Modes of Occurrence of Critical Elements (Li-Ga-Nb-Zr-REE) in the Late Paleozoic Coals from the Jungar Coalfield, Northern China: An Approach of Sequential Chemical Extraction
Abstract
1. Introduction
2. Geological Setting
3. Samples and Methods
3.1. Proximate and Ultimate Analysis and Vitrinite Reflectance Determination
3.2. Quantitative Analysis of Minerals
3.3. Concentration Determination of Critical Element in Coal
3.4. Sequential Chemical Extraction
4. Results and Discussion
4.1. Coal Chemistry and Coal Rank
4.2. Minerals Found in Coal
4.3. Concentrations of Critical Elements in Coal and SCE Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dai, S.; Yan, X.; Ward, C.R.; Hower, J.C.; Zhao, L.; Wang, X.; Zhao, L.; Ren, D.; Finkelman, R.B. Valuable elements in Chinese coals: A review. Int. Geol. Rev. 2018, 60, 590–620. [Google Scholar] [CrossRef]
- Dai, S.; Finkelman, R.B. Coal geology in China: An overview. Int. Geol. Rev. 2017, 60, 531–534. [Google Scholar] [CrossRef]
- Dai, S.; Bechtel, A.; Eble, C.F.; Flores, R.M.; French, D.; Graham, I.T.; Hood, M.M.; Hower, J.C.; Korasidis, V.A.; Moore, T.A.; et al. Recognition of peat depositional environments in coal: A review. Int. J. Coal Geol. 2020, 219, 103383. [Google Scholar] [CrossRef]
- Li, S.; Qin, Y.; Tang, D.; Shen, J.; Wang, J.; Chen, S. A comprehensive review of deep coalbed methane and recent developments in China. Int. J. Coal Geol. 2023, 279, 104369. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Dai, S.; French, D. The importance of minerals in coal as the hosts of chemical elements: A review. Int. J. Coal Geol. 2019, 212, 103251. [Google Scholar] [CrossRef]
- Wang, R.; Dai, S.; French, D.; Graham, I.T.; Nechaev, V.P.; Finkelman, R.B. Near surface lithium isotopic fractionation and lithium enrichment in coal-hosted Li-rich clays from the South China Block. Int. J. Coal Geol. 2025, 306, 104803. [Google Scholar] [CrossRef]
- Zhou, M.; Zhao, L.; Wang, X.; Nechaev, V.P.; French, D.; Spiro, B.F.; Graham, I.T.; Hower, J.C.; Dai, S. Mineralogy and geochemistry of the Late Triassic coal from the Caotang mine, northeastern Sichuan Basin, China, with emphasis on the enrichment of the critical element lithium. Ore Geol. Rev. 2021, 139, 104582. [Google Scholar] [CrossRef]
- Zhang, S.; Xiu, W.; Sun, B.; Liu, Q. Provenance of multi-stage volcanic ash recorded in the Late Carboniferous coal in the Jungar Coalfield, North China, and their contribution to the enrichment of critical metals in the coal. Int. J. Coal Geol. 2023, 273, 104265. [Google Scholar] [CrossRef]
- Xu, N.; Finkelman, R.B.; Xu, C.; Dai, S. What do coal geochemistry statistics really mean? Fuel 2020, 267, 117084. [Google Scholar] [CrossRef]
- Arbuzov, S.I.; Chekryzhov, I.Y.; Verkhoturov, A.A.; Spears, D.A.; Melkiy, V.A.; Zarubina, N.V.; Blokhin, M.G. Geochemistry and rare-metal potential of coals of the Sakhalin coal basin, Sakhalin island, Russia. Int. J. Coal Geol. 2023, 268, 104197. [Google Scholar] [CrossRef]
- Hower, J.C.; Groppo, J.G.; Eble, C.F.; Hopps, S.D.; Morgan, T.D. Was coal metamorphism an influence on the minor element chemistry of the Middle Pennsylvanian Springfield (No. 9) coal in Western Kentucky? Int. J. Coal Geol. 2023, 274, 104295. [Google Scholar] [CrossRef]
- Yang, P.; Dai, S.; Nechaev, V.P.; Song, X.; Chekryzhov, I.Y.; Tarasenko, I.A.; Tian, X.; Yao, M.; Kang, S.; Zheng, J. Modes of occurrence of critical metals (Nb-Ta-Zr-Hf-REY-Ga) in altered volcanic ashes in the Xuanwei Formation, eastern Yunnan Province, SW China: A quantitative evaluation based on sequential chemical extraction. Ore Geol. Rev. 2023, 160, 105617. [Google Scholar] [CrossRef]
- Dai, S.; Wang, X.; Seredin, V.V.; Hower, J.C.; Ward, C.R.; O’Keefe, J.M.K.; Huang, W.; Li, T.; Li, X.; Liu, H.; et al. Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications. Int. J. Coal Geol. 2012, 90, 72–99. [Google Scholar] [CrossRef]
- Wei, Q.; Dai, S.; Lefticariu, L.; Costin, G. Electron probe microanalysis of major and trace elements in coals and their low-temperature ashes from the Wulantuga and Lincang Ge ore deposits, China. Fuel 2018, 215, 1–12. [Google Scholar] [CrossRef]
- Wei, Q.; Cui, C.; Dai, S. Organic-association of Ge in the coal-hosted ore deposits: An experimental and theoretical approach. Ore Geol. Rev. 2020, 117, 103291. [Google Scholar] [CrossRef]
- Dai, S.; Seredin, V.V.; Ward, C.R.; Jiang, J.; Hower, J.C.; Song, X.; Jiang, Y.; Wang, X.; Gornostaeva, T.; Li, X.; et al. Composition and modes of occurrence of minerals and elements in coal combustion products derived from high-Ge coals. Int. J. Coal Geol. 2014, 121, 79–97. [Google Scholar] [CrossRef]
- Etschmann, B.; Liu, W.; Li, K.; Dai, S.; Reith, F.; Falconer, D.; Kerr, G.; Paterson, D.; Howard, D.; Kappen, P.; et al. Enrichment of germanium and associated arsenic and tungsten in coal and roll-front uranium deposits. Chem. Geol. 2017, 463, 29–49. [Google Scholar] [CrossRef]
- Seredin, V.V.; Chekryzhov, I.Y. Ore Potentiality of the Vanchin Graben, Primorye, Russia. Geol. Ore Deposits 2011, 53, 202–220. [Google Scholar] [CrossRef]
- Deng, W.; Wen, H.; Ling, K.; Du, S.; Luo, C.; Yang, Y. Enrichment mechanisms of Nb, Zr, and REY in the Late Permian coal-bearing strata in western Guizhou, SW China. Int. J. Coal Geol. 2024, 287, 104517. [Google Scholar] [CrossRef]
- Wang, N.; Dai, S.; Nechaev, V.P.; French, D.; Graham, I.T.; Song, X.; Chekryzhov, I.Y.; Tarasenko, I.A.; Budnitskiy, S.Y. Detrital U-Pb zircon geochronology, zircon Lu-Hf and Sr-Nd isotopic signatures of the Lopingian volcanic-ash-derived Nb-Zr-REY-Ga mineralized horizons from eastern Yunnan, SW China. Lithos 2024, 468–469, 107494. [Google Scholar] [CrossRef]
- Wang, N.; Dai, S.; Wang, X.; Nechaev, V.P.; French, D.; Graham, I.T.; Zhao, L.; Song, X. New insights into the origin of Middle to Late Permian volcaniclastics (Nb-Zr-REY-Ga-rich horizons) from eastern Yunnan, SW China. Lithos 2022, 420–421, 106702. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, L.; French, D.; Graham, I.; Wei, Q.; Dai, S.; Feng, L. Revisiting sustainable resources in the combustion products of alumina-rich coal: Critical metal (Li, Ga, Nb, and REY) potential of ash from the Togtoh Power Plant, Inner Mongolia, China. Sci. Total Environ. 2024, 950, 175056. [Google Scholar] [CrossRef] [PubMed]
- Seredin, V.V.; Dai, S. Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol. 2012, 94, 67–93. [Google Scholar] [CrossRef]
- Seredin, V.V.; Dai, S.; Sun, Y.; Chekryzhov, I.Y. Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Appl. Geochem. 2013, 31, 1–11. [Google Scholar] [CrossRef]
- Dai, S.; Yang, J.; Ward, C.R.; Hower, J.C.; Liu, H.; Garrison, T.M.; French, D.; O’Keefe, J.M.K. Geochemical and mineralogical evidence for a coal-hosted uranium deposit in the Yili Basin, Xinjiang, northwestern China. Ore Geol. Rev. 2015, 70, 1–30. [Google Scholar] [CrossRef]
- Seredin, V.V.; Finkelman, R.B. Metalliferous coals: A review of the main genetic and geochemical types. Int. J. Coal Geol. 2008, 76, 253–289. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.-L.; Li, S.; Jiang, Y. Mineralogy and geochemistry of the No. 6 coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. Int. J. Coal Geol. 2006, 66, 253–270. [Google Scholar] [CrossRef]
- Dai, S.; Li, D.; Chou, C.-L.; Zhao, L.; Zhang, Y.; Ren, D.; Ma, Y.; Sun, Y. Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. Int.J. Coal Geol. 2008, 74, 185–202. [Google Scholar] [CrossRef]
- Dai, S.; Jiang, Y.; Ward, C.R.; Gu, L.; Seredin, V.V.; Liu, H.; Zhou, D.; Wang, X.; Sun, Y.; Zou, J.; et al. Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield. Int. J. Coal Geol. 2012, 98, 10–40. [Google Scholar] [CrossRef]
- Dai, S.; Zou, J.; Jiang, Y.; Ward, C.R.; Wang, X.; Li, T.; Xue, W.; Liu, S.; Tian, H.; Sun, X.; et al. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai Mine, Daqingshan Coalfield, Inner Mongolia, China: Modes of occurrence and origin of diaspore, gorceixite, and ammonian illite. Int. J. Coal Geol. 2012, 94, 250–270. [Google Scholar] [CrossRef]
- Wang, Q.; Dai, S.; French, D.; Spiro, B.; Graham, I.; Liu, J. Hydrothermally-altered coal from the Daqingshan Coalfield, Inner Mongolia, northern China: Evidence from stable isotopes of C within organic matter and C-O-Sr in associated carbonates. Int. J. Coal Geol. 2023, 276, 104330. [Google Scholar] [CrossRef]
- Wang, Q.; Dai, S.; Nechaev, V.P.; French, D.; Graham, I.; Zhao, L.; Zhang, S.; Liang, Y.; Hower, J.C. Transformation of organic to inorganic nitrogen in NH4+-illite-bearing and Ga–Al–REE-rich bituminous coals: Evidence from nitrogen isotopes and functionalities. Chem. Geol. 2024, 660, 122169. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, S.; Nechaev, V.P.; Nechaeva, E.V.; Graham, I.T.; French, D.; Sun, J. Enrichment of critical elements (Nb-Ta-Zr-Hf-REE) within coal and host rocks from the Datanhao mine, Daqingshan Coalfield, northern China. Ore Geol. Rev. 2019, 111, 102951. [Google Scholar] [CrossRef]
- Dai, S.; Li, T.; Jiang, Y.; Ward, C.R.; Hower, J.C.; Sun, J.; Liu, J.; Song, H.; Wei, J.; Li, Q.; et al. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Hailiushu Mine, Daqingshan Coalfield, Inner Mongolia, China: Implications of sediment-source region and acid hydrothermal solutions. Int. J. Coal Geol. 2015, 137, 92–110. [Google Scholar] [CrossRef]
- Di, S.; Dai, S.; Nechaev, V.P.; French, D.; Graham, I.T.; Zhao, L.; Finkelman, R.B.; Wang, H.; Zhang, S.; Hou, Y. Mineralogy and enrichment of critical elements (Li and Nb-Ta-Zr-Hf-Ga) in the Pennsylvanian coals from the Antaibao Surface Mine, Shanxi Province, China: Derivation of pyroclastics and sediment-source regions. Int. J. Coal Geol. 2023, 273, 104262. [Google Scholar] [CrossRef]
- Di, S.; Dai, S.; Nechaev, V.P.; Zhang, S.; French, D.; Graham, I.T.; Spiro, B.; Finkelman, R.B.; Hou, Y.; Wang, Y.; et al. Granite-bauxite provenance of abnormally enriched boehmite and critical elements (Nb, Ta, Zr, Hf and Ga) in coals from the Eastern Surface Mine, Ningwu Coalfield, Shanxi Province, China. J. Geochem. Explor. 2022, 239, 107016. [Google Scholar] [CrossRef]
- Liu, C.; Chang, Y.; Sun, B.; Wang, X.; Qi, F. Detrital material controlling the enrichment of critical element Li in No. 9 coal seam of the Ningwu Coalfield, northeastern Shanxi Province, China: Heavy mineral and detrital zircon constraints. Int. J. Coal Geol. 2024, 294, 104605. [Google Scholar] [CrossRef]
- Sun, B.; Guo, Z.; Liu, C.; Kong, Y.; French, D.; Zhu, Z. Lithium isotopic composition of two high-lithium coals and their fractions with different lithium occurrence modes, Shanxi Province, China. Int. J. Coal Geol. 2023, 277, 104338. [Google Scholar] [CrossRef]
- Sun, B.; Zeng, F.; Moore, T.A.; Rodrigues, S.; Liu, C.; Wang, G. Geochemistry of two high-lithium content coal seams, Shanxi Province, China. Int. J. Coal Geol. 2022, 260, 104059. [Google Scholar] [CrossRef]
- Dai, S.; Zhao, L.; Peng, S.; Chou, C.-L.; Wang, X.; Zhang, Y.; Li, D.; Sun, Y. Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China. Int. J. Coal Geol. 2010, 81, 320–332. [Google Scholar] [CrossRef]
- Kolker, A.; Scott, C.; Hower, J.C.; Vazquez, J.A.; Lopano, C.L.; Dai, S. Distribution of rare earth elements in coal combustion fly ash, determined by SHRIMP-RG ion microprobe. Int. J. Coal Geol. 2017, 184, 1–10. [Google Scholar] [CrossRef]
- Dai, S.; Finkelman, R.B. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol. 2018, 186, 155–164. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Zhao, W. Coal-Hosted Al-Ga-Li-REE Deposits in China: A Review. Minerals 2025, 15, 74. [Google Scholar] [CrossRef]
- Ward, C.R. Analysis, origin and significance of mineral matter in coal: An updated review. Int. J. Coal Geol. 2016, 165, 1–27. [Google Scholar] [CrossRef]
- Liu, J.; Spiro, B.F.; Dai, S.; French, D.; Graham, I.T.; Wang, X.; Zhao, L.; Zhao, J.; Zeng, R. Strontium isotopes in high- and low-Ge coals from the Shengli Coalfield, Inner Mongolia, northern China: New indicators for Ge source. Int. J. Coal Geol. 2021, 233, 103642. [Google Scholar] [CrossRef]
- Dai, S.; Finkelman, R.B.; French, D.; Hower, J.C.; Graham, I.T.; Zhao, F. Modes of occurrence of elements in coal: A critical evaluation. Earth-Sci. Rev. 2021, 222, 103815. [Google Scholar] [CrossRef]
- Liu, J.; Ward, C.R.; Graham, I.T.; French, D.; Dai, S.; Song, X. Modes of occurrence of non-mineral inorganic elements in lignites from the Mile Basin, Yunnan Province, China. Fuel 2018, 222, 146–155. [Google Scholar] [CrossRef]
- Liu, J.; Dai, S.; He, X.; Hower, J.C.; Sakulpitakphon, T. Size-Dependent Variations in Fly Ash Trace Element Chemistry: Examples from a Kentucky Power Plant and with Emphasis on Rare Earth Elements. Energy Fuels 2017, 31, 438–447. [Google Scholar] [CrossRef]
- Jiu, B.; Huang, W.; Spiro, B.; Hao, R.; Mu, N.; Wen, L.; Hao, H. Distribution of Li, Ga, Nb, and REEs in coal as determined by LA-ICP-MS imaging: A case study from Jungar coalfield, Ordos Basin, China. Int. J. Coal Geol. 2023, 267, 104184. [Google Scholar] [CrossRef]
- Jiu, B.; Jin, Z.; Wang, Z.; Liu, R.; Hu, Q. Modes of occurrence of gallium in Al-Ga-rich coals in the Jungar Coalfield, Ordos Basin, China: Insights from LA-ICP-MS data. Int. J. Coal Geol. 2024, 282, 104436. [Google Scholar] [CrossRef]
- Xu, N.; Zhu, W.; Wang, R.; Li, Q.; Wang, Z.; Finkelman, R.B. Application of self-organizing maps to coal elemental data. Int. J. Coal Geol. 2023, 277, 104358. [Google Scholar] [CrossRef]
- ASTM D3173-11; Standard Test Method for Moisture in the Analysis Sample of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2011.
- ASTM D3175-11; Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2011.
- ASTM D3174-11; Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal. ASTM International: West Conshohocken, PA, USA, 2011.
- ASTM D3177-02; Standard Test Methods for Total Sulfur in the Analysis Sample of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2002.
- ASTM D2492-02; Standard Test Method for Forms of Sulfur in Coal. ASTM International: West Conshohocken, PA, USA, 2002.
- ASTM D2797/D2797M-11a; Standard Test Method for Microscopical Determination of the Maceral Composition of Coal. ASTM International: West Conshohocken, PA, USA, 2011.
- Ward, C.R.; Spears, D.A.; Booth, C.A.; Staton, I.; Gurba, L.W. Mineral matter and trace elements in coals of the Gunnedah Basin, New South Wales, Australia. Int. J. Coal Geol. 1999, 40, 281–308. [Google Scholar] [CrossRef]
- Ruan, C.; Ward, C.R. Quantitative X-ray powder diffraction analysis of clay minerals in Australian coals using Rietveld methods. Appl. Clay Sci. 2002, 21, 227–240. [Google Scholar] [CrossRef]
- Chen, J.; Chen, P.; Yao, D.; Liu, Z.; Wu, Y.; Liu, W.; Hu, Y. Mineralogy and geochemistry of Late Permian coals from the Donglin Coal Mine in the Nantong coalfield in Chongqing, southwestern China. Int. J. Coal Geol. 2015, 149, 24–40. [Google Scholar] [CrossRef]
- Dai, S.; Wang, P.; Ward, C.R.; Tang, Y.; Song, X.; Jiang, J.; Hower, J.C.; Li, T.; Seredin, V.V.; Wagner, N.J.; et al. Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang, Yunnan, southwestern China: Key role of N2-CO2-mixed hydrothermal solutions. Int. J. Coal Geol. 2015, 152, 19–46. [Google Scholar] [CrossRef]
- Hou, Y.; Dai, S.; Nechaev, V.P.; Finkelman, R.B.; Wang, H.; Zhang, S.; Di, S. Mineral matter in the Pennsylvanian coal from the Yangquan Mining District, northeastern Qinshui Basin, China: Enrichment of critical elements and a Se-Mo-Pb-Hg assemblage. Int. J. Coal Geol. 2023, 266, 104178. [Google Scholar] [CrossRef]
- Shen, M.; Dai, S.; French, D.; Graham, I.T.; Spiro, B.F.; Wang, N.; Tian, X. Geochemical and mineralogical evidence for the formation of siderite in late Permian coal-bearing strata from western Guizhou, SW China. Chem. Geol. 2023, 637, 121675. [Google Scholar] [CrossRef]
- Dai, S.; Liu, J.; Ward, C.R.; Hower, J.C.; Xie, P.; Jiang, Y.; Hood, M.M.; O’Keefe, J.M.K.; Song, H. Petrological, geochemical, and mineralogical compositions of the low-Ge coals from the Shengli Coalfield, China: A comparative study with Ge-rich coals and a formation model for coal-hosted Ge ore deposit. Ore Geol. Rev. 2015, 71, 318–349. [Google Scholar] [CrossRef]
- Dai, S.; Wang, X.; Zhou, Y.; Hower, J.C.; Li, D.; Chen, W.; Zhu, X.; Zou, J. Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the late Permian coals from the Songzao Coalfield, Chongqing, Southwest China. Chem. Geol. 2011, 282, 29–44. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Z.; Yan, X.; Ji, D.; Yang, Y.; Hu, L. Modes of occurrence of highly-elevated trace elements in superhigh-organic-sulfur coals. Fuel 2015, 156, 190–197. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Palmer, C.A.; Wang, P. Quantification of the modes of occurrence of 42 elements in coal. Int. J. Coal Geol. 2018, 185, 138–160. [Google Scholar] [CrossRef]
- Dai, S.; Li, D.; Ren, D.; Tang, Y.; Shao, L.; Song, H. Geochemistry of the late Permian No. 30 coal seam, Zhijin Coalfield of Southwest China: Influence of a siliceous low-temperature hydrothermal fluid. Appl. Geochem. 2004, 19, 1315–1330. [Google Scholar] [CrossRef]
- Yan, X.; Dai, S.; Graham, I.T.; He, X.; Shan, K.; Liu, X. Determination of Eu concentrations in coal, fly ash and sedimentary rocks using a cation exchange resin and inductively coupled plasma mass spectrometry (ICP-MS). Int. J. Coal Geol. 2018, 191, 152–156. [Google Scholar] [CrossRef]
- Dai, S.; Finkelman, R.B.; Hower, J.C.; French, D.; Graham, I.T.; Zhao, L. Inorganic Geochemistry of Coal, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2023; p. 438. [Google Scholar]
- Berti, D.; Groppo, J.G.; Joshi, P.; Preda, D.V.; Gamliel, D.P.; Beers, T.; Schrock, M.; Hopps, S.D.; Morgan, T.D.; Zechmann, B.; et al. Electron microbeam investigations of the spent ash from the pilot-scale acid extraction of rare earth elements from a beneficiated Kentucky fly ash. Int. J. Coal Geol. 2025, 303, 104738. [Google Scholar] [CrossRef]
- Huggins, F.E.; Huffman, G.P. How do lithophile elements occur in organic association in bituminous coals? Int. J. Coal Geol. 2004, 58, 193–204. [Google Scholar] [CrossRef]
- Huggins, F.E.; Huffman, G.P.; Kolker, A.; Mroczkowski, S.J.; Palmer, C.A.; Finkelman, R.B. Combined application of XAFS spectroscopy and sequential leaching for determination of arsenic speciation in coal. Energy Fuels 2002, 16, 1167–1172. [Google Scholar] [CrossRef]
- Huggins, F.E.; Seidu, L.B.A.; Shah, N.; Huffman, G.P.; Honaker, R.Q.; Kyger, J.R.; Higgins, B.L.; Robertson, J.D.; Pal, S.; Seehra, M.S. Elemental modes of occurrence in an Illinois #6 coal and fractions prepared by physical separation techniques at a coal preparation plant. Int. J. Coal Geol. 2009, 78, 65–76. [Google Scholar] [CrossRef]
- Ji, Z.; Mu, J.; Yao, S.; Li, W. The K isotopic signatures of coals: A reconnaissance study. Int. J. Coal Geol. 2025, 304, 104770. [Google Scholar] [CrossRef]
- Predeanu, G.; Valentim, B.; Popescu, L.G.; Abagiu, A.T.; Anghelescu, L.; Bălănescu, M.N.; Białecka, B.; Bontempi, E.; Cempa, M.; Drăgoescu, M.F.; et al. Characterization of the ash samples before and after thermal processing aiming phosphorus extraction and residues valorization. Int. J. Coal Geol. 2025, 307, 104808. [Google Scholar] [CrossRef]
- Riley, K.W.; French, D.H.; Farrell, O.P.; Wood, R.A.; Huggins, F.E. Modes of occurrence of trace and minor elements in some Australian coals. Int. J. Coal Geol. 2012, 94, 214–224. [Google Scholar] [CrossRef]
- Senior, C.L.; Zeng, T.; Che, J.; Ames, M.R.; Sarofim, A.F.; Olmez, I.; Huggins, F.E.; Shah, N.; Huffman, G.P.; Kolker, A.; et al. Distribution of trace elements in selected pulverized coals as a function of particle size and density. Fuel Process. Technol. 2000, 63, 215–241. [Google Scholar] [CrossRef]
- Wang, Z.; Dai, S.; Zou, J.; French, D.; Graham, I.T. Rare earth elements and yttrium in coal ash from the Luzhou power plant in Sichuan, Southwest China: Concentration, characterization and optimized extraction. Int. J. Coal Geol. 2019, 203, 1–14. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, X.; Deng, F.; Guo, X.; Han, Y.; Sheng, K.; Mu, Y.; Yang, Q. Modes of occurrence of rare earth elements and yttrium in bituminous coals with different ranks from the Hedong Coalfield, northern China. Int. J. Coal Geol. 2025, 308, 104833. [Google Scholar] [CrossRef]
- GB/T 15224.1-2010; Classification for Quality of Coal—Part 1: Ash. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China: Beijing, China, 2010.
- ASTM D388-12; Standard Classification of Coals by Rank. ASTM International: West Conshohocken, PA, USA, 2012.
- Dai, S.; Ren, D.; Chou, C.-L.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Ketris, M.P.; Yudovich, Y.E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- Dai, S.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Xing, Y.; Zhang, W.; Song, W.; Wang, P. Enrichment of U-Se-Mo-Re-V in coals preserved within marine carbonate successions: Geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Miner. Deposita 2015, 50, 159–186. [Google Scholar] [CrossRef]
- Zhang, S.; Yuan, T.; Sun, B.; Li, L.; Ma, X.; Shi, S.; Liu, Q. Formation of boehmite through desilication of volcanic-ash-altered kaolinite and its retention for gallium: Contribution to enrichment of aluminum and gallium in coal. Int. J. Coal Geol. 2024, 281, 104404. [Google Scholar] [CrossRef]
- Dai, S.; Hower, J.C.; Finkelman, R.B.; Graham, I.T.; French, D.; Ward, C.R.; Eskenazy, G.; Wei, Q.; Zhao, L. Organic associations of non-mineral elements in coal: A review. Int. J. Coal Geol. 2020, 218, 103347. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Pan, Z.; Pan, W.; Yin, X.; Chai, P.; Pan, S.; Yang, Q. Mineralogical and geochemical characteristics of the Permian coal from the Qinshui Basin, northern China, with emphasis on lithium enrichment. Int. J. Coal Geol. 2019, 214, 103254. [Google Scholar] [CrossRef]
- Pollock, S.M.; Goodarzi, F.; Riediger, C.L. Mineralogical and elemental variation of coal from Alberta, Canada: An example from the No. 2 seam, Genesee Mine. Int. J. Coal Geol. 2000, 43, 259–286. [Google Scholar] [CrossRef]
- Lewińska-Preis, L.; Fabiańska, M.J.; Ćmiel, S.; Kita, A. Geochemical distribution of trace elements in Kaffioyra and Longyearbyen coals, Spitsbergen, Norway. Int. J. Coal Geol. 2009, 80, 211–223. [Google Scholar] [CrossRef]
- Song, J.; Sun, B.; Rodrigues, S.; Liu, C.; Guo, Z.; French, D. Li concentration and isotopes in kaolinite and organic of coals determined by secondary ion mass spectrometry. Int. J. Coal Geol. 2025, 306, 104815. [Google Scholar] [CrossRef]
- Swaine, D.J. Trace Elements in Coal, 1st ed.; Butterworth: London, UK, 1990. [Google Scholar]
- Mastalerz, M.; Drobniak, A. Gallium and germanium in selected Indiana coals. Int. J. Coal Geol. 2012, 94, 302–313. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Tang, Y.; Yue, M.; Hao, L. Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. Int. J. Coal Geol. 2005, 61, 119–137. [Google Scholar] [CrossRef]
- Hower, J.C.; Gebremedhin, M.; Zourarakis, D.P.; Finkelman, R.B.; French, D.; Graham, I.T.; Schobert, H.H.; Zhao, L.; Dai, S. Is hyperaccumulation a viable hypothesis for organic associations of minor elements in coals? Earth-Sci. Rev. 2024, 254, 104802. [Google Scholar] [CrossRef]
- Liu, M.; Yin, W.; Jiang, H.; Wang, Y.; Hu, Q.; Zhao, T.; Yao, Q.; Fu, S.; Zhou, G. Synthesis of boehmite-type GaOOH: A new polymorph of Ga oxyhydroxide and geochemical implications. Am. Mineral. 2023, 108, 1773–1780. [Google Scholar] [CrossRef]
- Wang, J.; Yamada, O.; Nakazato, T.; Zhang, Z.; Suzuki, Y.; Sakanishi, K. Statistical analysis of the concentrations of trace elements in a wide diversity of coals and its implications for understanding elemental modes of occurrence. Fuel 2008, 87, 2211–2222. [Google Scholar] [CrossRef]
- Wang, R.; Dai, S.; Spiro, B.F.; Nechaev, V.P.; French, D.; Graham, I.T.; Zhou, M.; Liu, J.; Di, S.; Tian, X. Multi-stage hydrothermal activity affecting the early Jurassic K7 coal seam from the Gaosheng coal Mine, Sichuan Basin, southwest China: Evidence from whole-rock geochemistry and C-O-Sr isotopes in authigenic carbonates. J. Asian Earth Sci. 2025, 278, 106410. [Google Scholar] [CrossRef]
- Xu, N.; Li, F.; Zhu, W.; Engle, M.A.; Kong, J.; Li, P.; Wang, Q.; Shen, L.; Finkelman, R.B.; Dai, S. Predicting the Concentrations of Rare Earth Elements and Yttrium in Coal Using Self-Organizing Map. Nat. Resour. Res. 2025, 34, 1467–1479. [Google Scholar] [CrossRef]
- Li, J.; Zhuang, X.; Yuan, W.; Liu, B.; Querol, X.; Font, O.; Moreno, N.; Li, J.; Gang, T.; Liang, G. Mineral composition and geochemical characteristics of the Li-Ga-rich coals in the Buertaohai-Tianjiashipan mining district, Jungar Coalfield, Inner Mongolia. Int. J. Coal Geol. 2016, 167, 157–175. [Google Scholar] [CrossRef]
- Finkelman, R.B. Trace and minor elements in coal. In Organic Geochemistry, 1st ed.; Engel, M.H., Macko, S.A., Eds.; Plenum: New York, NY, USA, 1993; pp. 593–607. [Google Scholar]
- Dai, S.; Chekryzhov, I.Y.; Seredin, V.V.; Nechaev, V.P.; Graham, I.T.; Hower, J.C.; Ward, C.R.; Ren, D.; Wang, X. Metalliferous coal deposits in East Asia (Primorye of Russia and South China): A review of geodynamic controls and styles of mineralization. Gondwana Res. 2016, 29, 60–82. [Google Scholar] [CrossRef]
- Crowley, S.S.; Stanton, R.W.; Ryer, T.A. The effects of volcanic ash on the maceral and chemical composition of the C coal bed, Emery Coal Field, Utah. Org. Geochem. 1989, 14, 315–331. [Google Scholar] [CrossRef]
- Hower, J.C.; Eble, C.F.; Dai, S.; Belkin, H.E. Distribution of rare earth elements in eastern Kentucky coals: Indicators of multiple modes of enrichment? Int. J. Coal Geol. 2016, 160, 73–81. [Google Scholar] [CrossRef]
- Yang, T.; Shen, Y.; Lu, L.; Jin, J.; Huang, W.; Li, F.; Zhang, Y.; Hu, J.; Zeng, L. Geological factors for the enrichment of critical elements within the Lopingian (Late Permian) coal-bearing strata in western Guizhou, Southwestern China: Constrained with whole-rock and zircon geochemistry. Int. J. Coal Geol. 2024, 282, 104441. [Google Scholar] [CrossRef]
- Fu, B.; Xu, G.; Hower, J.C.; Cao, Y.; Huang, Y.; Si, L.; Xian, L.; Luo, G.; Liu, G.; Hu, G.; et al. Recognition and (semi-)quantitative analysis of REE-bearing minerals in coal using automated scanning electron microscopy. Int. J. Coal Geol. 2024, 282, 104443. [Google Scholar] [CrossRef]
- Dai, S.; Luo, Y.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Zhao, L.; Liu, S.; Zhao, C.; Tian, H.; Zou, J. Revisiting the late Permian coal from the Huayingshan, Sichuan, southwestern China: Enrichment and occurrence modes of minerals and trace elements. Int. J. Coal Geol. 2014, 122, 110–128. [Google Scholar] [CrossRef]
- Dai, S.; Xie, P.; Ward, C.R.; Yan, X.; Guo, W.; French, D.; Graham, I.T. Anomalies of rare metals in Lopingian super-high-organic-sulfur coals from the Yishan Coalfield, Guangxi, China. Ore Geol. Rev. 2017, 88, 235–250. [Google Scholar] [CrossRef]
- Chatterjee, S.; Karacan, C.Ö.; Mastalerz, M. Exploring the uncertainty of machine learning models and geostatistical mapping of rare earth element potential in Indiana coals, USA. Int. J. Coal Geol. 2024, 282, 104419. [Google Scholar] [CrossRef]
- Dai, S.; Xie, P.; Jia, S.; Ward, C.R.; Hower, J.C.; Yan, X.; French, D. Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo Coalfield, Chongqing, China: Genetic implications from geochemical and mineralogical data. Ore Geol. Rev. 2017, 80, 1–17. [Google Scholar] [CrossRef]
- Dai, S.; Zhang, W.; Ward, C.R.; Seredin, V.V.; Hower, J.C.; Li, X.; Song, W.; Wang, X.; Kang, H.; Zheng, L.; et al. Mineralogical and geochemical anomalies of late Permian coals from the Fusui Coalfield, Guangxi Province, southern China: Influences of terrigenous materials and hydrothermal fluids. Int. J. Coal Geol. 2013, 105, 60–84. [Google Scholar] [CrossRef]
- Liu, J.; Dai, S.; Berti, D.; Eble, C.F.; Dong, M.; Gao, Y.; Hower, J.C. Rare Earth and Critical Element Chemistry of the Volcanic Ash-fall Parting in the Fire Clay Coal, Eastern Kentucky, USA. Clays Clay Miner. 2023, 71, 309–339. [Google Scholar] [CrossRef]
- Liu, J.; Dai, S.; Song, H.; Nechaev, V.P.; French, D.; Spiro, B.F.; Graham, I.T.; Hower, J.C.; Shao, L.; Zhao, J. Geological factors controlling variations in the mineralogical and elemental compositions of Late Permian coals from the Zhijin-Nayong Coalfield, western Guizhou, China. Int. J. Coal Geol. 2021, 247, 103855. [Google Scholar] [CrossRef]
- Liu, J.; Nechaev, V.P.; Dai, S.; Song, H.; Nechaeva, E.V.; Jiang, Y.; Graham, I.T.; French, D.; Yang, P.; Hower, J.C. Evidence for multiple sources for inorganic components in the Tucheng coal deposit, western Guizhou, China and the lack of critical-elements. Int. J. Coal Geol. 2020, 223, 103468. [Google Scholar] [CrossRef]
- Shen, M.; Dai, S.; Nechaev, V.P.; Graham, I.T.; Hower, J.C.; Liu, S.; Tarasenko, I.A.; Zin’kov, A.V.; Chekryzhov, I.Y.; Antonchenko, V.V.; et al. Mineralogy and geochemistry of altered Emeishan basaltic volcaniclastics with respect to their critical element mineralization. J. Geochem. Explor. 2024, 264, 107527. [Google Scholar] [CrossRef]
- Shang, N.; Liu, J.; Dai, S.; Graham, I.T.; French, D.; Han, Q.; Yao, M.; Jia, R.; Wang, Y. Features of the inorganic components of a Middle Jurassic coal from the Haiwan mine, Shenfu mining area, Ordos Basin, northern China: Emphasis on origins of sub-micron and micron-sized quartz. Ore Geol. Rev. 2025, 181, 106620. [Google Scholar] [CrossRef]
- Zhou, M.; Dai, S.; Wang, X.; Zhao, L.; Nechaev, V.P.; French, D.; Graham, I.T.; Zheng, J.; Wang, Y.; Dong, M. Critical element (Nb-Ta-Zr-Hf-REE-Ga-Th-U) mineralization in Late Triassic coals from the Gaosheng Mine, Sichuan Basin, southwestern China: Coupled effects of products of sediment-source-region erosion and acidic water infiltration. Int. J. Coal Geol. 2022, 262, 104101. [Google Scholar] [CrossRef]
- Zhu, W.; Shen, L.; Xu, N.; Kong, J.; Engle, M.A.; Finkelman, R.B.; Li, F.; Wang, Q.; Li, P.; Zhang, S.; et al. Rare earth elements and yttrium in Chinese coals: Distribution and economic significance. Renew. Sustain. Energy Rev. 2025, 212, 115423. [Google Scholar] [CrossRef]
- Vergunov, A.V.; Arbuzov, S.I.; Spears, D.A.; Kholodov, A.S.; Ilenok, S.S. Mineralogy and geochemistry of rare metal (Zr-Nb-Hf-Ta-REE-Ga) coals of the seam XXX of the Izykh Coalfield, Minusinsk Basin, Russia: Implications for more widespread rare metal mineralization in North Asia. Int. J. Coal Geol. 2024, 289, 104542. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Zhou, Y.; Chou, C.-L.; Wang, X.; Zhao, L.; Zhu, X. Mineralogy and geochemistry of a superhigh-organic-sulfur coal, Yanshan Coalfield, Yunnan, China: Evidence for a volcanic ash component and influence by submarine exhalation. Chem. Geol. 2008, 255, 182–194. [Google Scholar] [CrossRef]
- Anggara, F.; Amijaya, D.H.; Harijoko, A.; Tambaria, T.N.; Sahri, A.A.; Asa, Z.A.N. Rare earth element and yttrium content of coal in the Banko coalfield, South Sumatra Basin, Indonesia: Contributions from tonstein layers. Int. J. Coal Geol. 2018, 196, 159–172. [Google Scholar] [CrossRef]
- Arbuzov, S.I.; Chekryzhov, I.Y.; Finkelman, R.B.; Sun, Y.; Zhao, C.; Il’enok, S.S.; Blokhin, M.G.; Zarubina, N.V. Comments on the geochemistry of rare-earth elements (La, Ce, Sm, Eu, Tb, Yb, Lu) with examples from coals of north Asia (Siberia, Russian far East, North China, Mongolia, and Kazakhstan). Int. J. Coal Geol. 2019, 206, 106–120. [Google Scholar] [CrossRef]
- Dai, S.; Li, T.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Zhou, Y.; Zhang, M.; Song, X.; Song, W.; Zhao, C. Origin of minerals and elements in the Late Permian coals, tonsteins, and host rocks of the Xinde Mine, Xuanwei, eastern Yunnan, China. Int. J. Coal Geol. 2014, 121, 53–78. [Google Scholar] [CrossRef]
- Jiu, B.; Jin, Z.; Hao, H.; Wang, Z.; Huang, W.; Shang, Z.; Liu, R.; Li, Y.; Huang, L.; Qin, B.; et al. Modes of occurrence of rare earth elements and yttrium in the subbituminous coal of the Jungar Coalfield, Ordos Basin, North China. Int. J. Coal Geol. 2025, 305, 104785. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Li, S. Discovery of the superlarge gallium ore deposit in Jungar, Inner Mongolia, North China. Chin. Sci. Bull. 2006, 51, 2243–2252. [Google Scholar] [CrossRef]
- Dai, S.; Liu, J.; Ward, C.R.; Hower, J.C.; French, D.; Jia, S.; Hood, M.M.; Garrison, T.M. Mineralogical and geochemical compositions of Late Permian coals and host rocks from the Guxu Coalfield, Sichuan Province, China, with emphasis on enrichment of rare metals. Int. J. Coal Geol. 2016, 166, 71–95. [Google Scholar] [CrossRef]
- Arnold, B.J. A review of element partitioning in coal preparation. Int. J. Coal Geol. 2023, 274, 104296. [Google Scholar] [CrossRef]
- Bhatt, C.R.; Jain, J.C.; Bol’shakov, A.A.; McIntyre, D.L. Chemistry imaging and distribution analysis of rare earth elements in coal using LIBS and LA-ICP-MS instruments. Int. J. Coal Geol. 2025, 301, 104710. [Google Scholar] [CrossRef]
- Dai, S.; Ji, D.; Ward, C.R.; French, D.; Hower, J.C.; Yan, X.; Wei, Q. Mississippian anthracites in Guangxi Province, southern China: Petrological, mineralogical, and rare earth element evidence for high-temperature solutions. Int. J. Coal Geol. 2018, 197, 84–114. [Google Scholar] [CrossRef]
- Dai, S.; Zhang, W.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Song, W.; Wang, X.; Li, X.; Zhao, L.; Kang, H.; et al. Factors controlling geochemical and mineralogical compositions of coals preserved within marine carbonate successions: A case study from the Heshan Coalfield, southern China. Int. J. Coal Geol. 2013, 109, 77–100. [Google Scholar] [CrossRef]
- Liu, J.; Song, H.; Dai, S.; Nechaev, V.P.; Graham, I.T.; French, D.; Nechaeva, E.V. Mineralization of REE-Y-Nb-Ta-Zr-Hf in Wuchiapingian coals from the Liupanshui Coalfield, Guizhou, southwestern China: Geochemical evidence for terrigenous input. Ore Geol. Rev. 2019, 115, 103190. [Google Scholar] [CrossRef]
- Guo, W.; Dai, S.; Nechaev, V.P.; Nechaeva, E.V.; Wei, G.; Finkelman, R.B.; Spiro, B.F. Geochemistry of Palaeogene coals from the Fuqiang Mine, Hunchun Coalfield, northeastern China: Composition, provenance, and relation to the adjacent polymetallic deposits. J. Geochem. Explor. 2019, 196, 192–207. [Google Scholar] [CrossRef]
Sample ID | Mad | Ad | Vdaf | St | So | Sp | Ss | Ro |
---|---|---|---|---|---|---|---|---|
HDG-1 | 3.12 | 18.50 | 33.56 | 0.52 | 0.42 | Bdl | 0.10 | 0.56 |
HDG-2 | 4.25 | 32.43 | 31.85 | 0.43 | 0.31 | Bdl | 0.12 | 0.55 |
HDG-3 | 3.85 | 20.42 | 34.50 | 0.48 | 0.33 | Bdl | 0.15 | 0.57 |
Sample ID | LTA | Kaolinite | Boehmite | Calcite | Pyrite | Rutile | Goyazite | Chlorite |
---|---|---|---|---|---|---|---|---|
HDG-1 | 19.10 | 51.2 | 45.9 | 2.3 | 0.2 | 0.2 | bdl | 0.2 |
HDG-2 | 33.25 | 44.2 | 50.3 | 5.4 | bdl | bdl | 0.1 | bdl |
HDG-3 | 22.11 | 46.8 | 48.7 | 3.5 | bdl | 0.3 | 0.4 | 0.3 |
Elements | HDG-1 | HDG-2 | HDG-3 | World | CC-HDG-1 | CC-HDG-2 | CC-HDG-3 |
---|---|---|---|---|---|---|---|
Al2O3 | 13.54 | 8.76 | 6.21 | 5.98 | 2.26 | 1.46 | 1.04 |
SiO2 | 10.22 | 8.45 | 5.21 | 8.47 | 1.21 | 1.00 | 0.62 |
CaO | 0.65 | 0.25 | 6.02 | 1.23 | 0.53 | 0.20 | 4.89 |
K2O | 0.21 | 0.082 | 0.094 | 0.19 | 1.11 | 0.43 | 0.49 |
TiO2 | 0.61 | 0.51 | 0.34 | 0.33 | 1.85 | 1.55 | 1.03 |
Fe2O3 | 0.65 | 0.55 | 1.05 | 4.85 | 0.13 | 0.11 | 0.22 |
MgO | bdl | bdl | 0.001 | 0.22 | nd | nd | 0.005 |
Na2O | 0.058 | 0.062 | 0.055 | 0.16 | 0.36 | 0.39 | 0.34 |
MnO | 0.006 | 0.005 | 0.011 | 0.015 | 0.40 | 0.33 | 0.73 |
P2O5 | 0.022 | 0.011 | 0.017 | 0.092 | 0.24 | 0.12 | 0.18 |
Li | 232 | 283 | 319 | 14 | 16.57 | 20.21 | 22.79 |
Be | 1.63 | 1.55 | 2.21 | 2 | 0.82 | 0.78 | 1.11 |
F | 454 | 189 | 195 | 82 | 5.54 | 2.30 | 2.38 |
Sc | 5.21 | 5.45 | 4.85 | 3.7 | 1.41 | 1.47 | 1.31 |
V | 26.4 | 20.4 | 16.8 | 28 | 0.94 | 0.73 | 0.60 |
Cr | 13.4 | 5.86 | 5.57 | 17 | 0.79 | 0.34 | 0.33 |
Co | 1.31 | 0.68 | 1.21 | 6 | 0.22 | 0.11 | 0.20 |
Ni | 3.25 | 0.56 | 2.34 | 17 | 0.19 | 0.03 | 0.14 |
Cu | 12.4 | 9.85 | 6.84 | 16 | 0.78 | 0.62 | 0.43 |
Zn | 23.8 | 18.5 | 35.7 | 28 | 0.85 | 0.66 | 1.28 |
Ga | 15.4 | 18.6 | 16.5 | 6 | 2.57 | 3.10 | 2.75 |
Ge | 0.38 | 0.22 | 0.54 | 2.4 | 0.16 | 0.09 | 0.23 |
As | 1.02 | 0.65 | 0.12 | 9 | 0.11 | 0.07 | 0.01 |
Se | 5.74 | 12.2 | 3.1 | 1.6 | 3.59 | 7.63 | 1.94 |
Rb | 2.22 | 1.85 | 1.35 | 18 | 0.12 | 0.10 | 0.08 |
Sr | 90.4 | 21.5 | 331 | 100 | 0.90 | 0.22 | 3.31 |
Y | 10.1 | 13.2 | 20.8 | 8.2 | 1.23 | 1.61 | 2.54 |
Zr | 214 | 352 | 158 | 36 | 5.94 | 9.78 | 4.39 |
Nb | 19.4 | 16.4 | 10.5 | 4 | 4.85 | 4.10 | 2.63 |
Mo | 1.05 | 1.45 | 1.34 | 2.1 | 0.50 | 0.69 | 0.64 |
Cd | 0.034 | 0.065 | 0.063 | 0.2 | 0.17 | 0.33 | 0.32 |
In | 0.03 | 0.044 | 0.038 | 0.04 | 0.75 | 1.10 | 0.95 |
Sn | 2.11 | 2.35 | 1.54 | 1.4 | 1.51 | 1.68 | 1.10 |
Sb | 1.55 | 0.42 | 0.25 | 1 | 1.55 | 0.42 | 0.25 |
Cs | 0.054 | 0.087 | 0.064 | 1.1 | 0.05 | 0.08 | 0.06 |
Ba | 23.4 | 18.4 | 22.9 | 150 | 0.16 | 0.12 | 0.15 |
La | 13.5 | 4.21 | 49.5 | 11 | 1.23 | 0.38 | 4.50 |
Ce | 23.1 | 12.1 | 85.1 | 23 | 1.00 | 0.53 | 3.70 |
Pr | 2.46 | 1.55 | 9.24 | 3.4 | 0.72 | 0.46 | 2.72 |
Nd | 8.69 | 6.21 | 31.2 | 12 | 0.72 | 0.52 | 2.60 |
Sm | 2.05 | 2.04 | 5.63 | 2.2 | 0.93 | 0.93 | 2.56 |
Eu | 0.43 | 0.37 | 0.91 | 0.43 | 1.00 | 0.86 | 2.12 |
Gd | 1.89 | 2.21 | 4.85 | 2.7 | 0.70 | 0.82 | 1.80 |
Tb | 0.34 | 0.41 | 0.72 | 0.31 | 1.10 | 1.32 | 2.32 |
Dy | 2.12 | 2.85 | 4.21 | 2.1 | 1.01 | 1.36 | 2.00 |
Ho | 0.41 | 0.58 | 0.81 | 0.57 | 0.72 | 1.02 | 1.42 |
Er | 1.21 | 1.69 | 2.31 | 1 | 1.21 | 1.69 | 2.31 |
Tm | 0.16 | 0.27 | 0.33 | 0.3 | 0.53 | 0.90 | 1.10 |
Yb | 1.24 | 1.74 | 2.14 | 1 | 1.24 | 1.74 | 2.14 |
Lu | 0.18 | 0.25 | 0.31 | 0.2 | 0.90 | 1.25 | 1.55 |
REE | 67.88 | 49.68 | 218.06 | 68.41 | 0.99 | 0.73 | 3.19 |
Hf | 6.54 | 9.85 | 3.74 | 1.2 | 5.45 | 8.21 | 3.12 |
Ta | 1.54 | 1.4 | 0.63 | 0.3 | 5.13 | 4.67 | 2.10 |
W | 2.22 | 1.52 | 1.55 | 0.99 | 2.24 | 1.54 | 1.57 |
Re | 0.002 | 0.001 | 0.002 | 0.001 | 2.00 | 1.00 | 2.00 |
Hg | 0.08 | 0.04 | 0.07 | 0.1 | 0.80 | 0.40 | 0.70 |
Tl | 0.34 | 0.38 | 0.27 | 0.58 | 0.59 | 0.66 | 0.47 |
Pb | 25.4 | 70.1 | 18.5 | 9 | 2.82 | 7.79 | 2.06 |
Bi | 0.62 | 0.74 | 0.51 | 1.1 | 0.56 | 0.67 | 0.46 |
Th | 19.01 | 33.52 | 12.1 | 3.2 | 5.94 | 10.48 | 3.78 |
U | 3.22 | 4.12 | 3.25 | 1.9 | 1.69 | 2.17 | 1.71 |
Samples & T-MoO | Li | Ga | Zr | Nb | REE | |||||
---|---|---|---|---|---|---|---|---|---|---|
MF | LP | MF | LP | MF | LP | MF | LP | MF | LP | |
HDG-1 | ||||||||||
Water soluble | bdl | bdl | bdl | 0 | bdl | 0 | bdl | 0 | 20.5 | 5.71 |
Ion exchangeable | bdl | bdl | 5.8 | 7.44 | 5.65 | 0.52 | bdl | 0 | 15.2 | 4.23 |
Carbonate | 35.6 | 3.46 | bdl | bdl | bdl | bdl | 4.58 | 4.22 | 112.3 | 31.26 |
Organic | 125 | 12.15 | 8.5 | 10.9 | 15.4 | 1.43 | 9.76 | 9 | 105.7 | 29.42 |
Silicate | 868 | 84.39 | 58.2 | 74.62 | 1035.3 | 95.96 | 85.6 | 78.94 | 105.6 | 29.39 |
Sulfide | bdl | 0 | 5.5 | 7.05 | 22.5 | 2.09 | 8.5 | 7.84 | bdl | bdl |
HDG-2 | ||||||||||
Water soluble | bdl | 0 | bdl | 0 | bdl | 0 | bdl | 0 | 8.55 | 3.21 |
Ion exchangeable | 5.87 | 0.41 | 5.86 | 6.08 | 21.5 | 1.15 | bdl | 0 | 10.22 | 3.83 |
Carbonate | 12.5 | 0.88 | 6.54 | 6.78 | 22.2 | 1.19 | 5.45 | 6.7 | 75.4 | 28.28 |
Organic | 358.1 | 25.09 | 22.2 | 23.03 | 45.5 | 2.44 | 6.44 | 7.92 | 78.6 | 29.48 |
Silicate | 1025.4 | 71.84 | 58.2 | 60.37 | 1655.2 | 88.72 | 65.8 | 80.9 | 88.2 | 33.08 |
Sulfide | 25.5 | 1.79 | 3.6 | 3.73 | 121.2 | 6.5 | 3.65 | 4.49 | 5.68 | 2.13 |
HDG-3 | ||||||||||
Water soluble | bdl | 0 | bdl | 0 | 4.52 | 0.59 | bdl | 0 | 21.5 | 2.1 |
Ion exchangeable | 10.5 | 0.68 | bdl | 0 | 21.5 | 2.81 | bdl | 0 | 35.6 | 3.48 |
Carbonate | 35.5 | 2.28 | 5.8 | 6.9 | 14.2 | 1.86 | 5.64 | 10.09 | 621.1 | 60.78 |
Organic | 287.5 | 18.5 | 21.4 | 25.48 | 115.2 | 15.07 | 3.52 | 6.3 | 225.2 | 22.04 |
Silicate | 1205.2 | 77.56 | 52.6 | 62.62 | 524 | 68.53 | 41.1 | 73.55 | 118.5 | 11.6 |
Sulfide | 15.2 | 0.98 | 4.2 | 5 | 85.2 | 11.14 | 5.62 | 10.06 | bdl | bdl |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zhang, Y.; Zhao, W.; Wu, J.; Bai, J. Modes of Occurrence of Critical Elements (Li-Ga-Nb-Zr-REE) in the Late Paleozoic Coals from the Jungar Coalfield, Northern China: An Approach of Sequential Chemical Extraction. Minerals 2025, 15, 889. https://doi.org/10.3390/min15090889
Liu X, Zhang Y, Zhao W, Wu J, Bai J. Modes of Occurrence of Critical Elements (Li-Ga-Nb-Zr-REE) in the Late Paleozoic Coals from the Jungar Coalfield, Northern China: An Approach of Sequential Chemical Extraction. Minerals. 2025; 15(9):889. https://doi.org/10.3390/min15090889
Chicago/Turabian StyleLiu, Xiangyang, Yanbo Zhang, Wei Zhao, Jian Wu, and Jian Bai. 2025. "Modes of Occurrence of Critical Elements (Li-Ga-Nb-Zr-REE) in the Late Paleozoic Coals from the Jungar Coalfield, Northern China: An Approach of Sequential Chemical Extraction" Minerals 15, no. 9: 889. https://doi.org/10.3390/min15090889
APA StyleLiu, X., Zhang, Y., Zhao, W., Wu, J., & Bai, J. (2025). Modes of Occurrence of Critical Elements (Li-Ga-Nb-Zr-REE) in the Late Paleozoic Coals from the Jungar Coalfield, Northern China: An Approach of Sequential Chemical Extraction. Minerals, 15(9), 889. https://doi.org/10.3390/min15090889