Three-Dimensional Attribute Modeling and Deep Mineralization Prediction of Vein 171 in Linglong Gold Field, Jiaodong Peninsula, Eastern China
Abstract
1. Introduction
2. Regional Geology
2.1. Regional Geological Characteristics
2.2. Geological Characteristics of the Deposit
3. Orebody Hosting Characteristics and Model Construction
3.1. Characteristics of the Orebody
3.2. Orebody 3D Modelling Process
4. Parameter Selection for Orebody Property Model Construction
4.1. Combined Sample Length Selection
4.2. Identification and Treatment of Abnormally High-Grade
4.2.1. Recognition of Abnormally High-Grade
4.2.2. Handling of Abnormally High-Grade
4.3. Establishment of Ore Block Size
4.4. Interpolation Method Choice
4.5. Ellipsoid Search Parameter Configuration
5. Enrichment Variation Patterns of Orebodies
5.1. Relationship Between Orebody Metal Accumulation and Alteration Zone Thickness Variation
5.2. Relationship Between Orebody Metal Accumulation and Fault Dip
6. Spatial Distribution Laws of Ore Grade and Grade Data Analysis
6.1. Spatial Distribution Characteristics of Ore Grade
6.2. Ore Grade Data Analysis
7. Deep-Level Exploration Targeting and Preliminary Validation of Prediction Results
7.1. Deep-Level Exploration Targeting
7.2. Preliminary Validation of Predictive Results
8. Conclusions
- (1)
- Using Vulcan 2021.5 3D mining software with surface-block model integration and geostatistical approaches, a refined 3D attribute model of the main orebody in Vein 171 was established through dynamic hierarchical modeling (parent blocks 30 m × 30 m × 30 m, child blocks 3 m × 3 m × 1 m) and IDW grade interpolation. The model reveals that high-grade zones concentrated along the dip and plunge directions of the orebody, displaying near-equidistant parallel distribution patterns.
- (2)
- The 3D coupled model further confirms a strong correlation between ore enrichment zones and the steep-to-gentle transitional positions of ore-controlling faults. Orebody 1711 exhibits intense mineralization enrichment (Au > 20 m·g/t) within gentle-dip fault segments (30–41°). This is primarily attributed to the rapid velocity reduction of ore-forming fluids at steep-to-gentle dip transition zones, which significantly enhanced gold precipitation efficiency.
- (3)
- Based on 3D orebody modeling, spatial grade analysis, and the identified vertical stacking trend of high-grade intervals, combined with the “prospecting near known ores” strategy, the intersection zone of bifurcated faults within the northern Zhaoping Fault system (elevations −1800 m to −800 m) is predicted as a highly favorable prospecting target. This prediction has been effectively validated by nine drilled boreholes that show spatial consistency between high-grade intercepts and model projections. This demonstrates the high reliability of 3D attribute modeling for deep mineral exploration and provides critical guidance for future exploration activities.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, C.; Wang, G.W.; Liu, J.J.; Zhang, D.H. 3D geochemical modeling for subsurface targets of Dashui Au deposit in Western Qinling (China). J. Geochem. Explor. 2019, 203, 59–77. [Google Scholar] [CrossRef]
- Liu, Z.K.; Hollings, P.; Mao, X.C. Metal remobilization from country rocks into the Jiaodong-type orogenic gold systems, Eastern China: New constraints from scheelite and galena isotope results at the Xiadian and Majiayao gold deposits. Ore Geol. Rev. 2021, 134, 104126. [Google Scholar] [CrossRef]
- Wang, J.L.; Mao, X.C.; Peng, C.; Chen, J.; Deng, H.; Liu, Z.K.; Wang, W.S.; Fu, Z.K.; Wang, C.T. Three-Dimensional Refined Modelling of Deep Structures by Using the Level Set Method: Application to the Zhaoping Detachment Fault, Jiaodong Peninsula, China. Math. Geosci. 2022, 55, 229–262. [Google Scholar] [CrossRef]
- Yang, L.Q.; Deng, J.; Zhang, L.; Zhao, A.H.; Santosh, M.; Yu, X.F.; Yang, W.; Li, D.P.; Shan, W.; Xie, D.; et al. Mantle-rooted fluid pathways and world-class gold mineralization in the giant Jiaodong gold province: Insights from integrated deep seismic reflection and tectonics. Earth Sci. Rev. 2024, 255, 104862. [Google Scholar] [CrossRef]
- Koike, K.; Kiriyama, T.; Lu, L.; Kubo, T.; Heriawan, M.N.; Yamada, R. Incorporation of geological constraints and semivariogram scaling law into geostatistical modeling of metal contents in hydrothermal deposits for improved accuracy. J. Geochem. Explor. 2022, 233, 106901. [Google Scholar] [CrossRef]
- Yang, L.Q.; Deng, J.; Guo, R.P.; Guo, L.N.; Wang, Z.L.; Chen, B.H.; Wang, X.D. World-class Xincheng gold deposit: An example from the giant Jiaodong Gold Province. Geosci. Front. 2016, 7, 419–430. [Google Scholar] [CrossRef]
- Deng, J.; Yang, L.Q.; Groves, D.I.; Zhang, L.; Qiu, K.F.; Wang, Q.F. An integrated mineral system model for the gold deposits of the giant Jiaodong province, eastern China. Earth Sci. Rev. 2020, 208, 103274. [Google Scholar] [CrossRef]
- Song, M.C.; Li, J.; Yu, X.F.; Song, Y.X.; Ding, Z.J.; Li, S.Y. Metallogenic characteristics and tectonic setting of the Jiaodong gold deposit, China. Solid Earth Sci. 2021, 6, 385–405. [Google Scholar] [CrossRef]
- Yang, L.Q.; Deng, J.; Guo, L.N.; Wang, Z.L.; Li, X.Z.; Li, J.L. Origin and evolution of ore fluid, and gold-deposition processes at the giant Taishang gold deposit, Jiaodong Peninsula, eastern China. Ore Geol. Rev. 2016, 72, 585–602. [Google Scholar] [CrossRef]
- Guo, L.N.; Deng, J.; Yang, L.Q.; Wang, Z.L.; Wang, S.R.; Wei, Y.J.; Chen, B.H. Gold deposition and resource potential of the Linglong gold deposit, Jiaodong Peninsula: Geochemical comparison of ore fluids. Ore Geol. Rev. 2020, 120, 103434. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.F.; Zhang, L.; Xue, S.C.; Liu, X.F.; Yang, L.; Yang, L.Q.; Qiu, K.F.; Liang, Y.Y. Metallogenetic model of Jiaodong-type gold deposits, eastern China. Sci. China Earth Sci. 2023, 66, 2287–2310. [Google Scholar] [CrossRef]
- Song, M.C.; Li, S.Z.; Santosh, M.; Zhao, S.; Yu, S.; Yi, P.H.; Cui, S.X.; Lv, G.X.; Xu, J.X.; Song, Y.X.; et al. Types, characteristics and metallogenesis of gold deposits in the Jiaodong Peninsula, Eastern North China Craton. Ore Geol. Rev. 2015, 65, 612–625. [Google Scholar] [CrossRef]
- Feng, Y.C.; Deng, J.; Yu, H.C.; Fu, Q.; Cui, T.; Shan, W.; Li, Z.S.; Li, S.S. Gold occurrence states and their implications for the ore-forming process in the Linglong gold field, Jiaodong Peninsula. Acta Petrol. Sin. 2023, 39, 377–392, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Li, S.Y.; Li, J.; Song, M.C.; Ding, Z.J.; Zhou, M.L.; Fan, J.M.; Xie, T.C.; Liu, X.D.; Wang, B.; Zhang, L.L.; et al. Metallogenic characteristics and mineralization of the Linglong gold field, Jiaodong Peninsula. Acta Geol. Sin. 2022, 96, 3234–3260, (In Chinese with English Abstract). [Google Scholar]
- Song, M.C.; Song, Y.X.; Li, J.; Liu, H.B.; Li, J.; Dong, L.L.; He, C.Y.; Wang, R.S. Thermal doming-extension metallogenic system of Jiaodong type gold deposits. Acta Petrol. Sin. 2023, 39, 1241–1260, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhu, G.; Wang, W.; Gu, C.C.; Zhang, S.; Liu, C. Late Mesozoic evolution history of the Tan-Lu Fault Zone and its indication to destruction processes of the North China Craton. Acta Petrol. Sin. 2016, 32, 935–949, (In Chinese with English Abstract). [Google Scholar]
- Yang, L.Q.; Deng, J.; Zhang, L.; Yang, W.; Xie, D.; Wang, L.; Qiu, K.F.; Li, D.P. Jiaodong-type gold deposit. Acta Petrol. Sin. 2024, 40, 1691–1711, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wang, G.W.; Zhu, Y.Y.; Zhang, S.T.; Yan, C.H.; Song, Y.W.; Ma, Z.B.; Hong, D.M.; Chen, T.Z. 3D Geological Modeling Based on Gravitational and Magnetic Data Inversion in the Luanchuan Ore Region, Henan Province, China. J. Appl. Geophys. 2012, 80, 1–11. [Google Scholar] [CrossRef]
- Jin, X.; Wang, G.; Tang, P.; Hu, C.; Liu, Y.; Zhang, S. 3D Geological Modelling and Uncertainty Analysis for 3D Targeting in Shanggong Gold Deposit (China). J. Geochem. Explor. 2020, 210, 106442. [Google Scholar] [CrossRef]
- Li, B.; Peng, Y.; Zhao, X.; Liu, X.; Wang, G.; Jiang, H.; Wang, H.; Yang, Z. Combining 3D Geological Modeling and 3D Spectral Modeling for Deep Mineral Exploration in the Zhaoxian Gold Deposit, Shandong Province, China. Minerals 2022, 12, 1272. [Google Scholar] [CrossRef]
- Laudadio, A.B.; Schetselaar, E.M.; Mungall, J.E.; Houlé, M.G. 3D Modeling of the Esker Intrusive Complex, Ring of Fire Intrusive Suite, McFaulds Lake Greenstone Belt, Superior Province: Implications for Mineral Exploration. Ore Geol. Rev. 2022, 145, 104886. [Google Scholar] [CrossRef]
- Song, M.C.; Yi, P.H.; Xu, J.X.; Cui, S.X.; Shen, K.; Jiang, H.L.; Yuan, W.H.; Wang, H.J. A step metallogenetic model for gold deposits in the northwestern Shandong Peninsula, China. Sci. China Earth Sci. 2012, 55, 940–948. [Google Scholar] [CrossRef]
- Song, M.C.; Ding, Z.J.; Liu, X.D.; Li, S.Y.; Li, J.; Dong, L.L.; Wei, X.F.; Bao, Z.Y.; Wang, B.; Zhang, Q.B.; et al. Structural controls on the Jiaodong type gold deposits and metallogenic model. Acta Geol. Sin. 2022, 96, 1774–1802, (In Chinese with English Abstract). [Google Scholar]
- Song, M.C.; Wang, L.; Song, Y.X.; Li, J.; Wang, B.; Wei, X.F.; Zhang, J.J.; Song, G.Z. Geometry and origin of supergiant gold deposits in the Jiaodong gold province, eastern China. J. Asian Earth Sci. 2023, 254, 105744. [Google Scholar] [CrossRef]
- Zhu, G.; Niu, M.; Xie, C.; Wang, Y. Sinistral to normal faulting along the Tan-Lu fault zone: Evidence for geodynamic switching of the Fast China continental margin. J. Geol. 2010, 118, 277–293. [Google Scholar] [CrossRef]
- Zhu, G.; Jiang, D.; Zhang, B.; Chen, Y. Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics. Gondwana Res. 2012, 22, 86–103. [Google Scholar] [CrossRef]
- Lu, S.N.; Zhao, G.C.; Wang, H.C.; Hao, G.J. Precambrian Metamorphic Basement and Sedimentary Cover of the North China Craton: A Review. Precambrian Res. 2008, 160, 77–93. [Google Scholar] [CrossRef]
- Feng, K.; Fan, H.R.; Ulrich, T.; Yang, K.F.; Hu, F.F.; Liu, X. Contribution of Precambrian basements to the Mesozoic ore-fluid system: An illustration using the Majiayao gold deposit, Jiaodong, China. Ore Geol. Rev. 2021, 139, 104447. [Google Scholar] [CrossRef]
- Wan, Y.S.; Song, B.; Liu, D.Y.; Wilde, S.A.; Wu, J.S.; Shi, Y.R.; Yin, X.Y.; Zhou, H.Y. SHRIMP U-Pb zircon geochronology of Paleoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Paleoproterozoic tectonothermal event. Precambrian Res. 2006, 149, 249–271. [Google Scholar] [CrossRef]
- Wu, F.Y.; Xu, Y.G.; Zhu, R.X.; Zhang, G.W. Thinning and destruction of the cratonic lithosphere: A global perspective. Sci. China Earth Sci. 2014, 57, 2878–2890. [Google Scholar] [CrossRef]
- Zhang, L.; Weinberg, R.F.; Yang, L.Q.; Groves, D.I.; Sai, S.X.; Matchan, E.; Phillips, D.; Kohn, B.P.; Miggins, D.P.; Liu, Y.; et al. Mesozoic orogenic gold mineralization in the Jiaodong Peninsula, China: A focused event at 120 ± 2 Ma during cooling of pregold granite intrusions. Econ. Geol. 2020, 115, 415–441. [Google Scholar] [CrossRef]
- Qiu, K.F.; Deng, J.; Laflamme, C.; Long, Z.Y.; Wan, R.Q.; Moynier, F.; Yu, H.C.; Zhang, J.Y.; Ding, Z.J.; Goldfarb, R. Giant Mesozoic gold ores derived from subducted oceanic slab and overlying sediments. Geochim. Cosmochim. Acta 2023, 343, 133–141. [Google Scholar] [CrossRef]
- Zhou, G.Y.; Song, M.C.; Li, L.; Luo, Y.; Pearson, D.G.; Zhou, J.B.; Ding, Z.J.; Yu, X.F.; Song, Y.X.; Li, J.; et al. Cooling history of mesozoic magmatism and implications for large-scale gold mineralization in the Jiaodong Peninsula, East China: Constraints from T-t paths determined by U-Pb thermochronology of zircon and apatite. J. Earth Sci. 2024, 35, 878–889. [Google Scholar] [CrossRef]
- Wu, X.D.; Zhu, G.; Yin, H.; Su, N.; Lu, Y.C.; Zhang, S.; Xie, C.L. Origin of Low-Angle Ductile/Brittle Detachments: Examples From the Cretaceous Linglong Metamorphic Core Complex in Eastern China. Tectonics 2020, 39, e2020TC006132. [Google Scholar] [CrossRef]
- Goss, S.C.; Wilde, S.A.; Wu, F.; Yang, J. The age, isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane, Shandong Province, North China Craton. Lithos 2010, 120, 309–326. [Google Scholar] [CrossRef]
- Li, X.H.; Fan, H.R.; Hu, F.F.; Hollings, P.; Yang, K.F.; Liu, X. Linking lithospheric thinning and magmatic evolution of late Jurassic to early cretaceous granitoids in the Jiaobei Terrane, southeastern North China Craton. Lithos 2019, 324–325, 280–296. [Google Scholar] [CrossRef]
- Zhou, T.H.; Lu, G.X. Tectonics, granitoids and mesozoic gold deposits in East Shandong, China. Ore Geol. Rev. 2020, 16, 71–90. [Google Scholar] [CrossRef]
- Jiang, N.; Chen, J.; Guo, J.; Chang, G. In situ zircon U–Pb, oxygen and hafnium isotopic compositions of Jurassic granites from the North China craton: Evidence for Triassic subduction of continental crust and subsequent metamorphism-related 18O depletion. Lithos 2012, 142–143, 84–94. [Google Scholar] [CrossRef]
- Yang, K.F.; Fan, H.R.; Santosh, M.; Hu, F.F.; Wilde, S.A.; Lan, T.G.; Lu, L.N.; Liu, Y.S. Reactivation of the Archean lower crust: Implications for zircon geochronology, elemental and Sr-Nd-Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong Terrane, the North China Craton. Lithos 2012, 146–147, 112–127. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Santosh, M. The dilemma of the Jiaodong gold deposits: Are they unique? Geosci. Front. 2014, 5, 139–153. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.F. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework. Gondwana Res. 2016, 36, 219–274. [Google Scholar] [CrossRef]
- Song, M.C.; Wang, B.; Song, Y.X.; Li, J.; Zheng, J.F.; Li, S.Y.; Fan, J.M.; Yang, Z.L.; He, C.Y.; Gao, M.X.; et al. Spatial coupling relationship between faults and gold deposits in the Jiaodong ore concentration area and the effect of thermal doming-extension on mineralisation. Ore Geol. Rev. 2023, 153, 105277. [Google Scholar] [CrossRef]
- Ji, L.; Deng, J.; Liu, J.L.; Chen, X.Y.; Liu, X.F.; Yang, X.M.; Ni, J.L.; Zhang, L.L.; An, Y.; Tian, P.F. Change in the direction of Early Cretaceous tectonic extension in eastern North China Craton as the result of Paleo-Pacific/Eurasian plate interaction. Geosci. Front. 2025, 16, 101965. [Google Scholar] [CrossRef]
- Wang, J.M.; Zhao, H.; Bi, L.; Wang, L.G. Implicit 3D modeling of ore body from geological boreholes data using Hermite radial basis functions. Minerals 2018, 8, 443. [Google Scholar] [CrossRef]
- Chen, Y.X.; Ma, H.R.; Zhu, Z.; Fu, J.P. Error analysis and visualization of 3D geological models of mineral deposits. Ore Geol. Rev. 2024, 175, 106366. [Google Scholar] [CrossRef]
- Zheng, G.Z.; Wu, X.C. The Action of Map-Layer on Editor and Management of Map Data Based on MAPGIS. J. Geoma. Sci. Technol. 2000, 17, 216–219, (In Chinese with English Abstract). [Google Scholar]
- Kaufmann, O.; Martin, T. 3D geological modelling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines. Comput. Geosci. 2008, 34, 278–290. [Google Scholar] [CrossRef]
- Mao, X.C.; Zhang, B.; Deng, H.; Zou, Y.H.; Chen, J. Three-dimensional morphological analysis method for geologic bodies and its parallel implementation. Comput. Geosci. 2016, 96, 11–22. [Google Scholar] [CrossRef]
- Li, H.D.; Wu, Z.C.; Bai, R.; Dong, C.; Ma, F.L.; Li, H.L.; Jia, F.; Li, B.; Zhu, Y.D. Discussion on fine 3D modeling method of complex vein ore body. Bull. Geol. Sci. Technol. 2025, 44, 393–404, (In Chinese with English Abstract). [Google Scholar]
- Chen, J.; Jiang, L.Q.; Peng, C.; Liu, Z.K.; Deng, H.; Xiao, K.Y.; Mao, X.C. Quantitative resource assessment of hydrothermal gold deposits based on 3D geological modeling and improved volume method: Application in the Jiaodong gold province, Eastern China. Ore Geol. Rev. 2023, 153, 105282. [Google Scholar] [CrossRef]
- Xuan, D.N.; Trong, T.P.; Hai, S.T.; Vinh, H.B.; Quoc, D.N.; Hao, D.V. 3D models for hydrothermal copper ore bodies at Sin Quyen deposit, North Vietnam: A case report for ore reserves and prediction of hidden mineral resource potential. Heliyon 2024, 10, e33017. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.K.; Xue, C.D.; Wang, W.; Xue, L.P.; Ghazi, R. Controls on metal distributions of the Fengzishan Zn–Pb deposit at the giant Jinding ore field in western Yunnan Province, SW China: Insights from field mapping and 3D geological modeling. Ore Geol. Rev. 2025, 106, 106509. [Google Scholar] [CrossRef]
- Afeni, T.B.; Akeju, V.O.; Aladejare, A.E. A comparative study of geometric and geostatistical methods for qualitative reserve estimation of limestone deposit. Geosci. Front. 2021, 12, 243–253. [Google Scholar] [CrossRef]
- Shahbeik, S.; Afzal, P.; Moarefvand, P.; Qumarsy, M. Comparison between ordinary kriging (OK) and inverse distance weighted (IDW) based on estimation error. Case study: Dardevey iron ore deposit, NE Iran. Arab. J. Geosci. 2014, 7, 3693–3704. [Google Scholar] [CrossRef]
- Liu, Z.N.; Yu, X.Y.; Jia, L.F.; Wang, Y.S.; Song, Y.C.; Meng, H.D. The influence of distance weight on the inverse distance weighted method for ore-grade estimation. Sci. Rep. 2021, 11, 2689. [Google Scholar] [CrossRef]
- Miao, S.J.; Wang, H.; Guo, X.L.; Guo, X.Y.; Kong, C.Q. The effects of mineralization on the lognormal distribution and exponential fluctuations of a hydrothermal gold deposit in Jiaodong Peninsula, China. Arab. J. Geosci. 2018, 11, 529. [Google Scholar] [CrossRef]
- Grijp, Y.V.D.; Minnitt, R.C.A. Application of direct sampling multi-point statistic and sequential Gaussian simulation algorithms for modelling uncertainty in gold deposits. J. S. Afr. Inst. Min. 2015, 115, 73–85. [Google Scholar] [CrossRef]
- Cai, Y.F.; Zuo, C.H.; Liu, C.L.; Li, H.X. Research on Application of Mathematical Statistical Method in Processing Laoyachao IV Gold Ore Body with Very High Grade. Chin. Min. Eng. 2022, 51, 30–34, (In Chinese with English Abstract). [Google Scholar]
- GB/T 33444-2016; Specification for Exploration of Solid Mineral Resources. Standards Press of China: Beijing, China, 2016.
- DZ/T 0338.3-2020; Regulation of Mineral Resources Estimation—Part 3: The Geostatistical Methods. Geological Publishing House: Beijing, China, 2020.
- Wan, L.; Wang, Q.F.; Deng, J.; Gong, Q.J.; Yang, L.Q.; Liu, H. Identification of mineral intensity along drifts in the Dayingezhuang deposit, Jiaodong gold province, China. Resour. Geol. 2010, 60, 98–108. [Google Scholar] [CrossRef]
- Hu, H.L.; Liu, S.L.; Fan, H.R.; Yang, K.F.; Zuo, Y.B.; Cai, Y.C. Structural networks constraints on alteration and mineralization processes in the Jiaojia gold deposit, Jiaodong Peninsula, China. J. Earth Sci. 2020, 31, 500–513. [Google Scholar] [CrossRef]
- Wu, J.J.; Zeng, Q.D.; Santosh, M.; Fan, H.R.; Bai, R.; Li, X.H.; Zhang, Z.M.; Zhang, Y.W.; Huang, L.L. Deep ore-forming fluid characteristics of the Jiaodong gold province: Evidence from the Qianchen gold deposit in the Jiaojia gold belt. Ore Geol. Rev. 2022, 145, 104911. [Google Scholar] [CrossRef]
- Li, J.X.; Guo, T.; Lu, G.X. Discussion on gold mineralization type and its relation with tectonic in northwestern Jiaodong. Geol. Resour. 1999, 8, 87–91, (In Chinese with English Abstract). [Google Scholar]
- Song, M.C.; Lin, S.Y.; Yang, L.Q.; Song, Y.X.; Ding, Z.J.; Li, J.; Li, S.Y.; Zhou, M.L. Metallogenic model of Jiaodong Peninsula gold deposits. Miner. Depos. 2020, 39, 215–236, (In Chinese with English Abstract). [Google Scholar]
- Yang, L.Q.; Deng, J.; Wang, Z.L.; Zhang, L.; Guo, L.N.; Song, M.C.; Zheng, X.L. Mesozoic gold metallogenic system of the Jiaodong gold province, eastern China 2014. Acta Petrol. Sin. 2014, 30, 2447–2467, (In Chinese with English Abstract). [Google Scholar]
- Meng, L.Y. Silicification and mineralization in hydrothermal deposits. Chin. Sci. Bull. 1999, 44, 90–93. [Google Scholar] [CrossRef]
Test Method | Sichel’s T-Estimator Test | |
---|---|---|
Calculation basis | GB/T 33444-2016 Specification for exploration of solid mineral resources. [59] | |
DZ/T 0338.3-2020 Regulation of mineral resources estimation—Part 3: The geostatistical methods. [60] | ||
Orebody grade | y = ln(x) | follows natural log-normal distribution |
Number of samples | 420 | |
① | Geometric mean of samples: | 1.88 |
② | Arithmetic mean of samples: | 2.68 |
③ | Sample variance of natural logarithm (σ): | 0.74 |
④ | Taylor series expansion (order 3 or 4): | 3 |
⑤ | Sichel’s T-coefficient = ③ × ④: | 1.44 |
⑥ | Sichel’s T-estimator = ① × ⑤: | 2.71 |
Inspect | If ② ≤ ⑥, abnormally high-grade treatment is valid; otherwise, reprocess until satisfied | No abnormally high-grade |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wu, Z.; Wang, S.; Wang, Y.; Dong, C.; Li, X.; Zhang, Z.; Li, H.; Liu, W.; Li, B. Three-Dimensional Attribute Modeling and Deep Mineralization Prediction of Vein 171 in Linglong Gold Field, Jiaodong Peninsula, Eastern China. Minerals 2025, 15, 909. https://doi.org/10.3390/min15090909
Li H, Wu Z, Wang S, Wang Y, Dong C, Li X, Zhang Z, Li H, Liu W, Li B. Three-Dimensional Attribute Modeling and Deep Mineralization Prediction of Vein 171 in Linglong Gold Field, Jiaodong Peninsula, Eastern China. Minerals. 2025; 15(9):909. https://doi.org/10.3390/min15090909
Chicago/Turabian StyleLi, Hongda, Zhichun Wu, Shouxu Wang, Yongfeng Wang, Chong Dong, Xiao Li, Zhiqiang Zhang, Hualiang Li, Weijiang Liu, and Bin Li. 2025. "Three-Dimensional Attribute Modeling and Deep Mineralization Prediction of Vein 171 in Linglong Gold Field, Jiaodong Peninsula, Eastern China" Minerals 15, no. 9: 909. https://doi.org/10.3390/min15090909
APA StyleLi, H., Wu, Z., Wang, S., Wang, Y., Dong, C., Li, X., Zhang, Z., Li, H., Liu, W., & Li, B. (2025). Three-Dimensional Attribute Modeling and Deep Mineralization Prediction of Vein 171 in Linglong Gold Field, Jiaodong Peninsula, Eastern China. Minerals, 15(9), 909. https://doi.org/10.3390/min15090909