Provenance of Claystones and Lithium Occurrence State in the Xishanyao Formation, Liuhuanggou Coal Mine
Abstract
1. Introduction
2. Geological Setting
3. Sampling and Analytical Strategies
3.1. Sample Preparation Procedures
3.2. Experimental Methodology
4. Results and Data Interpretation
4.1. Elemental Geochemistry
4.2. Mineralogical Characteristics
4.3. Characterization of Element Occurrence Modes
5. Discussion
5.1. Sedimentary Provenance Analysis
5.2. Lithium Occurrence Mechanisms
5.3. Depositional Environment Reconstruction
5.3.1. Paleosalinity Variations
5.3.2. Paleoclimate
5.3.3. Paleoredox Conditions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hussain, A.; Prakash, A.; Chaudhary, U.A.; Zahbi, M.; Yadav, M. Lithium: A Catalyst for Sustainable Industrial Evolution. Bulletin Pure Appl. Sci.-Math. 2024, 43, 32–44. [Google Scholar]
- Olivetti, E.A.; Ceder, G.; Gaustad, G.G.; Fu, X.K. Lithium-ion battery supply chain considerations: Analysis of potential bottlenecks in critical metals. Joule 2017, 1, 229–243. [Google Scholar] [CrossRef]
- Nygaard, A. The geopolitical risk and strategic uncertainty of green growth after the Ukraine invasion: How the circular economy can decrease the market power of and resource dependency on critical minerals. Circ. Econ. Sustain. 2023, 3, 1099–1126. [Google Scholar] [CrossRef]
- Li, J.K.; Zou, T.R.; Liu, X.F.; Wang, D.H.; Ding, X. The metallogenetic regularities of lithium deposits in China. Acta Geol. Sin.-Engl. Ed. 2015, 89, 652–670. [Google Scholar]
- Dai, S.F.; Zhao, L.; Wang, N.; Wei, Q.; Liu, J.J. Advance and prospect of researches on the mineralization of critical elements in coal-bearing sequences. Bull. Mineral. Petrol. Geochem. 2024, 43, 49–63+5. [Google Scholar] [CrossRef]
- Cheng, H.F.; Zhou, X.P. Research Progress on the Metallogenic Characteristics of Sedimentary Lithium Deposits and the Occurrence State of Lithium. Met. Mine 2024, 53, 28–40. [Google Scholar]
- Cui, Y.; Wen, H.J.; Yu, W.X.; Luo, C.G.; Du, S.J.; Ling, K.Y.; Xu, F.; Yang, J.H. Study on the occurrence state and enrichment mechanism of lithium in lithium-rich clay rock series of the Daoshitou Formation of Lower Permian in Central Yunnan. Acta Petrol. Sin. 2022, 38, 2080–2094. [Google Scholar]
- Zhao, L.; Wang, X.B.; Dai, S.F. Lithium resources in coal-bearing strata: Occurrence, mineralization, and resource potential. J. China Coal Soc. 2022, 47, 1750–1760. [Google Scholar]
- Tang, B.; Fu, Y.; Yan, S.; Chen, P.W.; Cao, C.; Guo, C.; Wu, P.; Long, Z.; Long, K.S.; Wang, T.S.; et al. The source, host minerals, and enrichment mechanism of lithium in the Xinmin bauxite deposit, northern Guizhou, China: Constraints from lithium isotopes. Ore Geol. Rev. 2022, 141, 104653. [Google Scholar] [CrossRef]
- Dai, S.F.; Bechtel, A.; Eble, C.F.; Flores, R.M.; French, D.; Graham, I.T.; Hood, M.M.; Hower, J.C.; Korasidis, V.A.; Moore, T.A.; et al. Recognition of peat depositional environments in coal: A review. Int. J. Coal Geol. 2020, 219, 103383. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Scientific Publications (Oxford): Oxford, UK, 1985. [Google Scholar]
- Morford, J.L.; Emerson, S. The geochemistry of redox sensitive trace metals in sediments. Geochim. Cosmochim. Acta 1999, 63, 1735–1750. [Google Scholar] [CrossRef]
- Gao, C.L.; Wang, J.; Liu, M.; Luo, Z.J.; Wang, K.; Liu, K.; Ren, Y.; Deng, Y. Boundary Changes of Jurassic-Cretaceous Prototype Basin of Southern Junggar and Responses of Sedimentary Provenance and Depositional Systems. Earth Sci. 2024, 49, 103–122. [Google Scholar]
- Tan, C.P.; Yu, X.H.; Li, S.L.; Li, S.L.; Chen, B.T.; Shan, X.; Wang, Z.X. Discussion on the Model of Braided River Transform to Meandering River:As an example of Toutunhe Formation in Southern Junggar Basin. Acta Sedimentol. Sin. 2014, 32, 450–458. [Google Scholar]
- Chen, Y.; Wen, H.J.; Tao, N.; Xu, F.; Ye, Q. Mineralogical and geochemical investigations of the Li-rich clay strata from Central Yunnan, Southwest China. Ore Geol. Rev. 2025, 181, 106614. [Google Scholar] [CrossRef]
- Qin, S.J.; Xu, F.; Cui, L.; Wang, J.X.; Li, S.Y.; Zhao, Z.S.; Xiao, L.; Guo, Y.X.; Zhao, C.L. Geochemistry characteristics and resource utilization of strategically critical trace elements from coal-related resources. Coal Sci. Technol. 2022, 50, 1–38. [Google Scholar]
- Dong, Y.; Chen, B.; Wang, M.L.; Yu, Q.; Shi, Z.Q. Characteristics and geological significance of burnt rocks in Liuhuanggou area, along northern margin of Tianshan Mountains in Xinjiang, China. J. Chengdu Univ. Technol. (Sci. Technol. Ed.) 2024, 51, 854–866+879. [Google Scholar]
- Zhou, Y. Constraints of Petrogeochemical Characteristics of Jurassic Sandstone on Provenance and Paleoenvironment in the Southern Margin of Junggar Basin. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2022. [Google Scholar]
- Zhang, K.J.; Zhang, Q.; Wei, Y.C.; Li, C.F.; Wang, A.M. Hydrogeological conditions and their effect on the coalbed methane enrichment in Liuhuanggou area on the south margin of Junggar basin. Coal Geol. Explor. 2018, 46, 61–65. [Google Scholar]
- Geng, Y.Y.; Liu, Z.Y.; Wu, Y.P. Characterization of mineral-bearing petrology and posterozoic alteration in the Sulphur Gully mineralized zone at the southern margin of the Junggar Basin. Acta Mineral. Sin. 2013, 33, 205–206. [Google Scholar]
- Che, K.X. Elemental Geochemistry of Critical Metal in Coal and Retention Characteristics During Coal Combustion—A Case Study of Xinjing No. 8 Coal. Master’s Thesis, China University of Mining and Technology, Xuzhou, China, 2024. [Google Scholar]
- Ward, C.R. Analysis and significance of mineral matter in coal seams. Int. J. Coal Geol. 2002, 50, 135–168. [Google Scholar] [CrossRef]
- Dai, S.F.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Xing, Y.W.; Zhang, W.G.; Song, W.J.; Wang, P.P. Enrichment of U–Se–Mo–Re–V in coals preserved within marine carbonate successions: Geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Miner. Depos. 2015, 50, 159–186. [Google Scholar] [CrossRef]
- Patro, B.C.; Sahu, B.K. Factor analysis of sphericity and roundness data of clastic quartz grains: Environmental significance. Sediment. Geol. 1974, 11, 59–78. [Google Scholar] [CrossRef]
- Li, J.X.; Wang, W.F.; Bai, H.Y.; Lu, Q.F.; He, X.; Wang, W.L.; Shi, Z.L. Element geochemistry and uranium speciation characteristics of uranium-rich coal in Honghaigou mine, Yili basin. Acta Geol. Sin. 2024, 98, 2439–2451. [Google Scholar]
- Sahraeyan, M.; Bahrami, M. Geochemistry of sandstones from the Aghajari Formation, Folded Zagros Zone, southwestern Iran: Implication for paleoweathering condition, provenance, and tectonic setting. Int. J. Basic Appl. Sci. 2012, 4, 390–407. [Google Scholar] [CrossRef]
- Abdel-Karim, A.A.M.; Zaki, A.A.; Elwan, W.; El-Naggar, M.R.; Gouda, M.M. Experimental and modeling investigations of cesium and strontium adsorption onto clay of radioactive waste disposal. Appl. Clay Sci. 2016, 132, 391–401. [Google Scholar] [CrossRef]
- Dai, S.F.; Xie, P.P.; Jia, S.H.; Ward, C.R.; Hower, J.C.; Yan, X.Y.; French, D. Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo Coalfield, Chongqing, China: Genetic implications from geochemical and mineralogical data. Ore Geol. Rev. 2017, 80, 1–17. [Google Scholar] [CrossRef]
- Wei, J.H.; Wei, Y.C.; Qin, G.H.; Ning, S.Z.; Cao, D.Y.; Wang, A.W. Geochemistry, mineralogy, and coal petrology of No. 4 coal in Sandaoling Mine, Turpan-Hami Basin, northwest China: Provenance and peat depositional environment. Minerals 2023, 13, 837. [Google Scholar] [CrossRef]
- McLennan, S.M. Weathering and global denudation. J. Geol. 1993, 101, 295–303. [Google Scholar] [CrossRef]
- Dai, S.F.; Graham, I.T.; Ward, C.R.A. review of anomalous rare earth elements and yttrium in coal. Int. J. Coal Geol. 2016, 159, 82–95. [Google Scholar] [CrossRef]
- Lu, Q.F. Geochemistry and Enrichment Genesis of High Alkali High Inertinite Coals from the Eastern Junggar Coalfield, Xinjiang; China University of Mining and Technology: Xuzhou, China, 2023. [Google Scholar]
- Vos, K.; Vandenberghe, N.; Elsen, J. Surface textural analysis of quartz grains by scanning electron microscopy (SEM): From sample preparation to environmental interpretation. Earth-Sci. Rev. 2014, 128, 93–104. [Google Scholar] [CrossRef]
- Kasanzu, C.; Maboko, M.A.H.; Manya, S. Geochemistry of fine-grained clastic sedimentary rocks of the Neoproterozoic Ikorongo Group, NE Tanzania: Implications for provenance and source rock weathering. Precambrian Res. 2008, 164, 201–213. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, Z.X.; Zhang, S.Q.; Zhou, X.P.; Wang, Y.; Cheng, H.F. Geochemical features of lithium–rich bauxite from the Benxi Formation in Qinyuan County, Shanxi, China: Insights into their depositional environment and lithium enrichment. Ore Geol. Rev. 2023, 163, 105780. [Google Scholar] [CrossRef]
- Dai, S.F.; Jiang, Y.F.; Ward, C.R.; Gu, L.D.; Seredin, V.V.; Liu, H.D.; Zhou, D.; Wang, X.B.; Sun, Y.Z.; Zou, J.H.; et al. Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield. Int. J. Coal Geol. 2012, 98, 10–40. [Google Scholar] [CrossRef]
- Li, J.T.; Liu, L.S.; Kang, X.J.; Li, K.; Zhang, S.; Liu, Q.F. Enrichment of lithium in the claystone coal gangue from the Malan mine, Xishan Coalfield, Shanxi Province, Northern China. Geochemistry 2023, 83, 125972. [Google Scholar] [CrossRef]
- Cheng, H.F.; Wu, Z.X. Lithium occurrence state and sedimentary environment of clay rocks in coal-bearing strata in southern Shanxi. Acta Geol. Sin. 2024, 98, 2395–2408. [Google Scholar]
- Riley, K.W.; French, D.H.; Farrell, O.P.; Wood, R.A.; Huggins, F.E. Modes of occurrence of trace and minor elements in some Australian coals. Int. J. Coal Geol. 2012, 94, 214–224. [Google Scholar] [CrossRef]
- Benson, T.R.; Coble, M.A.; Dilles, J.H. Hydrothermal enrichment of lithium in intracaldera illite-bearing claystones. Sci. Adv. 2023, 9, eadh8183. [Google Scholar] [CrossRef]
- Romer, R.L.; Meixner, A.; Hahne, K. Lithium and boron isotopic composition of sedimentary rocks—The role of source history and depositional environment: A 250 Ma record from the Cadomian orogeny to the Variscan orogeny. Gondwana Res. 2014, 26, 1093–1110. [Google Scholar] [CrossRef]
- Li, Y.Y.; Guo, S.B. Sedimentary response and restoration of paleoshoreline of Taiyuan-Shanxi Formations in North China basin. Mar. Pet. Geol. 2023, 152, 106218. [Google Scholar] [CrossRef]
- Wang, F.; Liu, X.C.; Deng, X.Q.; Li, Y.H.; Tian, J.C.; Li, S.X.; You, J.Q. Geochemical Characteristics and Environmental Implications of Trace Elements of Zhifang Formation in Ordos Basin. Acta Sedimentol. Sin. 2017, 35, 1265–1273. [Google Scholar]
- Wu, Z.R.; He, S.; He, Z.L.; Li, X.C.; Zhai, G.Y.; Huang, Z.Q. Petrographical and geochemical characterization of the Upper Permian Longtan formation and Dalong Formation in the Lower Yangtze region, South China: Implications for provenance, paleoclimate, paleoenvironment and organic matter accumulation mechanisms. Mar. Pet. Geol. 2022, 139, 105580. [Google Scholar] [CrossRef]
- Awan, R.S.; Liu, C.L.; Gong, H.W.; Dun, C.; Tong, C.; Chamssidini, L.G. Paleo-sedimentary environment in relation to enrichment of organic matter of Early Cambrian black rocks of Niutitang Formation from Xiangxi area China. Mar. Pet. Geol. 2020, 112, 104057. [Google Scholar] [CrossRef]
- Yu, W.; Tian, J.C.; Wang, F.; Liang, Q.S.; Yang, T.; Kneller, B.; Liang, X.W. Sedimentary environment and organic matter enrichment of black mudstones from the upper Triassic Chang-7 member in the Ordos Basin, Northern China. J. Asian Earth Sci. 2022, 224, 105009. [Google Scholar] [CrossRef]
- Boyle, R.W. Geochemical Prospecting for Thorium and Uranium Deposits; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Yang, Q.; Zhang, X.J.; Ulrich, T.; Zhang, J.; Wang, J. Trace element compositions of sulfides from Pb-Zn deposits in the Northeast Yunnan and northwest Guizhou Provinces, SW China: Insights from LA-ICP-MS analyses of sphalerite and pyrite. Ore Geol. Rev. 2022, 141, 104639. [Google Scholar] [CrossRef]
- Algeo, T.J.; Liu, J.S. A re-assessment of elemental proxies for paleoredox analysis. Chem. Geol. 2020, 540, 119549. [Google Scholar] [CrossRef]
Number | SiO2 | Al2O3 | K2O | Fe2O3 | MgO | Na2O | TiO2 | CaO | SiO2/Al2O3 |
---|---|---|---|---|---|---|---|---|---|
ND1 | 71.13 | 20.18 | 3.28 | 2.10 | 0.99 | 0.96 | 0.78 | 0.13 | 3.52 |
ND2 | 70.73 | 20.15 | 3.34 | 2.15 | 0.99 | 1.17 | 0.77 | 0.18 | 3.51 |
ND3 | 69.15 | 23.61 | 2.59 | 1.77 | 0.90 | 0.80 | 0.84 | 0.11 | 2.93 |
ND4 | 70.03 | 20.05 | 3.26 | 2.82 | 1.01 | 1.16 | 0.77 | 0.28 | 3.49 |
ND5 | 53.36 | 42.05 | 0.48 | 0.98 | 0.32 | 0.32 | 2.05 | 0.10 | 1.27 |
ND6 | 51.76 | 44.21 | 0.03 | 0.33 | 0.15 | 0.26 | 2.74 | 0.05 | 1.17 |
Mean value | 64.36 | 28.38 | 2.16 | 1.69 | 0.73 | 0.78 | 1.33 | 0.14 | 2.65 |
Li | Be | V | Cr | Co | Ni | Cu | Zn | Ga | Cd | In | Sr | Zr | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ND1 | 48.4 | 0.4 | 95.8 | 47.2 | 12.8 | 61.6 | 33.6 | 90.8 | 19.4 | 0.22 | 0.08 | 112.2 | 156.4 |
ND2 | 38.6 | 0.6 | 86.7 | 53.7 | 8.6 | 36.9 | 36.3 | 69.1 | 18.1 | 0.15 | 0.06 | 93.5 | 149.3 |
ND3 | 36.5 | 2.0 | 97.5 | 90.0 | 2.3 | 17.7 | 24.7 | 28.6 | 19.4 | 0.20 | 0.07 | 64.4 | 163.0 |
ND4 | 46.6 | 1.3 | 85.8 | 52.4 | 10.3 | 37.4 | 48.8 | 85.9 | 18.7 | 0.24 | 0.07 | 60.1 | 146.4 |
ND5 | 126.0 | 1.6 | 207.6 | 124.6 | 2.4 | 33.3 | 1.1 | 11.3 | 38.2 | 0.13 | 0.14 | 81.0 | 370.5 |
ND6 | 155.9 | 1.3 | 195.1 | 179.3 | 3.6 | 70.0 | 3.3 | 71.6 | 52.8 | 0.16 | 0.17 | 88.3 | 444.1 |
UCC | 20 | 3 | 107 | 85 | 17 | 44 | 25 | 71 | 17 | 0.098 | 0.05 | 350 | 190 |
Nb | Mo | Sn | Cs | Ba | Hf | Ta | W | Tl | Pb | Th | U | ΣREY | |
ND1 | 9.6 | 1.5 | 1.8 | 6.1 | 221.7 | 4.6 | 0.8 | 1.8 | 0.5 | 19.8 | 4.4 | 2.8 | 55.2 |
ND2 | 9.7 | 1.0 | 1.4 | 5.7 | 248.8 | 4.5 | 0.7 | 1.8 | 0.5 | 18.9 | 5.6 | 2.7 | 77.5 |
ND3 | 10.1 | 1.3 | 8.5 | 6.5 | 363.9 | 4.9 | 0.7 | 2.3 | 0.3 | 12.3 | 5.5 | 1.5 | 41.6 |
ND4 | 9.6 | 1.4 | 1.9 | 5.4 | 236.3 | 4.4 | 0.7 | 1.8 | 0.5 | 27.1 | 5.2 | 3.5 | 66.9 |
ND5 | 30.4 | 3.0 | 8.4 | 0.4 | 85.5 | 11.3 | 2.2 | 4.4 | <0.1 | 26.3 | 20.6 | 5.0 | 32.7 |
ND6 | 37.5 | 1.9 | 8.4 | 0.1 | 93.3 | 13.2 | 3.0 | 4.9 | 0.1 | 34.9 | 32.3 | 7.1 | 66.1 |
UCC | 12 | 1.5 | 5.5 | 4.6 | 550 | 5.8 | 1 | 2 | 0.75 | 17 | 10.7 | 2.8 | 181.97 |
Number | Silicate-Bound Fraction | Residual Fraction | Water-Soluble Fraction | Exchangeable Fraction | Acid-Soluble Fraction | Sulfide-Bound Fraction |
---|---|---|---|---|---|---|
ND1 | 49.68 | 29.36 | 11.10 | 1.77 | 7.59 | 0.49 |
ND2 | 43.54 | 39.17 | 6.82 | 1.39 | 8.59 | 0.49 |
ND3 | 34.35 | 33.47 | 15.87 | 2.54 | 9.69 | 4.08 |
ND4 | 45.50 | 37.22 | 7.56 | 1.52 | 7.78 | 0.42 |
ND5 | 70.77 | 21.22 | 0.43 | 0.44 | 5.69 | 1.47 |
ND6 | 70.39 | 24.75 | 0.54 | 0.47 | 3.67 | 0.17 |
Mean value | 52.37 | 30.86 | 7.05 | 1.36 | 7.17 | 1.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wei, B.; Feng, S.; Li, X.; Wang, W.; Jia, R.; Che, K. Provenance of Claystones and Lithium Occurrence State in the Xishanyao Formation, Liuhuanggou Coal Mine. Minerals 2025, 15, 1004. https://doi.org/10.3390/min15101004
Liu J, Wei B, Feng S, Li X, Wang W, Jia R, Che K. Provenance of Claystones and Lithium Occurrence State in the Xishanyao Formation, Liuhuanggou Coal Mine. Minerals. 2025; 15(10):1004. https://doi.org/10.3390/min15101004
Chicago/Turabian StyleLiu, Jie, Bo Wei, Shuo Feng, Xin Li, Wenfeng Wang, Rongkun Jia, and Kexin Che. 2025. "Provenance of Claystones and Lithium Occurrence State in the Xishanyao Formation, Liuhuanggou Coal Mine" Minerals 15, no. 10: 1004. https://doi.org/10.3390/min15101004
APA StyleLiu, J., Wei, B., Feng, S., Li, X., Wang, W., Jia, R., & Che, K. (2025). Provenance of Claystones and Lithium Occurrence State in the Xishanyao Formation, Liuhuanggou Coal Mine. Minerals, 15(10), 1004. https://doi.org/10.3390/min15101004