, T. Estimation of recoverable resources used in lithium-ion batteries from portable electronic devices in Japan. Resour. Conserv. Recycl. 2021, 175, 105884. [Google Scholar] [CrossRef]
- Gu, F.; Guo, J.; Yao, X.; Summers, P.A.; Widijatmoko, S.D.; Hall, P. An investigation of the current status of recycling spent lithium-ion batteries from consumer electronics in China. J. Clean. Prod. 2017, 161, 765–780. [Google Scholar] [CrossRef]
- Madanhire, I.; Mbohwa, C. Lubricating Grease Handling and Waste Management. In Mitigating Environmental Impact of Petroleum Lubricants; Springer: Cham, Switzerland, 2016; pp. 189–206. [Google Scholar]
- Lu, B.; Liu, J.; Yang, J. Substance flow analysis of lithium for sustainable management in mainland China: 2007–2014. Resour. Conserv. Recycl. 2017, 119, 109–116. [Google Scholar] [CrossRef]
- Hou, H.; Li, D.; Liu, X.; Yao, Y.; Dai, Z.; Yu, C. Recovery of expired lithium carbonate tablets for LiFePO4/C cathode. Waste Biomass Valorization 2019, 11, 3097–3105. [Google Scholar] [CrossRef]
- Dunn, J.; Kendall, A.; Slattery, M. Electric vehicle lithium-ion battery recycled content standards for the US—Targets, costs, and environmental impacts. Resour. Conserv. Recycl. 2022, 185, 106488. [Google Scholar] [CrossRef]
Mineral Name | Chemical Structure | Lithium Content as Li2O, % (by Mass) | Li, ppm | Reference |
---|---|---|---|---|
Amblygonite | (Li,Na)Al(PO4)(F,OH) | 7.4 | 43,245 | [10] |
Spodumene | Lithium aluminum silicate (Li2O·Al2O3·4SiO2) | 2.14–8 | 33,600–35,150 | [11,12,13] |
Polylithionite | K(Li2Al)(AlSi3O10)(F,OH)2 | 2.0–7.7 | 33,493 | [11] |
Lepidolite | Trilithionite-polylithionite series | 2.0–7.7 | 25,903 | [11] |
Petalite | LiAlSi4O10 | 3.5–4.5 | 20,900 | [11,13] |
Elbaite | NaLi1.5Al1.5Al6Si6O18(BO3)3(OH)4 | 2.0–7.7 | 10,601 | [11] |
Trilithionite | K(Li1.5Al1.5)(AlSi3O10)(F,OH)2 | 2.0–7.7 | 9082 | [11] |
Specie | Experimental Endpoint | LC50, mg/L | Reference |
---|---|---|---|
Dreissena polymorpha | 24 h | 185–232 | [85] |
Pimephales promelas | 26 days | 1.2–8.7 | [85] |
Tanichthys albonubes | 48 h | 9.2–62 | [85] |
Morone saxatilis | 96 h | >105 | [101] |
Ptychocheilus Lucius | 96 h | 41 | [102] |
Xyrauchen texanus | 96 h | 186 | [102] |
Gila elegans | 96 h | 65 | [102] |
Daphnia magna | 24 h | 12.58 | [103] |
Mytilus galloprovincialis | 4 days | 1665.42 | [104] |
Mytilus galloprovincialis | 7 days | 310.53 | [104] |
Mytilus galloprovincialis | 9 days | 153 | [104] |
Rhinella arenarum | 48 h | 319.52 | [105] |
Rhinella arenarum | 96 h | 66.92 | [105] |
Lithium Recovery Source | Precipitating Agent | Lithium Source Pretreatment | Precipitating Conditions | Yield, % | Final Compound (Purity, %) | Reference |
---|---|---|---|---|---|---|
Powder from spent Li-ion batteries | H3PO4 (0.5 M) | Leaching at 80 °C for 120 min with citric acid (1.5 mol/L) and D-glucose (0.5 g/g) as reductant | 25 °C for 30 min at 300 rpm | 92.7 | Li3PO4 (99.5) | [162] |
Hybrid cathode powder from spent Li-ion batteries | Na3PO4 (0.2 M) | Leaching at 60 °C for 2 h with HCl (20% by mass) and H2O2 (30% by mass), agitation speed of 1000 rpm. Separation of Fe by ion floatation and precipitation of Mn | 90 °C, pH 7 | 80.93 | Li3PO4 (99.3) | [116] |
Effluent from the process of spent Li-ion batteries recycling | Na2CO3 (1.1 g/L) Na3PO4 (1.4 g/L) | --- | 40 °C for 1 h with Na2CO3 and 25 °C for 1 h with Na3PO4 | 74.72 92.21 | Li3PO4 (99.92) | [163] |
Complex mixture of spent Li-ion batteries powder | Na2CO3 | Fungal bioleaching using 0.5 mL (1% by volume) of A. niger MM1/SG1 incubated at 30 °C, 200 rpm, 50 mL of sterile sucrose media, 0.25% (mass/volume) of Li-ion batteries powder | Precipitation at pH 12, suspension was rested for 1 h and filtered | 73.6 | Li2CO3 | [159] |
Brine from the Taijinaier Salt Lake in China | Na2CO3 (30% by mass) | Removal of Mg2+, borate, CO32− and SO42− ions by double-drop and adsorption methods. The residual brine was evaporated. | Precipitation at 90 °C with Na2CO3 | 91.94 | Li2CO3 (99.7) | [164] |
Leachate of cathode scrap | Na2CO3 | --- | Ultrasonic power of 150 W, at 353 K for 35 min | 97.4 | Li2CO3 (99.0) | [165] |
Wastewater and brine | Na3PO4 (4 M) | Removal of Fe3+, Al3+, Ca2+, and Mg2+ by precipitation | 60 °C with Na3PO4 | 84.26 | Li3PO4 (99.1) | [166] |
Anhydrous lithium sulfate | CO2 Na2CO3 | Preparation and vacuum filtration of 300 mL of Li2SO4 (20 g/L) | 50 °C for ~24 min at 600 rpm | 41.6–45.5 72.3–75.6 | Li2CO3 | [167] |
Polylithionite | H3PO4 | Leaching at 250 °C for 3 h, with NaOH (600 g/L) | 90 °C for 1 h, with 1.2 times the theorical amount of H3PO4 | 93.96 | Li3PO4 | [118] |
Dead Sea End Brine | Na3PO4 | --- | 40 °C for 2 h at 450 rpm | 55 | Li3PO4 | [168] |
Spent LiFePO4 batteries powder | Saturated Na3PO4 | Leaching at 30 °C for 30 min, CH2O2/Li molar ratio of 3.23, 10% (by volume) solution of 50% (by mass) H2O2 | In situ precipitation at pH 12.5 and 60 °C. Precipitation at pH 12.5 and 90 °C with Na3PO4 | >99.5 | Li3PO4 (99.9) | [119] |
Lepidolite from Minas Gerais (Brazil) | H3PO4 | Crushing with jaw crusher and milling in agate ring. Screening to <150 um size. Leaching at 250 °C, 300 rpm, NaOH (320 g/L) | 90 °C for 2 h | 84 as Li3PO4 | LiOH (83) | [169] |
Dilute LiCl solutions | Na2CO3 (2 M) CO2 | --- | 80 °C for 60 min and stirring speed of 300 rpm | 77 80 | Li2CO3 (95) Li2CO3 (99) | [170] |
Bauxitic claystone | NaOH (1 M) | Crashing to obtain a 200-mesh fraction. Calcination at 600 °C for 2 h and leaching with 15% H2SO4 at 80 °C for 2 h and stirring at 300 rpm | 60 °C for 30 min, NaOH (2 mol/L) dropping at 15 mL/min. Calcination at 400 °C, water leaching at 60 °C | 97.2 | Li2SO4·2Al(OH)3 | [171] |
Residues of primary lithium batteries | CO2 | Leaching with HNO3 (1 M) | 100 °C for 10 min | 83 | Li2CO3 (99.5) | [172] |
Spent Li-ion batteries powder | Na2CO3 | Leaching at 40 °C for 30 min, H2O2 (30%), H2SO4 (1.04 M) | 95 °C for 1.5 h and stirring | --- | Li2CO3 (99.8) | [159] |
Spent Li-ion batteries leachate | Na2CO3 (2 M) | --- | 90 °C, stirring at 400 rpm, Na2CO3 (2 M) | 85.72 | Li2CO3 (99.9) | [173] |
Polylithionite ore | H3PO4 | Leaching with NaOH (600 g/L) at 240 °C | 90 °C, for 1 h and initial pH of 12.8 and addition of H3PO4 | 94.32 | Li3PO4 | [174] |
Li-ion battery leachate | CO2 | --- | 70 °C for 30 min and stirring at 500 rpm | 80.4 | Li2CO3 (98.2) | [160] |
Spent lithium-ion batteries | CO2 | Leaching at 60 °C for 2 h, 2 M H2SO4 + 6% (by volume) H2O2 | CO2 bubbling at 0.068 M/min at 40 °C | 91 | Li2CO3 | [161] |
Mixture of cathode active materials | Na2CO3 | Leaching at 1 h, 70 °C, 3.5 mol/L H2SO4, 8% (by volume) H2O2, 20 g/L pulp density | Successive precipitation steps using NaOH, Na2CO3, KMnO4, and NaClO | 98 | Li2CO3 (99.8) | [175] |
Spent laptop lithium-ion battery cathodes | Na2CO3 | Bioleaching using Acidithiobacillus thiooxidans, pulp densities 50 g/L, 60 °C, 7 days, 45 g/L sulfate, pH 0.3 | Coprecipitation, pH 12, 95 °C | 94 | Li2CO3 (99.8) | [176] |
Lithium Recovery Source | Membrane | Process Conditions | Selectivity Coefficient | Recovery, % | Recovery, g/L | Reference |
---|---|---|---|---|---|---|
Solution of LiCl (0.5 g/L) | Neosepta CMX (ion exchange membrane) and Neosepta BP-1 (bipolar membrane) | Electrodialysis: pH 4, 4 sheets of bipolar membranes, 6.5 V voltage per sheet, 0.44 mL/cm2 per min of flow rate | --- | 85.0 | 425 | [157] |
Aqueous saline solution of Li2B4O7 with 250 mg Li/L | PC and SK (cation exchange membranes) and PC Acid 60 (bipolar anion exchange membrane) | Electrodialysis: 10 three-chamber units with membranes, 64 cm2, 15 V | --- | 88.3 | 0.22 | [194] |
Artificial brine with Li+ (0.14 g/L), Mg2+ (8.4 g/L) | Neosepta CIMS (cation) and ACS (anion) (ion exchange membranes) | Electrodialysis: 10 pairs of membranes, 25 °C, linear velocities of desalting/concentrating/electrolyte 6.2/6.2/3.8 cm/s, 5 V | --- | 75.4 | 0.11 | [196] |
Binary synthetic brine with Li+ (0.15 g/L), Mg2+ (66.7 g/L) | Asahi Glass Selemion CSO (cation exchange) and Asahi Glass Selemion ASA (anion exchange) membranes | Electrodialysis: 0.0507 m2, 0.75 mm of spacer channel width, 7.8 m/s, 3 h, 15 °C | --- | 95.3 | --- | [197] |
Aqueous saline solution of Li2B4O7 with 1 g B/L and 0.34 g Li/L | CMB (strong acid) and AHA (strong base) membranes | Electrodialysis: 10 three chamber units, 7.9 kWh/m3, 30 V, 0.05 M HCl, 0.05 M NaOH | --- | 62.0 | --- | [198] |
Li-ion batteries waste leachate (0.285 M of LiSO4) | Neosepta monovalent and polyvalent CEM membranes | Electrodialysis: 5000 dm2 for monovalent, 2000 dm2 for polyvalent membranes, 0.95 M of each Co, Ni, and Mn, 27 °C | --- | 94.1 (LiCO3) | --- | [192] |
Simulated salt lake brine with Li+ (0.14 g/L) and Mg2+ | NF90 NF270 Polytetrafluoroethylene hydrophobic membrane | Nanofiltration-membrane (NF) distillation: 20 °C, 24 h, pH 5, 8 bar, feed and distillate tanks at 40 and 20 °C | --- --- --- | 23 44 80 | --- --- 0.31 | [123] |
Industrial Lithium-Containing wastewater (7.8 g/L of LiCl) | RO membrane System of cation/anion/electrode membranes | Hybrid Reverse Osmosis (RO)-Electrodialysis (ED): 20 bar, 8 L, retentate approached 50 mS/cm ED: 8 V, 55 min, 300 mL | --- --- | --- --- | 28.50 87.09 | [122] |
For DD: 1.5 g/L, CID: 0.100 g/L of Li+ | Li ionic conductor glass ceramic particles in an anionic exchange polymer | Diffusion dialysis (DD) and cross ion dialysis (CID) | DD: 5543 Li/Na CID: 931 Li/Na | DD: 22.1 CID: 36.7 | --- --- | [199] |
LiCl solution, Simulated Brine Solution (SBS) (Li+, Na+, B3+, K+, Mg2+) | Thin-film composite membrane | Forward osmosis: Li solution with 3 g/L, 25 °C, draw solution (NaCl, MgCl2 or Simulated brine solution) of 0.5 L, 30 h, pH 7 | --- --- | --- --- | NaCl: 10.58 MgCl2: 15.12 SBS: 12.7 | [200] |
LiCl solution SBS (Li+, Na+, B3+, K+, Mg2+) | Cellulose triacetate membrane | --- --- | --- --- | NaCl: 5.22 MgCl2: 9.03 SBS: 12.3 | ||
Salt solution of 2 g/L containing Li, Mg, K, Na | Sulfonated poly (polyether ether ketone) cation exchange membrane with 1% of nanomaterial | Electrodialysis: 2 pairs of membranes, 2 V/cell pair, 500 mL of salt solution, constant flow rate of 31/h | 4.82 for Li/Mg, 3.0 for Li/K, 2.17 for Li/Na | 64 | 1.3 | [94] |
Binary solution of Li2B4O7 (with 0.31 g Li/L, 0.92 g B/L) | Cation exchange, anion exchange and bipolar membranes | Electrodialysis: 20 V, 0.05 M H3BO3, acid/base chamber, pH 9.5 | --- | 86.4 | --- | [201] |
LiCl and MgCl2 solution (2 g/L) | Poly(styrene sulfonate) and poly(allylamine hydrochloride) hollow fiber membranes | Nanofiltration: 20 °C, 0.1 L/min, mass ratio of Mg2+/Li = 20, mixed salt concentration of 2000 mg/L, 4 bar, pH 2.7 | 430 | Rejection of 65% | [193] | |
Synthetic geothermal brine containing Li, Na, K, Mg, Ca chlorides | Asymmetric cellulose triacetate (supplied by FTS H2O) | Forward osmosis: 42 °C, 5 M draw solution (NaCl), flow rate of 4 L/h, flux of 68.47 L/m2 h, 50 mg/L of LiCl | --- | Rejection of 79.3% | --- | [202] |
LiOH solution | Li1.5Al0.5Ge1.5(PO4)3 lithium ionic conductor membrane | Electrodialysis: 0.1 M LiOH feeding solution, 1 M LiOH receiving solution, 28 h, 4 V | --- | 99.7 | --- | [203] |
Simulated salt lake water containing LiCl and MgCl2 (0.3 g Li/L, 12 g Mg/L) | NASICON-type Li1.3Al0.3Ti1.7(PO4)3 superionic conductor based ceramic composite membrane | Three-stage electrodialysis tandem system, membrane thicknesses of 20 μm, 3.2 V, 1.2 L/h | --- | 77.15 | --- | [129] |
Spent ternary lithium batteries leaching solution (Ni:Co:Mn:Li = 400:100:100:40 mg/L) | NH2-multiwalled carbon nanotubes modified by polydopamine inserted in polyether sulfone | Nanofiltration: 20 mL of leaching solution, 3 bar, 25 °C, pH 1.7 | 93.5 | 79.2 | --- | [195] |
Solution of 100 mg Li/L Li2SO4 | Bipolar cation-anion membranes | Electrodialysis: 0.6–1.2 V, flow rate of 2–10 L/min, electrodes stacking | --- | --- | Flux of 13.82 g-Li/m2 d | [204] |
Lithium Recovery Source | Lithium Source Pretreatment | Solvent | Extraction Conditions | Extraction Efficiency, % | Recovery Conditions | Recovery, % | Reference |
---|---|---|---|---|---|---|---|
Lithium solution (1000 µg/mL) | --- | TTA-TOPO-Kerosene | Solution (pH 10.6) to extraction volume ratio of 1 (50 mL), 80 min | 99 | HCl, H2SO4, H3PO4, pH 2–3 | >90 | [238] |
Salt lake brine | --- | TBP in [C4mim][NTf2] | 30 ± 1 °C for 20 min, 10% (by volume) of [C4mim][NTf2], pH 5.58 | 92.37 | 0.5 M HCl | 91.02 | [132] |
Water like shale gas water | pH adjustment 5.8–6.6, settlement for 24 h, 25 °C, 30 min, 150 rpm, D2EHPA/Kerosene of 1/1 | TBP in D2EHPA/Kerosene | D2EHPA (1.5 M), TBP (0.3 M) | 41.2 | --- | --- | [239] |
Brine from Qarhan salt lake | Solar evaporation | TBP/FeCl3 in MIBK | 40% TBP/MIBK | 99 | 1 M HCl/ 2 M NaCl | 98 | [241] |
Brine from lithium carbonation process | --- | HBTA-TOPO-Kerosene | 0.4 M HBTA and 0.2 M TOPO, 7-stage mixer-settler for >30 h at 25 °C | 96 | 3 M HCl | >80 | [242] |
Lithium solution (0.5 g/L) | --- | Ionic liquid [N4444][EHPMEH]/Methylbenzene | 1 M [N4444][EHPMEH] in the methylbenzene phase at 25 °C | ~95 | 0.5 M HCl at 25 °C | 93.3 | [243] |
Simulate brine solution | --- | TBP/[Bmim]3PW12O40/DMP | [Bmim]3PW12O40/Li = 1.2, 60:40 TBP:DMP (% by volume), O/A = 1/1 at 25 °C | 99.23 | 0.309 M HCl | >99 | [244] |
Alkaline brine | --- | [OHEMIM][NTf2] and Cyanex923 | A/O = 1/2, pH 10.68, 15% [OHEMIM][NTf2] and 85% Cyanex923, at 25 °C for 15 min | 93.86 | 1 M HCl | 89.7 | [147] |
Ammoniacal solution | --- | HTTA/TOPO/Kerosene | 0.1 M HTTA, 0.2 M TOPO, O/A = 1/1, 20 °C for 6 min | ~99 | O/A = 1/2, 1 M HCl | ~99 | [245] |
Mixed solution of Li-Co | 10 mg/L of Li2CO3 and 10 mg/L of CoCO3 | D2EHPA/Kerosene | pH 2.63, O/A = 1/1, 32 °C for 6 h | >75 | --- | --- | [150] |
Effluent of spent lithium batteries recycling | Leaching by H2SO4 | HBTA/TOPO/Kerosene | 0.4 M HBTA, 0.4 M TOPO, kerosene, pH 8.5, O/A = 1/1, 25 °C for 6 min | 97 | 6 M HCl | 90 | [246] |
Synthetic Li-ion batteries waste leachate | --- | TBP/FeCl3/Kerosene | NaCl, FeCl3, TBP (80% by volume), kerosene 20% (by volume), 2.4-2.7 g/L of Li, 25 °C | 85.5 | 6 M HCl, R(O/A) = 5 | 95.47 | [233] |
Spent laptop batteries | Leaching with 1.5 M citric acid, 2% (by volume) H2O2 at 95 °C for 20 min | D2EHPA | 23% (by volume) D2EHPA, O/A = 4, pH 5.5, 3 counter-current stages | 94 | --- | --- | [247] |
Soultz-sous-Forêts geotermal fluid | Chemical precipitation with Ca(OH)2 and Na2CO3 | D2EHPA/TBP/Kerosene | 1.5 M D2EHPA, 0.3 M TBP, 50× diluted geothermal fluid | 87.7 | --- | --- | [240] |
Lithium solution (1000 μg/mL) | --- | N8881Cl/2DecA-D2EHPA | Molar ratio N8881/DecA 1/2, O/A = 1/3, volume fraction of HDES = 50%, pH 11.10 | 80 | --- | --- | [235] |
Wastewater from LiF synthesis industry | --- | Saponified D2EHPA- sulphonated kerosene | 15% saponified D2EHPA, 85% sulphonated kerosene, 25 °C, 5 min, equilibrium pH 4.6, O/A = 1/1, 250 rpm | 99.71 | --- | --- | [248] |
Simulated nanofiltration-treated seawater desalination brine | --- | Commercial Mextral 54-100/Cyanex923 in Shellsol D70 | Initial pH 2.94, equilibrium pH 12, 0.5–2% (by volume) Mextral 54-100, 0.5–2% (by volume) Cyanex 923, O/A = 1/1, 25 °C, 5 min | >90 | 0.1 M HCl | >99 | [249] |
Lithium solution | --- | Menthol and lauric acid | 660 rpm, 30 min, pH 12, O/A = 3/1, 0.5 g/L of Li, menthol/lauric acid 2/1 | 80.69 | --- | --- | [250] |
Lithium precipitation mother liquor | --- | DBM/TBP/Kerosene | 0.4 M DBM, 1.2 M TBP, O/A = 1/1 | 99.96 | 1.2 M HCl | >99 | [251] |
Rubidium raffinate | --- | HBTA/TOPO | 0.1 M HBTA, 0.1 M TOPO, 20 °C, O/A =1, 5 min | 99.24 | 3 M HCl, O/A = 10 | 99 | [151] |
Black powder from spent lithium-ion battery | Ternary Deep Eutectic Solvents (DES) (choline chloride, ethylene glycol, maleic acid) | Liquid–solid ratio of 50 mL/g, 80 °C for 2 h | 99.0 | Precipitation with Na2CO3, 90◦C | Li2CO3 (>99) | [183] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Virgen, M.d.R.; Escalera-Velasco, B.P.; Reynel-Ávila, H.E.; González-Ponce, H.A.; Videla-Leiva, A.R.; Morandé-Thompson, A.I.; Ludovico-Marques, M.; Sogari, N.; Bonilla-Petriciolet, A. An Overview of Applications, Toxicology and Separation Methods of Lithium. Minerals 2025, 15, 917. https://doi.org/10.3390/min15090917
Moreno-Virgen MdR, Escalera-Velasco BP, Reynel-Ávila HE, González-Ponce HA, Videla-Leiva AR, Morandé-Thompson AI, Ludovico-Marques M, Sogari N, Bonilla-Petriciolet A. An Overview of Applications, Toxicology and Separation Methods of Lithium. Minerals. 2025; 15(9):917. https://doi.org/10.3390/min15090917
Chicago/Turabian StyleMoreno-Virgen, Ma. del Rosario, Blanca Paloma Escalera-Velasco, Hilda Elizabeth Reynel-Ávila, Herson Antonio González-Ponce, Alvaro Rodrigo Videla-Leiva, Arturo Ignacio Morandé-Thompson, Marco Ludovico-Marques, Noemi Sogari, and Adrián Bonilla-Petriciolet. 2025. "An Overview of Applications, Toxicology and Separation Methods of Lithium" Minerals 15, no. 9: 917. https://doi.org/10.3390/min15090917
APA StyleMoreno-Virgen, M. d. R., Escalera-Velasco, B. P., Reynel-Ávila, H. E., González-Ponce, H. A., Videla-Leiva, A. R., Morandé-Thompson, A. I., Ludovico-Marques, M., Sogari, N., & Bonilla-Petriciolet, A. (2025). An Overview of Applications, Toxicology and Separation Methods of Lithium. Minerals, 15(9), 917. https://doi.org/10.3390/min15090917