Confirmation of Significant Iron Formations During “Boring Billion” in Altyn Region, China: A Case Study of the Dimunalike Iron Deposit
Abstract
1. Introduction
2. Regional Geology
3. Local Geology
3.1. Stratigraphy and Structure of the Local
3.2. Ore Body Characteristics
3.3. Sample Characteristics
4. Analytical Techniques
5. Analysis Results
5.1. Whole Rock Geochemical Characteristics
5.1.1. Major Elements
5.1.2. Rare Earth and Trace Elements
5.2. Results of Zircon U–Pb Dating
5.2.1. Tuff
5.2.2. Ferruginous Mudstone
5.3. Results of Zircon Hf Isotopes
6. Discussions
6.1. Ore-Forming Age of the Dimunalike IFs
6.2. Provenance of the Dimunalike IFs
6.3. Implications of Confirmation the Mesoproterozoic IFs in the Altyn Region
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- James, H.L. Sedimentary facies of iron-formation. Econ. Geol. 1954, 49, 235–293. [Google Scholar] [CrossRef]
- Simonson, B.M. Sedimentological constraints on the origins of Precambrian iron-formations. Geol. Soc. Am. Bull. 1985, 96, 244–252. [Google Scholar] [CrossRef]
- Trendall, A.F. The significance of iron-formation in the Precambrian stratigraphic record. Precambrian Sediment. Environ. A Mod. Approach Anc. Depos. Syst. 2002, 33, 33–66. [Google Scholar]
- Gross, G.A. A classification of iron formations based on depositional environments. Can. Mineral. 1980, 18, 215–222. [Google Scholar]
- Bekker, A.; Slack, J.F.; Planavsky, N.; Krapez, B.; Hofmann, A.; Konhauser, K.O.; Rouxel, O.J. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ. Geol. 2010, 105, 467–508. [Google Scholar] [CrossRef]
- Isley, A.E.; Abbott, D.H. Plume-related mafic volcanism and the deposition of banded iron formation. J. Geophys. Res. Solid Earth 1999, 104, 15461–15477. [Google Scholar] [CrossRef]
- Klein, C. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. Am. Mineral. 2005, 90, 1473–1499. [Google Scholar] [CrossRef]
- Yin, J.N.; Li, H.; Xiao, K.Y. Origin of banded iron formations: Links with paleoclimate, paleoenvironment, and major Geological Processes. Minerals 2023, 13, 547. [Google Scholar] [CrossRef]
- Halverson, G.P.; Poitrasson, F.; Hoffman, P.F.; Nédélec, A.; Montel, J.M.; Kirby, J. Fe isotope and trace element geochemistry of the Neoproterozoic syn-glacial Rapitan iron formation. Earth Planet. Sci. Lett. 2011, 309, 100–112. [Google Scholar] [CrossRef]
- Lechte, M.A.; Wallace, M.W.; Hood, A.S.; Li, W.Q.; Jiang, G.Q.; Halverson, G.P.; Asael, D.; McColl, S.L.; Planavsky, N.J. Subglacial meltwater supported aerobic marine habitats during Snowball Earth. Proc. Natl. Acad. Sci. USA 2019, 116, 25478–25483. [Google Scholar] [CrossRef]
- Brasier, M.D. Secret Chambers: The Inside Story of Cells and Complex Life; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Buick, R.; Des Marais, D.J.; Knoll, A.H. Stable isotopic compositions of carbonates from the Mesoproterozoic Bangemall Group, northwestern Australia. Chem. Geol. 1995, 123, 153–171. [Google Scholar] [CrossRef]
- Zhang, K.; Zhu, X.; Wood, R.A.; Shi, Y.; Gao, Z.; Poulton, S.W. Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes. Nat. Geosci. 2018, 11, 345–350. [Google Scholar] [CrossRef]
- Lyons, T.W.; Reinhard, C.T.; Planavsky, N.J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 2014, 506, 307–315. [Google Scholar] [CrossRef]
- Lascelles, D.F. Plate tectonics caused the demise of banded iron formations. Appl. Earth Sci. 2013, 122, 230–241. [Google Scholar] [CrossRef]
- Slack, J.F.; Grenne, T.; Bekker, A.; Rouxel, O.J.; Lindberg, P.A. Suboxic deep seawater in the late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA. Earth Planet. Sci. Lett. 2007, 255, 243–256. [Google Scholar] [CrossRef]
- Pirajno, F.; Bagas, L. A review of Australia’s Proterozoic mineral systems and genetic models. Precambrian Res. 2008, 166, 54–80. [Google Scholar] [CrossRef]
- Slack, J.F.; Grenne, T.; Bekker, A. Seafloor-hydrothermal Si-Fe-Mn exhalites in the Pecos greenstone belt, New Mexico, and the redox state of ca. 1720 Ma deep seawater. Geosphere 2009, 5, 302–314. [Google Scholar] [CrossRef]
- Pepper, M.A.; Ashley, P.M. Volcanic textures in quartzo-feldspathic gneiss of the Willyama Supergroup, Olary Domain, South Australia. Aust. J. Earth Sci. 1998, 45, 971–978. [Google Scholar] [CrossRef]
- Yang, J.M.; Mao, J.W.; Wang, Z.L.; Zhang, Z.H.; Zhang, Z.C. Study on genetic type and metallogenic mechanism of Huashugou iron deposit. Acta Geosci. Sin. 1999, 20, 303–307. [Google Scholar]
- Yang, X.Q.; Zhang, Z.H.; Guo, S.F.; Chen, J.; Wang, D.C. Geochronological and geochemical studies of the metasedimentary rocks and diabase from the Jingtieshan deposit, North Qilian, NW China: Constraints on the associated banded iron formations. Ore Geol. Rev. 2016, 73, 42–58. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhu, X.; Sun, J.; Li, Z.H.; Chen, S. Large-scale Mesoproterozoic iron formations in northwestern China. Precambrian Res. 2024, 400, 107243. [Google Scholar] [CrossRef]
- Davies, L.C.; Fiorentini, M.; Dalstra, H.; Hagemann, S.; Ramanaidou, E.; Danisik, M.; Evans, N.J.; Rankenburg, K.; Mcinnes, B.I.A. A billion-year shift in the formation of Earth’s largest ore deposits. Proc. Natl. Acad. Sci. USA 2024, 121, 31–42. [Google Scholar]
- Si, H.J.; Wu, Y.B.; Ma, G.L.; Si, D.Z.; Zhao, J.G.; Li, L.X.; Ba, J.Y.; Li, M. A new BIF type magnet deposit (6000kt) with medium and large potential has been discovered in the northern margin of Qaidam. Geol. China. 2025, 52, 1170–1171. (In Chinese) [Google Scholar]
- Hao, X.S.; Zhang, C.L.; Zhang, H.C.; Ding, T.; Ye, X.T. Origin of the Neoproterozoic Baijianshan banded iron formation at the southeastern margin of the Tarim Block in NW China: Implication for an extremely reducing ocean. Acta Geol. Sin.-Engl. Ed. 2022, 96, 208–220. [Google Scholar] [CrossRef]
- Hao, J.B. Composition, Geochronology and Mesoproterozoic-Neoproterozoic Tectonic Evolution of the Central-Southern Altyn Tagh. Ph.D. Thesis, Northwest University, Xi’an, China, 2021. (In Chinese). [Google Scholar]
- Ding, H.B.; Zhang, P.; Yang, X.F.; Yu, B.; Zhou, F.X. New prospecting discoveries in Dimunalike iron deposit and its peripheral areas in East Kunlun Mountains, Xinjiang. Miner. Depos. 2013, 32, 122–132. (In Chinese) [Google Scholar]
- Yang, W.Q.; Ding, H.B.; Liu, L.; Xiao, P.X.; Cao, Y.T.; Kang, L.; Liang, S.; Liao, X.Y.; Wang, Y.W. Formation age of ore-bearing strata of the Dimunalike iron deposit in South Altun Mountains and its geological significance. Geol. Bull. China 2012, 31, 2090–2101. (In Chinese) [Google Scholar]
- Ding, H.B.; Yang, X.F.; Zhang, P.; Yu, B.; Zhou, F.X. Geological characteristics and prospecting direction of Dimunalike iron deposit in East Kunlun, Xinjiang. Miner. Depos. 2013, 32, 195–206. (In Chinese) [Google Scholar]
- Li, X.; Lei, R.X.; Brzozowski, M.J.; Ye, H.; Wang, X.F.; Zhang, Z.H.; Wu, C.Z. Depositional age and tectonic setting of the Dimunalike iron formation in southeast Tarim Craton: Implications for the resurgence of Neoproterozoic iron formations. Precambrian Res. 2025, 417, 107665. [Google Scholar] [CrossRef]
- Liu, L.; Wang, C.; Chen, D.; Zhang, A.; Liou, J.G. Petrology and geochronology of HP-UHP rocks from the South Altyn Tagh, northwestern China. J. Asian Earth Sci. 2009, 35, 232–244. [Google Scholar] [CrossRef]
- Wang, C.; Liu, L.; Yang, W.Q.; Zhu, X.H.; Cao, Y.T.; Kang, L.; Chen, S.F.; Li, R.S.; He, S.P. Provenance and ages of the Altyn Complex in Altyn Tagh: Implications for the early Neoproterozoic evolution of northwestern China. Precambrian Res. 2013, 230, 193–208. [Google Scholar] [CrossRef]
- Liu, L.; Che, Z.C.; Wang, Y.; Luo, J.H.; Chen, D.L. The petrological characters and geotectonic setting of high-pressure metamorphic rock belts in Altun Mountains. Acta Petrol. Sin. 1999, 15, 57–64. (In Chinese) [Google Scholar]
- Shen, M.H.; Wang, H.; Sun, Z.L.; Mou, L.X.; Han, H.W.; Zhu, B.Z.; Du, X.F.; Cai, M.Z.; Zhang, S. Geologic Characteristics, Metallogenic Age and Prospecting Potential in the Altyn Shaliangxi Lithium Polymetallic Deposit, Ruoqiang County, Xinjiang, China. Geol. China. 2024. (In Chinese). Available online: https://link.cnki.net/urlid/11.1167.P.20240709.0953.008 (accessed on 11 July 2024).
- Dong, X.Y.; Li, X.; Ye, L.H.; Li, J.M.; Zheng, J.T.; Wang, Y.S.; Yang, X.Z.; Zhao, D.H. Ultramafic Rock of China; Geology Press: Beijing, China, 1995. [Google Scholar]
- GB/T 958–2015; Regional Geological Map Legend. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China: Beijing, China, 2015.
- Hu, K.L.; Zha, C.Y.; Liu, D.; Wang, J.M. A brief analysis of geological characteristics of Dimunalik iron ore deposit in East Kunlun. Xinjiang Nonferrous Met. 2010, 33, 12–14. (In Chinese) [Google Scholar]
- GB/T 14506.34-2019; Methods for Chemical Analysis of Silicate Rocks—Part 34: Determination of Loss on Ignition—Gravimetric Method. State Administration for Market Regulation and Standardization Administration of China: Beijing, China, 2019.
- SRM 610; Trace Elements in Glass. National Institute of Standards and Technology: Gaithersburg, USA, 2019.
- Liu, Y.S.; Gao, S.; Hu, Z.C.; Gao, C.G.; Zong, K.Q.; Wang, D.B. Continental and oceanic crust recycling-induced melt–peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Wu, F.Y.; Yang, Y.H.; Xie, L.W.; Xu, P. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem. Geol. 2006, 234, 105–126. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Wu, F.Y.; Li, X.H.; Zheng, Y.F.; Gao, S. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrol. Sin. 2007, 23, 185–220. (In Chinese) [Google Scholar]
- Liu, L.; Wang, C.; Cao, Y.T.; Chen, D.L.; Kang, L.; Yang, W.Q.; Zhu, X.H. Geochronology of multi-stage metamorphic events: Constraints on episodic zircon growth from the UHP eclogite in the South Altyn, NW China. Lithos 2012, 136, 10–26. [Google Scholar] [CrossRef]
- Gao, P.; Santosh, M. Building the Wutai arc: Insights into the Archean–Paleoproterozoic crustal evolution of the North China Craton. Precambrian Res. 2019, 333, 105429. [Google Scholar] [CrossRef]
- Dai, Y.P.; Zhang, L.C.; Zhu, M.T.; Wang, C.L.; Liu, L. Chentaigou BIF-type iron deposit, Anshan area associated with Archean crustal growth: Constraints from zircon U-Pb dating and Hf isotope. Acta Petrol Sin. 2013, 29, 2537–2550. (In Chinese) [Google Scholar]
- Zhu, M.T.; Dai, Y.P.; Zhang, L.C.; Wang, C.L.; Liu, L. Geochronology and geochemistry of the Nanfen iron deposit in the Anshan-Benxi area, North China Craton: Implications for∼ 2.55 Ga crustal growth and the genesis of high-grade iron ores. Precambrian Res. 2015, 260, 23–38. [Google Scholar] [CrossRef]
- Tong, X.X. Sedimentary Facies and Depositional Environment of the Neoarchean Dagushan Banded Iron Formation in the North China Craton. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2021. (In Chinese). [Google Scholar]
- Zhu, M.T.; Zhang, L.C.; Dai, Y.P.; Wang, C.L.; Peng, Z.D. Hydrothermal modification of zircon geochemistry and Lu–Hf isotopes from the Hongtoushan Cu–Zn deposit, China. Ore Geol. Rev. 2017, 86, 707–718. [Google Scholar] [CrossRef]
- Duan, H.; Wang, C.; Shi, K.; Wang, C.N.; Chen, Q.; Zhu, J.X.; Qian, J.L. Insights into characterization and genesis of the Tieshanmiao banded iron formation deposit, China: Evidence from zircon U–Pb dating and geochemistry. Ore Geol. Rev. 2021, 138, 104329. [Google Scholar] [CrossRef]
- Liu, L.; Yang, X.T.; Santosh, M.; Aulbach, S. Neoarchean to Paleoproterozoic continental growth in the southeastern margin of the North China Craton: Geochemical, zircon U–Pb and Hf isotope evidence from the Huoqiu complex. Gondwana Res. 2015, 28, 1002–1018. [Google Scholar] [CrossRef]
- Yang, X.Y.; Wang, B.H.; Du, Z.B.; Wang, Q.C.; Wang, Y.X.; Tu, Z.B.; Zhang, W.L.; Sun, W.D. On the metamorphism of the Huoqiu Group, forming ages and mechanism of BIF and iron deposit in the Huoqiu region, southern margin of North Chingcarton. Acta Petrol. Sin. 2012, 28, 3476–3496. (In Chinese) [Google Scholar]
- Bekker, A.; Planavsky, N.J.; Krapež, B.; Rasmussen, B.; Hofmann, A.; Slack, J.F.; Rouxel, O.J.; Konhauser, K.O. Iron Formations: Their Origins and Implications for Ancient Seawater Chemistry. Treatise Geochem. 2014, 9, 561–628. [Google Scholar]
- Condie, K.C.; Davaille, A.; Aster, R.C.; Arndt, N. Upstairs-downstairs: Supercontinents and large igneous provinces, are they related. Int. Geol. Rev. 2015, 57, 1341–1348. [Google Scholar] [CrossRef]
- Cloud, P. A working model of the primitive Earth. Am. J. Sci. 1972, 272, 537–548. [Google Scholar] [CrossRef]
- Holland, H.D. The Chemical Evolution of the Atmosphere and Oceans; Princeton University Press: Princeton, NJ, USA, 1984. [Google Scholar]
- Canfield, D.E. A new model for Proterozoic ocean chemistry. Nature 1998, 396, 450–453. [Google Scholar] [CrossRef]
- Poulton, S.W.; Fralick, P.W.; Canfield, D.E. Spatial variability in oceanic redox structure 1.8 billion years ago. Nat. Geosci. 2010, 3, 486–490. [Google Scholar] [CrossRef]
- Wang, C.L.; Lechte, M.A.; Reinhard, C.T.; Asael, D.; Cole, D.B.; Halverson, G.P.; Porter, S.M.; Galili, N.; Halevy, I.; Rainbird, R.H. Strong evidence for a weakly oxygenated ocean-atmosphere system during the Proterozoic. Proc. Natl. Acad. Sci. USA 2022, 119, 2116–2123. [Google Scholar] [CrossRef]
- Shang, M.H.; Tang, D.J.; Shi, X.Y.; Zhou, L.M.; Zhou, X.Q.; Song, H.Y.; Jiang, G.Q. A pulse of oxygen increase in the early Mesoproterozoic ocean at ca. 1.57–1.56 Ga. Earth Planet. Sci. Lett. 2019, 527, 115797. [Google Scholar] [CrossRef]
- Planavsky, N.J.; McGoldrick, P.; Scott, C.T.; Li, C.; Reinhard, C.T.; Kelly, A.E.; Chu, X.L.; Bekker, A.; Love, G.D.; Lyons, T.W. Widespread iron-rich conditions in the mid-Proterozoic ocean. Nature 2011, 477, 448–451. [Google Scholar] [CrossRef]
- Berke, E.H.; Spry, P.G.; Heimann, A.; Teale, G.S.; Johnson, B.; von der Handt, A.; Alers, B.; Shallow, J.M. The genesis of metamorphosed Paleoproterozoic massive sulphide occurrences in central Colorado: Geological, mineralogical and sulphur isotope constraints. Geol. Mag. 2023, 160, 1345–1375. [Google Scholar] [CrossRef]
- Martin, D.M.; Li, Z.X.; Nemchin, A.A.; Powell, C.M. A pre-2.2 Ga age for giant hematite ores of the Hamersley Province, Australia? Econ. Geol. 1998, 93, 1084–1090. [Google Scholar] [CrossRef]
- Müller, S.G.; Krapež, B.; Barley, M.E.; Fletcher, I.R. Giant iron-ore deposits of the Hamersley province related to the breakup of Paleoproterozoic Australia: New insights from in situ SHRIMP dating of baddeleyite from mafic intrusions. Geology 2005, 33, 577–580. [Google Scholar] [CrossRef]
- Rasmussen, B.; Fletcher, I.R.; Muhling, J.R.; Thorne, W.S.; Broadbent, G.C. Prolonged history of episodic fluid flow in giant hematite ore bodies: Evidence from in situ U-Pb geochronology of hydrothermal xenotime. Earth Planet. Sci. Lett. 2007, 258, 249–259. [Google Scholar] [CrossRef]
- Morris, R.C.; Horwitz, R.C. The origin of the iron-formation-rich Hamersley Group of Western Australia—Deposition on a platform. Precambrian Res. 1983, 21, 273–297. [Google Scholar] [CrossRef]
- Morris, R.C. Genetic modelling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia. Precambrian Res. 1993, 60, 243–286. [Google Scholar] [CrossRef]
- Morris, R.C.; Kneeshaw, M. Genesis modelling for the Hamersley BIF-hosted iron ores of Western Australia: A critical review. Aust. J. Earth Sci. 2011, 58, 417–451. [Google Scholar] [CrossRef]
- Webb, A.D.; Dickens, G.R.; Oliver, N.H.S. From banded iron-formation to iron ore: Geochemical and mineralogical constraints from across the Hamersley Province, Western Australia. Chem. Geol. 2003, 197, 215–251. [Google Scholar] [CrossRef]
- Li, Z.X.; Bogdanova, S.V.; Collins, A.S.; Davidson, A.; De Waele, B.; Ernst, R.E.; Fitzsimons, I.C.W.; Fuck, R.A.; Gladkochub, D.P.; Jacobs, J. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res. 2008, 160, 179–210. [Google Scholar] [CrossRef]
- Li, Z.X.; Powell, C.M. An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth-Sci. Rev. 2001, 53, 237–277. [Google Scholar] [CrossRef]
Sample NO. | DIP3-1-1 | DIP3-1-2 | DIP3-1-4 | DIP3-1-5 | DIP3-1-6 | ZK4312-181-1 | ZK4312-181-2 | ZK4312-181-3 | ZK4312-181-4 |
---|---|---|---|---|---|---|---|---|---|
Major elements (%) | |||||||||
SiO2 | 80.49 | 78.03 | 79.79 | 77.90 | 80.09 | 57.41 | 56.89 | 53.83 | 60.32 |
Al2O3 | 8.67 | 9.17 | 10.54 | 8.70 | 8.27 | 14.52 | 14.87 | 12.46 | 14.12 |
TiO2 | 1.07 | 1.16 | 1.24 | 1.05 | 1.13 | 1.28 | 1.27 | 1.15 | 1.21 |
TFe2O3 | 0.88 | 1.05 | 1.31 | 1.48 | 1.45 | 12.41 | 11.41 | 16.24 | 10.29 |
CaO | 0.07 | 0.06 | 0.03 | 0.05 | 0.10 | 0.25 | 0.21 | 0.25 | 0.30 |
MgO | 0.81 | 0.60 | 1.04 | 0.57 | 0.68 | 2.93 | 3.41 | 2.55 | 2.91 |
K2O | 2.90 | 2.55 | 4.08 | 2.61 | 2.93 | 4.14 | 4.21 | 3.59 | 4.02 |
Na2O | 0.95 | 1.88 | 0.23 | 1.41 | 0.60 | 0.11 | 0.11 | 0.10 | 0.11 |
MnO | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.02 | 0.02 | 0.02 |
P2O5 | 0.02 | 0.01 | 0.01 | 0.01 | 0.03 | 0.12 | 0.13 | 0.11 | 0.12 |
TS | 2.02 | 2.68 | 0.78 | 3.06 | 2.30 | ||||
LOI | 4.12 | 5.05 | 1.84 | 6.05 | 4.63 | 6.62 | 7.28 | 9.54 | 6.43 |
Total | 99.96 | 99.56 | 100.10 | 99.83 | 99.92 | 99.82 | 99.81 | 99.83 | 99.83 |
Rare earth and trace elements (ppm) | |||||||||
Li | 19.89 | 17.14 | 27.21 | 16.40 | 18.66 | 39.1 | 43.0 | 36.2 | 39.2 |
Be | 2.16 | 2.15 | 2.60 | 1.92 | 2.00 | 2.58 | 2.34 | 2.14 | 2.45 |
Sc | 23.08 | 23.26 | 26.48 | 21.96 | 23.17 | 20.7 | 26.7 | 18.1 | 23.7 |
V | 148.00 | 146.75 | 178.94 | 131.51 | 136.69 | 178.00 | 169.00 | 164.00 | 174.00 |
Cr | 103.69 | 99.96 | 152.22 | 89.94 | 96.98 | 178.00 | 168.00 | 174.00 | 219.00 |
Co | 0.29 | 0.17 | 0.16 | 0.22 | 0.40 | 27.6 | 23.9 | 29.3 | 25.1 |
Ni | 2.70 | 11.57 | 2.24 | 2.71 | 6.77 | 96.3 | 76.9 | 101.00 | 80.0 |
Cu | 4.89 | 5.36 | 5.33 | 4.96 | 5.55 | 101.00 | 69.0 | 71.0 | 74.6 |
Zn | 21.32 | 21.98 | 25.77 | 19.68 | 21.73 | 78.2 | 79.4 | 58.1 | 67.7 |
Ga | 13.39 | 13.62 | 16.83 | 12.52 | 12.62 | 22.9 | 21.6 | 20.1 | 22.9 |
Rb | 108.31 | 92.05 | 140.75 | 98.84 | 105.80 | 160.00 | 152.00 | 139.00 | 158.00 |
Sr | 20.70 | 31.13 | 12.66 | 22.01 | 14.89 | 16.6 | 16.8 | 15.8 | 18.0 |
Zr | 208.43 | 236.43 | 225.64 | 214.34 | 249.83 | 223.00 | 216.00 | 194.00 | 200.00 |
Nb | 20.55 | 22.00 | 20.89 | 19.58 | 21.82 | 25.3 | 23.2 | 20.9 | 22.0 |
Mo | 0.84 | 1.30 | 0.40 | 0.74 | 0.49 | 0.56 | 0.74 | 0.64 | 0.94 |
In | 0.10 | 0.08 | 0.12 | 0.08 | 0.08 | 0.15 | 0.14 | 0.11 | 0.13 |
Cs | 2.74 | 2.45 | 3.86 | 2.84 | 3.14 | 3.54 | 3.77 | 3.17 | 3.48 |
Ba | 486.23 | 444.17 | 697.82 | 419.67 | 440.32 | 648.00 | 593.00 | 551.00 | 628.00 |
Hf | 7.08 | 7.91 | 7.49 | 7.33 | 8.52 | 7.31 | 7.07 | 6.83 | 6.80 |
Ta | 1.60 | 1.72 | 1.58 | 1.55 | 1.73 | 1.69 | 1.61 | 1.51 | 1.47 |
W | 3.30 | 4.17 | 2.68 | 3.58 | 4.29 | 0.91 | 1.46 | 0.46 | 1.09 |
Tl | 0.61 | 0.52 | 0.81 | 0.55 | 0.60 | 1.07 | 1.04 | 0.99 | 1.04 |
Pb | 24.68 | 24.56 | 12.69 | 28.42 | 25.53 | 56.7 | 51.2 | 77.9 | 50.5 |
Bi | 0.56 | 0.93 | 0.21 | 1.10 | 1.64 | 7.82 | 1.70 | 1.48 | 1.73 |
Th | 4.98 | 5.74 | 7.29 | 5.27 | 6.32 | 12.3 | 11.3 | 8.47 | 10.8 |
U | 1.54 | 1.70 | 1.53 | 1.48 | 1.75 | 2.73 | 2.54 | 2.23 | 2.38 |
Y | 25.80 | 31.20 | 41.07 | 34.52 | 34.04 | 30.3 | 30.6 | 26.5 | 29.9 |
La | 30.84 | 29.64 | 31.04 | 38.12 | 39.65 | 35.7 | 32.4 | 48.9 | 68.9 |
Ce | 64.47 | 59.77 | 61.29 | 76.07 | 83.61 | 72.4 | 68.3 | 96.9 | 136.00 |
Pr | 7.62 | 7.02 | 7.48 | 9.12 | 9.64 | 9.28 | 8.83 | 12.6 | 17.5 |
Nd | 29.51 | 27.03 | 28.90 | 36.08 | 37.05 | 34.9 | 33.3 | 47.8 | 66.4 |
Sm | 5.61 | 5.40 | 5.76 | 6.60 | 6.88 | 7.05 | 6.49 | 9.12 | 12.4 |
Eu | 0.92 | 0.98 | 1.03 | 1.14 | 1.12 | 1.28 | 0.89 | 1.18 | 1.61 |
Gd | 4.91 | 5.28 | 6.04 | 6.08 | 5.94 | 6.45 | 5.67 | 7.36 | 9.70 |
Tb | 0.84 | 0.96 | 1.17 | 1.09 | 1.09 | 1.12 | 0.97 | 1.04 | 1.30 |
Dy | 5.08 | 5.89 | 7.45 | 6.57 | 6.95 | 6.20 | 5.54 | 5.07 | 5.90 |
Ho | 1.00 | 1.20 | 1.52 | 1.31 | 1.38 | 1.18 | 1.08 | 0.94 | 1.05 |
Er | 2.72 | 3.24 | 4.01 | 3.39 | 3.55 | 3.25 | 3.07 | 2.78 | 2.96 |
Tm | 0.37 | 0.46 | 0.54 | 0.47 | 0.47 | 0.53 | 0.50 | 0.46 | 0.46 |
Yb | 2.36 | 2.64 | 2.96 | 2.69 | 2.86 | 3.57 | 3.40 | 3.09 | 3.16 |
Lu | 0.36 | 0.38 | 0.42 | 0.38 | 0.40 | 0.50 | 0.48 | 0.44 | 0.44 |
∑REE | 182.4 | 181.08 | 200.68 | 223.63 | 234.62 | 213.71 | 201.52 | 264.18 | 357.68 |
δEu * | 0.52 | 0.55 | 0.53 | 0.54 | 0.52 | 0.89 | 0.69 | 0.68 | 0.69 |
(La/Yb)N * | 9.38 | 8.07 | 7.51 | 10.18 | 9.95 | 0.74 | 0.70 | 1.17 | 1.61 |
No. | Isotopic Ratios | Age (Ma) | Concentration (ppm) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
207Pb/206Pb | ±1σ (%) | 207Pb/235U | ±1σ (%) | 206Pb/238U | ±1σ (%) | 207Pb/206Pb | ±1σ (%) | 207Pb/235U | ±1σ (%) | 206Pb/238U | ±1σ (%) | Th | U | Th/U | |
D1P3-1-6, tuff analyzed by LA–ICP–MS | |||||||||||||||
1 | 0.0752 | 0.0018 | 1.7917 | 0.0454 | 0.1723 | 0.0021 | 1072 | 43.5 | 1042 | 16.5 | 1025 | 23.0 | 1068 | 975 | 1.10 |
2 | 0.0893 | 0.0017 | 2.8991 | 0.0569 | 0.2349 | 0.0033 | 1411 | 39.8 | 1382 | 14.9 | 1360 | 17.4 | 478 | 1085 | 0.44 |
3 | 0.0890 | 0.0017 | 2.7877 | 0.0583 | 0.2265 | 0.0029 | 1406 | 37.0 | 1352 | 15.7 | 1316 | 15.1 | 467 | 595 | 0.79 |
4 | 0.0847 | 0.0014 | 2.2727 | 0.0498 | 0.1940 | 0.0033 | 1309 | 31.0 | 1204 | 15.5 | 1143 | 25.5 | 918 | 2369 | 0.39 |
5 | 0.0754 | 0.0020 | 1.7069 | 0.0468 | 0.1637 | 0.0022 | 1080 | 49.1 | 1011 | 17.6 | 978 | 21.4 | 350 | 1052 | 0.33 |
6 | 0.0879 | 0.0015 | 2.6073 | 0.0502 | 0.2148 | 0.0034 | 1389 | 32.9 | 1303 | 14.2 | 1255 | 18.3 | 1051 | 1680 | 0.63 |
7 | 0.0754 | 0.0013 | 1.7445 | 0.0388 | 0.1674 | 0.0028 | 1080 | 39.0 | 1025 | 14.4 | 998 | 21.7 | 115 | 2506 | 0.05 |
8 | 0.0768 | 0.0016 | 2.0002 | 0.0459 | 0.1886 | 0.0028 | 1117 | 40.7 | 1116 | 15.5 | 1114 | 24.7 | 428 | 878 | 0.49 |
9 | 0.0878 | 0.0019 | 2.7042 | 0.0634 | 0.2228 | 0.0035 | 1389 | 40.7 | 1330 | 17.4 | 1297 | 18.5 | 430 | 633 | 0.68 |
10 | 0.0762 | 0.0015 | 1.7952 | 0.0441 | 0.1706 | 0.0034 | 1102 | 38.9 | 1044 | 16.0 | 1015 | 22.8 | 561 | 1683 | 0.33 |
11 | 0.0849 | 0.0017 | 2.2151 | 0.0496 | 0.1886 | 0.0026 | 1315 | 38.9 | 1186 | 15.7 | 1114 | 25.0 | 888 | 1585 | 0.56 |
12 | 0.0767 | 0.0015 | 1.8251 | 0.0472 | 0.1719 | 0.0031 | 1122 | 37.8 | 1055 | 17.0 | 1023 | 22.8 | 381 | 1743 | 0.22 |
13 | 0.0817 | 0.0015 | 2.3940 | 0.0483 | 0.2118 | 0.0028 | 1239 | 36.6 | 1241 | 14.5 | 1239 | 14.9 | 162 | 689 | 0.24 |
14 | 0.0765 | 0.0019 | 1.8910 | 0.0445 | 0.1790 | 0.0021 | 1107 | 54.6 | 1078 | 15.6 | 1062 | 23.6 | 273 | 508 | 0.54 |
15 | 0.0773 | 0.0016 | 1.9676 | 0.0445 | 0.1841 | 0.0029 | 1129 | 41.2 | 1104 | 15.2 | 1089 | 24.7 | 447 | 940 | 0.48 |
16 | 0.0772 | 0.0016 | 1.9517 | 0.0473 | 0.1827 | 0.0030 | 1128 | 40.7 | 1099 | 16.3 | 1082 | 24.6 | 410 | 1278 | 0.32 |
17 | 0.0756 | 0.0022 | 1.9213 | 0.0548 | 0.1841 | 0.0031 | 1085 | 58.5 | 1089 | 19.1 | 1089 | 24.8 | 141 | 260 | 0.54 |
18 | 0.1207 | 0.0023 | 5.9543 | 0.1265 | 0.3565 | 0.0052 | 1966 | 33.6 | 1969 | 18.5 | 1966 | 24.8 | 461 | 601 | 0.77 |
19 | 0.0812 | 0.0018 | 2.3211 | 0.0554 | 0.2069 | 0.0035 | 1228 | 44.4 | 1219 | 17.0 | 1212 | 18.7 | 452 | 501 | 0.90 |
20 | 0.0859 | 0.0017 | 2.4851 | 0.0518 | 0.2092 | 0.0026 | 1400 | 37.5 | 1268 | 15.1 | 1225 | 13.8 | 567 | 712 | 0.80 |
21 | 0.1026 | 0.0017 | 4.0520 | 0.0864 | 0.2851 | 0.0039 | 1672 | 31.2 | 1645 | 17.4 | 1617 | 19.8 | 544 | 912 | 0.60 |
22 | 0.0880 | 0.0017 | 2.6312 | 0.0558 | 0.2161 | 0.0025 | 1383 | 36.0 | 1309 | 15.6 | 1261 | 13.5 | 383 | 1005 | 0.38 |
23 | 0.0867 | 0.0021 | 2.7877 | 0.0676 | 0.2331 | 0.0038 | 1355 | 52.3 | 1352 | 18.1 | 1351 | 20.0 | 167 | 276 | 0.61 |
24 | 0.1060 | 0.0017 | 4.4422 | 0.0784 | 0.3031 | 0.0036 | 1732 | 29.9 | 1720 | 14.7 | 1707 | 17.9 | 492 | 1014 | 0.49 |
25 | 0.0816 | 0.0017 | 2.2086 | 0.0462 | 0.1961 | 0.0026 | 1235 | 40.7 | 1184 | 14.6 | 1154 | 25.8 | 336 | 751 | 0.45 |
26 | 0.0764 | 0.0019 | 1.9776 | 0.0516 | 0.1877 | 0.0027 | 1106 | 50.0 | 1108 | 17.6 | 1109 | 24.7 | 200 | 464 | 0.43 |
27 | 0.1107 | 0.0021 | 4.4933 | 0.0991 | 0.2938 | 0.0045 | 1811 | 39.4 | 1730 | 18.4 | 1661 | 22.3 | 699 | 916 | 0.76 |
28 | 0.0748 | 0.0022 | 1.8454 | 0.0544 | 0.1789 | 0.0025 | 1062 | 54.6 | 1062 | 19.4 | 1061 | 23.3 | 344 | 407 | 0.84 |
ZK4312-181, ferruginous mudstone analyzed by LA–ICP–MS | |||||||||||||||
1 | 0.0891 | 0.0021 | 3.1215 | 0.0827 | 0.2540 | 0.0060 | 1407 | 45.2 | 1438 | 20.4 | 1459 | 30.6 | 130 | 73 | 0.56 |
2 | 0.0723 | 0.0025 | 1.7616 | 0.0622 | 0.1767 | 0.0043 | 994 | 67.4 | 1031 | 22.9 | 1049 | 23.3 | 56 | 44 | 0.79 |
3 | 0.0808 | 0.0020 | 2.1969 | 0.0601 | 0.1973 | 0.0046 | 1215 | 48.5 | 1180 | 19.1 | 1161 | 24.9 | 187 | 87 | 0.46 |
4 | 0.0802 | 0.0019 | 1.9260 | 0.0501 | 0.1742 | 0.0041 | 1202 | 45.7 | 1090 | 17.4 | 1035 | 22.3 | 572 | 77 | 0.13 |
5 | 0.1129 | 0.0025 | 4.9929 | 0.1247 | 0.3208 | 0.0075 | 1846 | 39.9 | 1818 | 21.1 | 1794 | 36.5 | 123 | 60 | 0.49 |
6 | 0.0806 | 0.0026 | 2.1088 | 0.0703 | 0.1898 | 0.0046 | 1211 | 61.5 | 1152 | 23.0 | 1120 | 24.7 | 103 | 45 | 0.43 |
7 | 0.1197 | 0.0028 | 5.1663 | 0.1337 | 0.3130 | 0.0073 | 1952 | 41.4 | 1847 | 22.0 | 1756 | 36.0 | 222 | 146 | 0.66 |
8 | 0.0750 | 0.0019 | 1.9208 | 0.0516 | 0.1858 | 0.0043 | 1068 | 48.7 | 1088 | 18.0 | 1099 | 23.5 | 151 | 54 | 0.36 |
9 | 0.1043 | 0.0025 | 4.0816 | 0.1058 | 0.2840 | 0.0066 | 1701 | 42.8 | 1651 | 21.1 | 1611 | 33.3 | 95 | 71 | 0.75 |
10 | 0.0947 | 0.0024 | 3.5303 | 0.0980 | 0.2704 | 0.0064 | 1522 | 47.7 | 1534 | 22.0 | 1543 | 32.2 | 69 | 56 | 0.82 |
11 | 0.0764 | 0.0018 | 1.9694 | 0.0512 | 0.1869 | 0.0043 | 1106 | 46.5 | 1105 | 17.5 | 1105 | 23.6 | 191 | 61 | 0.32 |
12 | 0.0963 | 0.0023 | 3.4118 | 0.0895 | 0.2571 | 0.0060 | 1553 | 44.3 | 1507 | 20.6 | 1475 | 30.7 | 104 | 124 | 1.19 |
13 | 0.0787 | 0.0025 | 2.3448 | 0.0785 | 0.2161 | 0.0052 | 1164 | 62.2 | 1226 | 23.8 | 1261 | 27.4 | 49 | 31 | 0.64 |
14 | 0.0792 | 0.0017 | 1.8595 | 0.0444 | 0.1703 | 0.0039 | 1178 | 41.4 | 1067 | 15.8 | 1014 | 21.5 | 551 | 48 | 0.09 |
15 | 0.1286 | 0.0028 | 6.5428 | 0.1573 | 0.3691 | 0.0085 | 2079 | 37.3 | 2052 | 21.2 | 2025 | 40.1 | 133 | 162 | 1.22 |
NO. | t (Ma) | 2σ | 176Yb/177Hf | 176Lu/177Hf * | 176Hf/177Hf * | 2σ | fLu/Hf | εHf (0) | εHf (t) | 2σ | TDM1 (Hf) | TDM2 (Hf) |
01 | 1102 | 30 | 0.0484 | 0.0017 | 0.282439 | 0.000029 | −0.95 | −11.78 | 11.41 | 1.02 | 1170 | 1188 |
02 | 1102 | 30 | 0.0154 | 0.0006 | 0.282443 | 0.000070 | −0.98 | −11.65 | 12.35 | 2.47 | 1132 | 1141 |
03 | 1102 | 30 | 0.0198 | 0.0007 | 0.282332 | 0.000052 | −0.98 | −15.55 | 8.33 | 1.84 | 1290 | 1345 |
04 | 1102 | 30 | 0.0717 | 0.0025 | 0.282263 | 0.000053 | −0.93 | −17.98 | 4.62 | 1.86 | 1450 | 1532 |
05 | 1102 | 30 | 0.0510 | 0.0018 | 0.282271 | 0.000025 | −0.95 | −17.72 | 5.39 | 0.90 | 1413 | 1493 |
06 | 1102 | 30 | 0.0303 | 0.0012 | 0.282263 | 0.000021 | −0.96 | −18.01 | 5.54 | 0.74 | 1402 | 1486 |
07 | 1102 | 30 | 0.0243 | 0.0010 | 0.282391 | 0.000026 | −0.97 | −13.47 | 10.25 | 0.91 | 1215 | 1247 |
08 | 1102 | 30 | 0.0408 | 0.0014 | 0.282345 | 0.000019 | −0.96 | −15.10 | 8.29 | 0.68 | 1294 | 1346 |
09 | 1102 | 30 | 0.0227 | 0.0008 | 0.282199 | 0.000020 | −0.98 | −20.25 | 3.60 | 0.70 | 1475 | 1584 |
10 | 1110 | 30 | 0.0226 | 0.0008 | 0.282207 | 0.000017 | −0.98 | −19.98 | 4.03 | 0.61 | 1465 | 1569 |
11 | 1110 | 30 | 0.0178 | 0.0006 | 0.282267 | 0.000015 | −0.98 | −17.86 | 6.27 | 0.54 | 1376 | 1455 |
12 | 1110 | 30 | 0.0271 | 0.0010 | 0.282330 | 0.000013 | −0.97 | −15.65 | 8.19 | 0.46 | 1304 | 1358 |
13 | 1110 | 30 | 0.0283 | 0.0010 | 0.282181 | 0.000016 | −0.97 | −20.91 | 2.92 | 0.58 | 1511 | 1625 |
14 | 1110 | 30 | 0.0514 | 0.0018 | 0.282305 | 0.000015 | −0.95 | −16.52 | 6.77 | 0.52 | 1365 | 1430 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Kong, F.; Ding, H.; Zhang, J.; Zhu, M. Confirmation of Significant Iron Formations During “Boring Billion” in Altyn Region, China: A Case Study of the Dimunalike Iron Deposit. Minerals 2025, 15, 905. https://doi.org/10.3390/min15090905
Liu W, Kong F, Ding H, Zhang J, Zhu M. Confirmation of Significant Iron Formations During “Boring Billion” in Altyn Region, China: A Case Study of the Dimunalike Iron Deposit. Minerals. 2025; 15(9):905. https://doi.org/10.3390/min15090905
Chicago/Turabian StyleLiu, Wencheng, Fanqi Kong, Haibo Ding, Jing Zhang, and Mingtian Zhu. 2025. "Confirmation of Significant Iron Formations During “Boring Billion” in Altyn Region, China: A Case Study of the Dimunalike Iron Deposit" Minerals 15, no. 9: 905. https://doi.org/10.3390/min15090905
APA StyleLiu, W., Kong, F., Ding, H., Zhang, J., & Zhu, M. (2025). Confirmation of Significant Iron Formations During “Boring Billion” in Altyn Region, China: A Case Study of the Dimunalike Iron Deposit. Minerals, 15(9), 905. https://doi.org/10.3390/min15090905