Geochemistry of Mars with Laser-Induced Breakdown Spectroscopy (LIBS): ChemCam, SuperCam, and MarSCoDe
Abstract
1. Introduction
2. Developing LIBS for the Red Planet
2.1. Advantages and Challenges for LIBS on Mars
2.2. Instrument Designs
2.3. Data Processing and Calibrations
3. Highlights from Three Mars Missions
3.1. LIBS Discoveries in an Ancient Lakebed: ChemCam in Gale Crater
3.2. Exploration of Jezero Crater: SuperCam on Perseverance
3.3. Exploration of Utopia Planitia: MarSCoDe on the Zhurong Rover
3.4. Synthesis: Comparison of All Mars Compositions
4. Summary and Future Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2D | Two dimensional |
APXS | Alpha particle x-ray spectrometer |
CCD | Charge coupled device |
CIA | Chemical index of alteration |
CNES | Centre National d’Etudes Spatiales (France) |
CNSA | China National Space Administration |
C-T | Czerny–Turner |
CWL | Continuous-wave laser |
EMPA | Electron microprobe analyzer |
FWHM | Full width at half maximum |
HCP | High-calcium pyroxene |
ICCD | Intensified charge coupled device |
IR | Infrared |
LA-ICP-MS | Laser ablation inductively coupled plasma mass spectrometer |
LCP | Low-calcium pyroxene |
LIBS | Laser-induced breakdown spectroscopy |
MVA | Multivariate analysis |
NASA | National Aeronautics and Space Administration (USA) |
PMEC | Probabilistic major-element calibration |
RMI | Remote Micro-Imager |
SWIR | Short-wavelength infrared |
TAR | Transverse aeolian ridge |
UV | Ultraviolet |
VBF | Vastitas Borealis Formation |
VISIR | Visible and infrared |
XRF | X-ray fluorescence |
References
- Carr, M.H.; Head, J.W., III. Geologic History of Mars. Earth Planet. Sci. Lett. 2010, 294, 185–203. [Google Scholar] [CrossRef]
- Ehlmann, B.; Edwards, C.S. Mineralogy of the Martian surface. Ann. Rev. Earth Planet. Sci. 2014, 42, 291–315. [Google Scholar] [CrossRef]
- Grotzinger, J.P.; Crisp, J.; Vasavada, A.R.; Anderson, R.C.; Baker, C.J.; Barry, R.; Blake, D.F.; Conrad, P.; Edgett, K.S.; Ferdowski, B.; et al. Mars Science Laboratory Mission and Science Investigation. Spa. Sci. Rev. 2012, 170, 5–56. [Google Scholar] [CrossRef]
- Farley, K.A.; Williford, K.H.; Stack, K.M.; Bhartia, R.; Chen, A.; de la Torre, M.; Hand, K.; Goreva, Y.; Herd, C.D.K.; Hueso, R.; et al. Mars 2020 mission overview. Spa. Sci. Rev. 2021, 216, 142. [Google Scholar] [CrossRef]
- Liu, C.; Ling, Z.; Wu, Z.; Zhang, J.; Chen, J.; Fu, X.; Qiao, L.; Liu, P.; Li, B.; Zhang, L.; et al. Aqueous alteration of the Vastitas Borealis Formation at the Tianwen-1 landing site. Commun. Earth Environ. 2022, 3, 280. [Google Scholar] [CrossRef]
- Malin, M.C.; Edgett, K.S. Sedimentary rocks of early Mars. Science 2000, 290, 1927–1937. [Google Scholar] [CrossRef]
- MEPAG Mars Scientific Goals, Objectives, Investigations, and Priorities. In White Paper; Mars Exploration Program Analysis Group (MEPAG): Washington, WA, USA, 2005; p. 31. Available online: https://www.lpi.usra.edu/mepag/reports/reports/MEPAG_goals_08-08-05.pdf (accessed on 12 August 2025).
- Nesbitt, H.W.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistries of lutites. Nature 1984, 299, 715–717. [Google Scholar] [CrossRef]
- Clark, B.C.; Baird, A.K.; Rose, H.J., Jr.; Priestley, T., III; Keil, K.; Castro, A.J.; Kelliher, W.C.; Rowe, C.D.; Evans, P.H. Inorganic analyses of Martian surface samples at the Viking landing sites. Science 1976, 194, 1283–1288. [Google Scholar] [CrossRef] [PubMed]
- Gellert, R.; Clark, B.C., III. The MSL and MER Science Group. In situ compositional measurements of rocks and soils with the Alpha Particle X-ray Spectrometer on NASA’s Mars rovers. Elements 2015, 11, 39–44. [Google Scholar] [CrossRef]
- Wiens, R.C.; Cremers, D.A.; Blacic, J.D.; Ritzau, S.M.; Funsten, H.O.; Nordholt, J.E. Elemental and isotopic planetary surface analysis at stand-off distances using laser-induced breakdown spectroscopy and laser-induced plasma ion mass spectrometry. In Proceedings of the 29th Lunar Planet Science Conference, Houston, TX, USA, 16–20 March 1998; Available online: https://www.lpi.usra.edu/meetings/LPSC98/pdf/1633.pdf (accessed on 12 August 2025).
- Maurice, S.; Wiens, R.C.; Saccoccio, M.; Barraclough, B.; Gasnault, O.; Forni, O.; Mangold, N.; Baratoux, D.; Bender, S.; Berger, G.; et al. The ChemCam Instruments on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit. Spa. Sci. Rev. 2012, 170, 95–166. [Google Scholar] [CrossRef]
- Wiens, R.C.; Maurice, S.; Barraclough, B.; Saccoccio, M.; Barkley, W.C.; Bell, J.F., III; Bender, S.; Bernardin, J.; Blaney, D.; Blank, J.; et al. The ChemCam Instruments on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Performance. Spa. Sci. Rev. 2012, 170, 167–227. [Google Scholar] [CrossRef]
- Mustard, J.F.; Adler, M.; Allwood, A.; Bass, D.S.; Beaty, D.W.; Bell, J.F., III; Brinckerhoff, W.B.; Carr, M.; Des Marais, D.J.; Drake, B.; et al. Report of the Mars 2020 Science Definition Team; Mars Exploration Program Analysis Group (MEPAG): Boulder, CO, USA, 2013; p. 154. Available online: https://www.lpi.usra.edu/mepag/reports/reports/MEP/Mars_2020_SDT_Report_Final.pdf (accessed on 12 August 2025).
- Wiens, R.C.; Maurice, S.; Robinson, S.H.; Nelson, A.E.; Cais, P.; Bernardi, P.; Newell, R.T.; Clegg, S.M.; Sharma, S.K.; Storms, S.; et al. The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests. Spa. Sci. Rev. 2021, 217, 4. [Google Scholar] [CrossRef] [PubMed]
- Maurice, S.; Wiens, R.C.; Bernardi, P.; Cais, P.; Robinson, S.; Nelson, T.; Gasnault, O.; Reess, J.-M.; Deleuze, M.; Rull, F.; et al. The SuperCam instrument suite on the Mars 2020 rover: Science objectives and mast-unit description. Spa. Sci. Rev. 2021, 217, 47. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023–2032; The National Academies Press: Washington, WA, USA, 2022. [Google Scholar] [CrossRef]
- Xu, W.; Liu, X.; Yan, Z.; Li, L.; Zhang, Z.; Kuang, Y.; Jiang, H.; Yu, H.; Yang, F.; Liu, C.; et al. The MarSCoDe Instrument Suite on the Mars Rover of China’s Tianwen-1 Mission. Spa. Sci. Rev. 2021, 217, 64. [Google Scholar] [CrossRef]
- Wiens, R.C.; Wan, X.; Lasue, J.; Maurice, S. Laser Induced Breakdown Spectroscopy for Planetary Science. In Laser-Induced Breakdown Spectroscopy, 2nd ed.; Singh, J.P., Thakur, S.N., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 441–471. [Google Scholar]
- Saeidfirozeh, H.; Kubelik, P.; Laitl, V.; Krivkova, A.; Vrabel, J.; Rammelkamp, K.; Schroeder, S.; Gornushkin, I.B.; Kepes, E.; Zabka, J.; et al. Laser-induced breakdown spectroscopy in space applications: Review and prospects. Trends Anal. Chem. 2024, 181, 117991. [Google Scholar] [CrossRef]
- Lasue, J.; Wiens, R.C.; Clegg, S.M.; Vaniman, D.T.; Joy, K.H.; Humphries, S.; Mezzacappa, A.; Melikechi, N.; McInroy, R.E.; Bender, S. Laser induced breakdown spectroscopy (LIBS) for lunar exploration. J. Geophys. Res. Planets 2012, 117, E01002. [Google Scholar] [CrossRef]
- Yumoto, K.; Cho, Y.; Kameda, S.; Kasahara, S.; Sugita, S. In-situ measurement of hydrogen on airless planetary bodies using laser-induced breakdown spectroscopy. Spectrochim. Acta B 2023, 205, 106696. [Google Scholar] [CrossRef]
- Dyar, M.D.; Ytsma, C.R.; Lepore, K. Geochemistry by Laser-Induced Breakdown Spectroscopy on the Moon: Accuracy, Detection Limits, and Realistic Constraints on Interpretations. Earth Spa. Sci. 2024, 11, e2024EA003635. [Google Scholar] [CrossRef]
- Sallé, B.; Lacour, J.-L.; Vors, E.; Fichet, P.; Maurice, S.; Cremers, D.A.; Wiens, R.C. Laser-induced breakdown spectroscopy for Mars surface analysis: Capabilities at stand-off distance and detection of chlorine and sulfur elements. Spectrochim. Acta B 2004, 59, 1413–1422. [Google Scholar] [CrossRef]
- Sallé, B.; Cremers, D.A.; Maurice, S.; Wiens, R.C.; Fichet, P. Evaluation of a compact spectrograph for in-situ and stand-off laser-induced breakdown spectroscopy analyses of geological samples on Mars missions. Spectrochim. Acta B 2005, 60, 805–815. [Google Scholar] [CrossRef]
- Clegg, S.M.; Wiens, R.C.; Misra, A.K.; Sharma, S.K.; Lambert, J.; Bender, S.; Newell, R.; Nowak-Lovato, K.; Smrekar, S.; Dyar, M.D.; et al. Planetary geochemical investigations by Raman-LIBS spectroscopy (RLS). Spectrochim. Acta 2014, 68, 925–936. [Google Scholar] [CrossRef]
- Martin, N.D.; Manelski, H.T.; Wiens, R.C.; Clegg, S.; Hansen, P.B.; Schröder, S.; Chide, B. LIBS Peak Broadening in Soils on Mars. In Proceedings of the 55th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 1–15 March 2024; Available online: https://www.hou.usra.edu/meetings/lpsc2024/pdf/1151.pdf (accessed on 12 August 2025).
- Fabre, C.; Maurice, S.; Cousin, A.; Wiens, R.C.; Forni, O.; Sautter, V.; Guillaume, D. Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera Laser Induced Breakdown Spectroscopy instrument. Spectrochim. Acta B 2011, 66, 280–289. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. Planetary Crusts: Their Origin, Evolution, and Composition; Cambridge University Press: Cambridge, UK, 2009; p. 378. [Google Scholar]
- Dyar, M.D.; Tucker, J.M.; Humphries, S.; Clegg, S.M.; Wiens, R.C.; Lane, M.D. Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples. Spectrochim. Acta B 2010, 66, 39–56. [Google Scholar] [CrossRef]
- Nachon, M.; Clegg, S.M.; Mangold, N.; Schroeder, S.; Kah, L.C.; Dromart, G.; Ollila, A.; Johnson, J.; Oehler, D.; Bridges, J.; et al. The MSL Science Team; Calcium sulfate veins characterized by the ChemCam instrument at Gale crater, Mars. J. Geophys. Res. Planets 2014, 119, 1991–2016. [Google Scholar] [CrossRef]
- Rapin, W.; Ehlmann, B.L.; Dromart, G.; Schieber, J.; Thomas, N.H.; Fischer, W.W.; Fox, V.K.; Stein, N.T.; Nachon, M.; Clark, B.C.; et al. An interval of high salinity in ancient Gale crater lake, Mars. Nat. Geosci. 2019, 12, 889–895. [Google Scholar] [CrossRef]
- Forni, O.; Rapin, W.; Sklute, E.C.; Gasda, P.; Loche, M.; Hughes, E.B.; Schröder, S.; Rammelkamp, K.; Gasnault, O.; Lanza, N.L. Elemental sulphur deposit and its related enrichments as viewed by ChemCam. In Proceedings of the 56th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 10–14 March 2025; Available online: https://www.hou.usra.edu/meetings/lpsc2025/pdf/1476.pdf (accessed on 12 August 2025).
- Thomas, N.H.; Ehlmann, B.L.; Meslin, P.-Y.; Rapin, W.; Anderson, D.E.; Rivera-Hernandez, F.; Forni, O.; Schroeder, S.; Cousin, A.; Mangold, N.; et al. Mars Science Laboratory observations of chloride salts in Gale crater, Mars. Geophys. Res. Lett. 2019, 46, 10754–10763. [Google Scholar] [CrossRef]
- Wolf, Z.U.; Madariaga, J.M.; Clegg, S.; Legett, C.; Arana, G.; Gabriel, T.S.J.; Poblacion, I.; Forni, O.; Gasnault, O.; Anderson, R.; et al. Chlorine in Jezero crater, Mars: Detections made by SuperCam. In Proceedings of the 56th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 10–14 March 2025; Available online: https://www.hou.usra.edu/meetings/lpsc2025/pdf/2456.pdf (accessed on 12 August 2025).
- Forni, O.; Gaft, M.; Toplis, M.; Clegg, S.M.; Sautter, V.; Maurice, S.; Wiens, R.C.; Mangold, N.; Gasnault, O.; Sautter, V.; et al. First detection of fluorine on Mars: Implications on Gale crater’s geochemistry. Geophys. Res. Lett. 2015, 42, 1020–1028. [Google Scholar] [CrossRef]
- Meslin, P.-Y.; Forni, O.; Loche, M.; Fabre, S.; Lanza, N.; Gasda, P.; Treiman, A.; Berger, J.; Cousin, A.; Gasnault, O.; et al. Overview of secondary phosphate facies observed by ChemCam in Gale crater, Mars. EGU Gen. Assem. 2022, EGU22-6613. [Google Scholar] [CrossRef]
- Treiman, A.H.; Lanza, N.L.; VanBommel, S.; Berger, J.; Wiens, R.C.; Bristow, T.; Johnson, J.; Rice, M.; Hart, R.; McAdam, A.; et al. Manganese-Iron Phosphate Nodules at the Groken site, Gale Crater, Mars. Minerals 2023, 13, 1122. [Google Scholar] [CrossRef]
- Wiens, R.C. MSL Mars ChemCam LIBS Spectra 4/5 RDR V1.0. In NASA Planetary Data System; NASA: Washington, DC, USA, 2022. [Google Scholar] [CrossRef]
- Wiens, R.C.; Maurice, S. Mars 2020 SuperCam bundle. In NASA Planetary Data System; NASA: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Chen, Z.; Forni, O.; Cousin, A.; Pilleri, P.; Gasnault, O.; Maurice, S.; Wiens, R.C.; Zhang, Y.; Luo, Y.; Ren, X.; et al. Quality index for Martian in-situ laser-induced breakdown spectroscopy data. Spectrochim. Acta B 2024, 216, 106921. [Google Scholar] [CrossRef]
- Lodders, K.; Fegley, B., Jr. The Planetary Scientist’s Companion; Oxford University Press: Oxford, UK, 1998; p. 400. [Google Scholar]
- Ullan, A.; Zorzano, M.-P.; Martın-Torres, F.J.; Valentın-Serrano, P.; Kahanpaa, H.; Harri, A.-M.; Gomez-Elvira, J.; Navarro, S. Analysis of the wind pattern and pressure fluctuations during one and a half Martian years at Gale Crater. Icarus 2017, 288, 78–87. [Google Scholar] [CrossRef]
- Beck, P.; Meslin, P.-Y.; Fau, A.; Forni, O.; Gasnault, O.; Lasue, J.; Cousin, A.; Schröder, S.; Maurice, S.; Rapin, W.; et al. Detectability of carbon with ChemCam LIBS: Distinguishing sample from Mars atmospheric carbon, and application to Gale crater. Icarus 2023, 408, 115840. [Google Scholar] [CrossRef]
- Fouchet, T.; Reess, J.-M.; Montmessin, F.; Hassen-Khodja, R.; Nguyen-Tuong, N.; Humeau, O.; Jacquinod, S.; Lapauw, L.; Parisot, J.; Bonafous, M.; et al. The SuperCam Infrared Spectrometer for the Perseverance rover of the Mars 2020 mission. Icarus 2022, 373, 114773. [Google Scholar] [CrossRef]
- Lopez-Reyes, G.; Manrique, J.-A.; Clavé, E.; Ollila, A.; Beyssac, O.; Pilleri, P.; Bernard, S.; Dehouck, E.; Veneranda, M.; Sharma, S.K.; et al. Supercam Raman activities at Jezero crater, Mars: Observational strategies, data processing, and mineral detections during the first 1000 sols. ESS Open Archive 2025. [Google Scholar] [CrossRef]
- Clavé, E.; Gaft, M.; Motto-Ros, V.; Fabre, C.; Forni, O.; Beyssac, O.; Maurice, S.; Wiens, R.C.; Bousquet, B. Extending the potential of Plasma Induced Luminescence spectroscopy. Spectrochim. Acta B 2021, 177, 106111. [Google Scholar] [CrossRef]
- Peret, L.; Gasnault, O.; Dingler, R.; Langevin, Y.; Bender, S.; Blaney, D.; Clegg, S.; Clewans, C.; Delapp, D.; Donny, C.; et al. Restoration of the autofocus capability of the ChemCam instrument onboard the Curiosity rover. In Proceedings of the SpaceOps Conference, Daejeon, Republic of Korea, 16–20 May 2016. [Google Scholar] [CrossRef]
- Manrique, J.A.; Lopez-Reyes, G.; Cousin, A.; Rull, F.; Maurice, S.; Wiens, R.C.; Madsen, M.B.; Madariaga, J.M.; Gasnault, O.; Aramendia, J.; et al. SuperCam calibration targets: Design and development. Spa. Sci. Rev. 2020, 216, 138. [Google Scholar] [CrossRef]
- Cousin, A.; Sautter, V.; Fabre, C.; Dromart, G.; Montagnac, G.; Drouet, C.; Meslin, P.-Y.; Gasnault, O.; Beyssac, O.; Bernard, S.; et al. SuperCam calibration targets on board the Perseverance rover: Fabrication and quantitative characterization. Spectrochim. Acta B 2022, 188, 106341. [Google Scholar] [CrossRef]
- Wiens, R.C.; Maurice, S.; Lasue, J.; Forni, O.; Anderson, R.B.; Clegg, S.; Bender, S.; Barraclough, B.L.; Deflores, L.; Blaney, D.; et al. The ChemCam Team Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover. Spectrochim. Acta B 2013, 82, 1–27. [Google Scholar] [CrossRef]
- Clegg, S.M.; Wiens, R.C.; Anderson, R.B.; Forni, O.; Frydenvang, J.; Lasue, J.; Pilleri, A.; Payre, V.; Boucher, T.; Dyar, M.D.; et al. Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded geochemical database. Spectrochim. Acta B 2017, 129, 64–85. [Google Scholar] [CrossRef]
- Anderson, R.B.; Forni, O.; Cousin, A.; Wiens, R.C.; Clegg, S.M.; Frydenvang, J.; Gabriel, T.S.J.; Ollila, A.; Schroeder, S.; Beyssac, O.; et al. Post-landing major element quantification using SuperCam laser induced breakdown spectroscopy. Spectrochim. Acta B 2022, 188, 106347. [Google Scholar] [CrossRef]
- Gasda, P.J.; Anderson, R.B.; Cousin, A.; Forni, O.; Clegg, S.M.; Ollila, A.M.; Lanza, N.; Lamm, S.; Wiens, R.C.; Maurice, S.; et al. Quantification of manganese in ChemCam Mars and laboratory spectra using a multivariate model. Spectrochim. Acta B 2021, 181, 106223. [Google Scholar] [CrossRef]
- Gasda, P.J.; Anderson, R.B.; Dubey, M.; Oyen, D.; Cousin, A.; Forni, O.; Clegg, S.M.; Ollila, A.M.; Lanza, N.L.; Wiens, R.C.; et al. Multivariate and ensemble manganese calibration models for SuperCam. In Proceedings of the 53rd Lunar and Planetary Science Conference, The Woodlands, TX, USA, 7–11 March 2022; Available online: https://www.hou.usra.edu/meetings/lpsc2022/pdf/1646.pdf (accessed on 12 August 2025).
- Gabriel, T.S.J.; Forni, O.; Anderson, R.B.; Manrique, J.-A.; Vogt, D.; Gasda, P.; Schröder, S.; Ollila, A.; Cousin, A.; Udry, A.; et al. The SuperCam Instrument Team Machine Learning Trace Element Quantification for SuperCam Laser Induced Breakdown Spectroscopy (LIBS) and Implications for Rocks and Return Samples from Jezero Crater, Mars. Spectrochim. Acta B, 2025; in preparation. [Google Scholar]
- Vaniman, D.; Dyar, M.D.; Wiens, R.C.; Ollila, A.; Lanza, N.; Lasue, J.; Rhodes, M.; Clegg, S.M. Ceramic ChemCam Calibration Targets on Mars Science Laboratory. Spa. Sci. Rev. 2012, 170, 229–255. [Google Scholar] [CrossRef]
- Madariaga, J.M.; Aramendia, J.; Arana, G.; Gomez-Nubla, L.; Fdez-Ortiz de Vallejuelo, S.; Castro, K.; Garcia-Florentino, C.; Maguregui, M.; Torre-Fdez, I.; Manrique, J.A.; et al. Homogeneity assessment of the SuperCam calibration targets. Anal. Chim. Acta 2022, 1209, 339837. [Google Scholar] [CrossRef]
- Liu, X.; Xu, W.; Qi, H.; Ren, X.; Liu, J.; Li, L.; Yan, Z.; Liu, C.; Chen, J.; Zhang, Z.; et al. Development and Testing of the MarSCoDe LIBS Calibration Target in China’s Tianwen-1 Mars Mission. Spa. Sci. Rev. 2023, 219, 43. [Google Scholar] [CrossRef]
- Boucher, T.; Dyar, M.D.; Mahadevan, S. Proximal methods for calibration transfer. Chemometrics 2017, 31, e2877. [Google Scholar] [CrossRef]
- Anderson, R.B.; Clegg, S.M.; Frydenvang, J.; Wiens, R.C.; McLennan, S.; Morris, R.V.; Ehlmann, B.; Dyar, M.D. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-model partial least squares. Spectrochim. Acta B 2017, 129, 49–57. [Google Scholar] [CrossRef]
- Legett, C., IV; Newell, R.T.; Reyes-Newell, A.L.; Nelson, A.E.; Bernardi, P.; Bener, S.C.; Forni, O.; Venhaus, D.M.; Clegg, S.M.; Ollila, A.M.; et al. Optical calibration of the SuperCam instrument body unit spectrometers. Appl. Opt. 2022, 61, 2967. [Google Scholar] [CrossRef]
- Zhao, Y.Y.S.; Yu, J.; Wei, G.; Pan, L.; Liu, X.; Lin, Y.; Liu, Y.; Sun, C.; Qang, X.; Wang, J.; et al. In situ analysis of surface composition and meteorology at the Zhurong landing site on Mars. Natl. Sci. Rev. 2023, 10, nwad056. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Ren, X.; Liu, J.; Xu, W.; Zhang, Y.; Liu, X.; Zhou, Q.; Chen, W. Probabilistic multivariable calibration for major elements analysis of MarSCoDe Martian laser-induced breakdown spectroscopy instrument on Zhurong rover. Spectrochim. Acta B 2022, 197, 106529. [Google Scholar] [CrossRef]
- Duan, T.; Anand, A.; Ding, D.Y.; Thai, K.K.; Basu, S.; Ng, A.; Schuler, A. NGBoost: Natural gradient boosting for probabilistic prediction. In Proceedings of the 37th International Conference on Machine Learning, Vienna, Austria, 12–18 July 2020; pp. 2690–2700. [Google Scholar]
- Ollila, A.M.; Newsom, H.E.; Clark, B., III; Wiens, R.C.; Cousin, A.; Blank, J.G.; Mangold, N.; Sautter, V.; Maurice, S.; Clegg, S.M.; et al. The MSL Science Team Trace element geochemistry (Li, Ba, Sr, and Rb) using Curiosity’s ChemCam: Early results for Gale crater from Bradbury Landing Site to Rocknest. J. Geophys. Res. Planets 2014, 119, 255–285. [Google Scholar] [CrossRef]
- Payre, V.; Fabre, C.; Cousin, A.; Sautter, V.; Wiens, R.C.; Forni, O.; Gasnault, O.; Lasue, J.; Ollila, A.; Rapin, W.; et al. Alkali trace elements with ChemCam: Calibration update and geological implications of the occurrence of alkaline rocks in Gale crater, Mars. J. Geophys. Res. Planets 2017, 122, 650–679. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, Z.; Liu, J.; Zhang, Y.; Zhang, J.; Li, Z.; Ren, X.; Liu, X.; Zhang, Z.; Xu, W.; et al. Quantification and geological implications of manganese, barium, and copper observed by MarSCoDe LIBS at Zhurong landing site on Mars. Icarus, 2025; to be submitted. [Google Scholar]
- Lasue, J.; Clegg, S.M.; Forni, O.; Cousin, A.; Wiens, R.C.; Lanza, N.; Mangold, N.; Le Deit, L.; Fabre, C.; Gasnault, O.; et al. Observation of > 5 wt. % zinc at the Kimberley outcrop, Gale crater, Mars. J. Geophys. Res. Planets 2016, 121, 338–352. [Google Scholar] [CrossRef]
- Gasda, P.J.; Haldeman, E.B.; Wiens, R.C.; Rapin, W.; Bristow, T.F.; Bridges, J.C.; Schwenzer, S.P.; Clark, B.; Herkenhoff, K.; Frydenvang, J.; et al. In situ detection of boron by ChemCam on Mars. Geophys. Rev. Lett. 2017, 44, 8739–8748. [Google Scholar] [CrossRef]
- Payré, V.; Fabre, C.; Sautter, V.; Cousin, A.; Mangold, N.; Le Deit, L.; Forni, O.; Goetz, W.; Wiens, R.C.; Gasnault, O.; et al. Copper enrichments in Kimberley formation, Gale crater, Mars: Evidence for a Cu deposit at the source. Icarus 2019, 321, 736–751. [Google Scholar] [CrossRef]
- Rapin, W.; Meslin, P.-Y.; Maurice, S.; Wiens, R.C.; Laporte, D.; Chauviré, B.; Gasnault, O.; Schroeder, S.; Beck, P.; Bender, S.; et al. Quantification of water content by laser induced breakdown spectroscopy on Mars. Spectrochim. Acta B 2017, 130, 82–100. [Google Scholar] [CrossRef]
- Manelski, H.; Wiens, R.C.; Broz, A.; Hurowitz, J.A.; Tice, M.; Clegg, S.; Dehouck, E.; Randazzo, N.; Connell, S.A.; Forni, O.; et al. Ore-grade nickel co-located with redox-organic interactions in Neretva Vallis, Mars. Nat. Geosci. 2025; in review. [Google Scholar]
- Rapin, W.; Bousquet, B.; Lasue, J.; Meslin, P.-Y.; Lacour, J.-L.; Fabre, C.; Wiens, R.C.; Frydenvang, J.; Dehouck, E.; Maurice, S.; et al. Roughness effects on the hydrogen signal in laser-induced breakdown spectroscopy. Spectrochim. Acta B 2017, 137, 13–22. [Google Scholar] [CrossRef]
- Thomas, N.H.; Ehlmann, B.L.; Anderson, D.E.; Clegg, S.M.; Forni, O.; Schroeder, S.; Rapin, W.; Meslin, P.-Y.; Lasue, J.; Delapp, D.M.; et al. Characterization of hydrogen in basaltic materials with laser-induced breakdown spectroscopy (LIBS) for application to MSL ChemCam data. J. Geophys. Res. Planets 2018, 123, 1996–2021. [Google Scholar] [CrossRef]
- Clavé, E.; Benzerara, K.; Meslin, P.-Y.; Forni, O.; Royer, C.; Mandon, L.; Beck, P.; Quantin-Nataf, C.; Beyssac, O.; Cousin, A.; et al. The SuperCam team Carbonate Detection with SuperCam in Igneous Rocks on the floor of Jezero Crater, Mars. J. Geophys. Res. Planets 2023, 128, e2022JE007463. [Google Scholar] [CrossRef]
- Clavé, E.; Forni, O.; Royer, C.; Mandon, L.; Dehouck, E.; Mangold, N.; Bedford, C.; Udry, A.; Quantin-Nataf, C.; Schroder, S.; et al. The SuperCam Team Diverse aqueous processes recorded in the carbonate-rich rocks in Jezero Crater. J. Geophys. Res. Planets, 2025; to be submitted. [Google Scholar]
- Gaft, M.; Nagli, L.; Eliezer, N.; Groisman, Y.; Forni, O. Elemental analysis of halogens using molecular emission by laser-induced breakdown spectroscopy in air. Spectrochim. Acta 2014, 98, 39–47. [Google Scholar] [CrossRef]
- Anderson, D.E.; Ehlmann, B.L.; Forni, O.; Clegg, S.M.; Cousin, A.; Thomas, N.H.; Lasue, J.; Delapp, D.M.; McInroy, R.E.; Gasnault, O.; et al. Characterization of LIBS emission lines for the identification of chlorides, carbonates, and sulfates in salt/basalt mixtures for the application to MSL ChemCam data. J. Geophys. Res. Planets 2017, 122, 744–770. [Google Scholar] [CrossRef]
- Clegg, S.M.; Wiens, R.C.; Barefield, J.E.; Sklute, E.; Dyar, M.D. Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques. Spectrochim. Acta 2009, B64, 79–88. [Google Scholar] [CrossRef]
- Clegg, S.M.; Anderson, R.B.; Gasnault, O.; Forni, O.; Frydenvang, J.; Maurice, S.; Wiens, R.C. Sulfur chemical analysis and interpretation with ChemCam on the Curiosity rover. In Proceedings of the 48th Lunar Planetary Science Conference, The Woodlands, TX, USA, 20–24 March 2017; Available online: https://www.hou.usra.edu/meetings/lpsc2017/pdf/2439.pdf (accessed on 12 August 2025).
- Clegg, S.M.; Anderson, R.B.; Rapin, W.; Ehlmann, B.L.; Anderson, D.E.; Thomas, N.H.; Gasda, P.; Frydenvang, J.; Forni, O.; Newsom, H.; et al. ChemCam sulfur quantitative analysis and interpretation. In Proceedings of the 49th Lunar Planetary Science Conference, The Woodlands, TX, USA, 19–23 March 2018; Available online: https://www.hou.usra.edu/meetings/lpsc2018/pdf/2576.pdf (accessed on 12 August 2025).
- Clegg, S.M.; Anderson, R.B.; Rapin, W.; Ehlmann, B.L.; Anderson, D.E.; Thomas, N.H.; Gasda, P.; Frydenvang, J.; Forni, O.; Newsom, H.; et al. ChemCam sulfur quantitative analysis of the Askival altered feldspathic cumulate target, Gale crater, Mars. In Proceedings of the 50th Lunar Planetary Science Conference, The Woodlands, TX, USA, 18–22 March 2019; Available online: https://www.hou.usra.edu/meetings/lpsc2019/pdf/2768.pdf (accessed on 12 August 2025).
- Clegg, S.M.; Frydenvang, J.; Anderson, R.B.; Vaniman, D.T.; Gasda, P.; Forni, O.; Newsom, H.; Blaney, D.; Maurice, S.; Wiens, R.C. Quantitative sulfur chemistry observed on diverse samples from sols 1800-2300. In Proceedings of the 51th Lunar Planetary Science Conference, The Woodlands, TX, USA, 16–20 March 2020; Available online: https://www.hou.usra.edu/meetings/lpsc2020/pdf/2561.pdf (accessed on 12 August 2025).
- Hoffman, M.E.; Newsom, H.E.; Clegg, S.M.; Gasda, P.J.; Lanza, N.; Gasnault, O.; Wiens, R.C.; Delapp, D.M. ChemCam sulfur abundances in the Knockfarril Hill member, Gale crater Mars. In Proceedings of the 54th Lunar Planetary Science Conference, The Woodlands, TX, USA, 13–17 March 2023; Available online: https://www.hou.usra.edu/meetings/lpsc2023/pdf/2660.pdf (accessed on 12 August 2025).
- Zhang, Y.; Ren, X.; Chen, Z.; Luo, Y.; Chen, W.; Liu, J.; Liu, X.; Zhang, Z.; Xu, W.; Shu, R.; et al. Volatile Elements Characterized by MarSCoDe in Materials at Zhurong Landing Site. Astron. J. 2024, 168, 150. [Google Scholar] [CrossRef]
- Schröder, S.; Rammelkamp, K.; Hansen, P.B.; Seel, F.; Cousin, A.; Forni, O.; Gasnault, O.; Meslin, P.-Y.; Pilleri, P.; Rapin, W.; et al. Semiquantitative analysis of ChemCam and SuperCam LIBS data with spectral unmixing. In Proceedings of the 54th Lunar Planetary Science Conference, The Woodlands, TX, USA, 13–17 March 2023; Available online: https://www.hou.usra.edu/meetings/lpsc2023/pdf/2014.pdf (accessed on 12 August 2025).
- Schröder, S.; Rammelkamp, K.; Hansen, P.B.; Seel, F.; Cousin, A.; Forni, O.; Gasnault, O.; Meslin, P.-Y.; Rapin, W.; Dehouck, E.; et al. Insights to Minor and Trace Element Content in ChemCam LIBS Data with Spectral Unmixing. In Proceedings of the 55th Lunar Planetary Science Conference, The Woodlands, TX, USA, 11–15 March 2024; Available online: https://www.hou.usra.edu/meetings/lpsc2024/pdf/1866.pdf (accessed on 12 August 2025).
- Schröder, S.; Clavé, E.; Hansen, P.B.; Rammelkamp, K.; Seel, F.; Hübers, H.-W.; Cousin, A.; Forni, O.; Gasnault, O.; Pilleri, P.; et al. Identification of Minor and Trace Element Enhancements in SuperCam LIBS Data with Spectral Unmixing. In Proceedings of the 10th International Conference on Mars, Pasadena, CA, USA, 22–25 July 2024; Available online: https://www.hou.usra.edu/meetings/tenthmars2024/pdf/3413.pdf (accessed on 12 August 2025).
- Schröder, S.; Clavé, E.; Hansen, P.B.; Rammelkamp, K.; Seel, F.; Hübers, H.-W.; Cousin, A.; Forni, O.; Gasnault, O.; Pilleri, P.; et al. Minor and Trace Element Enhancements Identified in SuperCam LIBS Data with Spectral Unmixing. In Proceedings of the 55th Lunar Planetary Science Conference, The Woodlands, TX, USA, 11–15 March 2024; Available online: https://www.hou.usra.edu/meetings/lpsc2024/pdf/2011.pdf (accessed on 12 August 2025).
- Schröder, S.; Clavé, E.; Mandon, L.; Beck, P.; Beyssac, O.; Hansen, P.B.; Rammelkamp, K.; Seel, F.; Forni, O.; Dehouck, E.; et al. Iron-sulfur containing mineral phase identified in Jezero’s northern margin unit with SuperCam LIBS data and spectral unmixing. In Proceedings of the 56th Lunar Planetary Science Conference, The Woodlands, TX, USA, 10–14 March 2025; Available online: https://www.hou.usra.edu/meetings/lpsc2025/pdf/2094.pdf (accessed on 12 August 2025).
- Vogt, D.S.; Rammelkamp, K.; Schroeder, S.; Huebers, H.W. Molecular emission in laser-induced breakdown spectroscopy: An investigation of its suitability for chlorine quantification on Mars. Icarus 2018, 302, 470–482. [Google Scholar] [CrossRef]
- Grotzinger, J.P.; Gupta, S.; Rubin, D.M.; Schieber, J.; Sumner, D.Y.; Stack, K.M.; Vasavada, A.R.; Arvidson, R.E.; Calef, F., III; Edgar, L.; et al. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science 2015, 350, aac7575. [Google Scholar] [CrossRef] [PubMed]
- Vasavada, A.R. Mission Overview and Scientific Contributions from the Mars Science Laboratory Curiosity Rover After Eight Years of Surface Operations. Spa. Sci. Rev. 2022, 218, 14. [Google Scholar] [CrossRef] [PubMed]
- Frydenvang, J.; Mangold, N.; Wiens, R.C.; Fraeman, A.A.; Edgar, L.A.; Fedo, C.; L’Haridon, J.; Bedford, C.; Gupta, S.; Grotzinger, J.P.; et al. The chemostratigraphy of Murray formation bedrock and role of diagenesis at Vera Rubin Ridge in Gale crater, Mars, as observed by the ChemCam instrument. J. Geophys. Res. Planets 2020, 125, e2019JE006320. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Y.; Zhang, C.; Wu, Y.; Zhang, F.; Du, J.; Liu, Z.; Yan, X.; Xu, R.; He, Z.; et al. Geological characteristics of China’s Tianwen-1 landing site at Utopia Planitia, Mars. Icarus 2021, 370, 114657. [Google Scholar] [CrossRef]
- McCanta, M.C.; Dobosh, P.A.; Dyar, M.D.; Newsom, H.E. Testing the veracity of LIBS analyses on Mars using the LIBSSIM program. Planet. Spa. Sci. 2013, 81, 48–54. [Google Scholar] [CrossRef]
- Johnson, J.R.; Meslin, P.-Y.; Bell, J.F., III; Wiens, R.C.; Maurice, S.; Gasnault, O. Progress on iron meteorite detections by the Mars Science Laboratory Curiosity rover. In Proceedings of the 51st Lunar Planetary Science Conference, The Woodlands, TX, USA, 16–20 March 2020; Available online: https://www.hou.usra.edu/meetings/lpsc2020/pdf/1136.pdf (accessed on 12 August 2025).
- Melikechi, N.; Mezzacappa, A.; Cousin, A.; Lanza, N.L.; Clegg, S.M.; Wiens, R.C.; Berger, G.; Maurice, S.; Bender, S.; Forni, O.; et al. The MSL Science Team Correcting for variable-target distances of ChemCam LIBS measurements using emission lines of Martian dust spectra. Spectrochim. Acta B 2014, 96C, 51–60. [Google Scholar] [CrossRef]
- Mezzacappa, A.; Melikechi, N.; Cousin, A.; Wiens, R.C.; Lasue, J.; Clegg, S.M.; Tokar, R.; Bender, S.; Lanza, N.L.; Maurice, S.; et al. The MSL Science Team Application of distance correction to ChemCam LIBS measurements. Spectrochim. Acta B 2016, 120, 19. [Google Scholar] [CrossRef]
- Wiens, R.C.; Blazon-Brown, A.; Melikechi, N.; Frydenvang, J.; Dehouck, E.; Clegg, S.M.; Delapp, D.; Anderson, R.B.; Cousin, A.; Maurice, S. Improving ChemCam LIBS Long-Distance Elemental Compositions Using Empirical Abundance Trends. Spectrochim. Acta B 2021, 182, 106247. [Google Scholar] [CrossRef]
- Manelski, H.T.; Wiens, R.C.; Schröder, S.; Hansen, P.B.; Bousquet, B.; Clegg, S.; Martin, N.D.; Nelson, A.E.; Martinez, R.K.; Ollila, A.M.; et al. LIBS Plasma Diagnostics with SuperCam on Mars: Implications for Quantification of Elemental Abundances. Spectrochim. Acta B 2024, 222, 107061. [Google Scholar] [CrossRef]
- Scheller, E.L.; Ehlmann, B.L.; Hu, R.; Adams, D.J.; Yung, Y.L. Long-term drying of Mars by sequestration of ocean-scale volumes of water in the crust. Science 2021, 372, 56–62. [Google Scholar] [CrossRef]
- Golombek, M.P.; Grant, J.A.; Crumpler, L.S.; Greeley, R.; Arvidson, R.E.; Bell, J.F., III; Weitz, C.M.; Sullivan, R.; Christensen, P.R.; Soderblom, L.A.; et al. Erosion rates at the Mars Exploration Rover landing sites and long-term climate change on Mars. J. Geophys. Res. Planets 2006, 111, E12S10. [Google Scholar] [CrossRef]
- Arvidson, R.E. Aqueous history of Mars as inferred from landed mission measurements of rocks, soils, and water ice. J. Geophys. Res. Planets 2016, 121, 1602–1626. [Google Scholar] [CrossRef]
- Ye, B.; Qian, Y.; Xiao, L.; Michalski, J.R.; Lia, Y.; Wu, B.; Qiao, L. Geomorphologic exploration targets at the Zhurong landing site in the southern Utopia Planitia of Mars. Earth Planet. Sci. Lett. 2021, 576, 117199. [Google Scholar] [CrossRef]
- Meslin, P.-Y.; Gasnault, O.; Forni, O.; Schrӧder, S.; Cousin, A.; Berger, G.; Clegg, S.M.; Lasue, J.; Maurice, S.; Sautter, V.; et al. The MSL Science Team Soil diversity and hydration as observed by ChemCam at Gale crater, Mars. Science 2013, 341, 1238670. [Google Scholar] [CrossRef]
- David, G.; Dehouck, E.; Meslin, P.-Y.; Rapin, W.; Cousin, A.; Forni, O.; Gasnault, O.; Lasue, J.; Mangold, N.; Beck, P.; et al. Evidence for amorphous sulfates as the main carrier of soil hydration in Gale crater, Mars. Geophys. Res. Lett. 2022, 49, e2022GL098755. [Google Scholar] [CrossRef]
- Valantinas, A.; Mustard, J.F.; Chevrier, V.; Mangold, N.; Bishop, J.L.; Pommerol, A.; Beck, P.; Poch, O.; Applin, D.M.; Cloutis, E.A.; et al. Detection of ferrihydrite in Martian red dust records ancient cold and wet conditions on Mars. Nat. Commun. 2025, 16, 1712. [Google Scholar] [CrossRef]
- Cousin, A.; Meslin, P.-Y.; Wiens, R.C.; Rapin, W.; Mangold, N.; Fabre, C.; Gasnault, O.; Forni, O.; Tokar, R.; Lasue, J.; et al. The MSL Science Team; Compositions of coarse and fine particles in Martian soils at Gale: A window into the production of soils. Icarus 2015, 249, 22–42. [Google Scholar] [CrossRef]
- Cousin, A.; Dehouck, E.; Meslin, P.-Y.; Forni, O.; Gasnault, O.; Bridges, N.; Ehlmann, B.; Williams, A.; Stein, N.; Schroeder, S.; et al. Geochemistry of the Bagnold Dune Field as observed by ChemCam, and comparison with other Aeolian deposits at Gale crater. J. Geophys. Res. Planets 2017, 122, 2144–2162. [Google Scholar] [CrossRef]
- Sautter, V.; Fabre, C.; Forni, O.; Toplis, M.; Cousin, A.; Ollila, A.M.; Meslin, P.-Y.; Maurice, S.; Wiens, R.C.; Mangold, N.; et al. The MSL Science Team Igneous mineralogy at Bradbury rise: The first ChemCam campaign. J. Geophys. Res. Planets 2014, 119, 30–46. [Google Scholar] [CrossRef]
- Sautter, V.; Toplis, M.; Cousin, A.; Forni, O.; Wiens, R.C.; Fabre, C.; Gasnault, O.; Fisk, M.; Maurice, S.; Ollila, A.; et al. In-situ evidence for continental crust on early Mars. Nat. Geosci. 2015, 8, 605–609. [Google Scholar] [CrossRef]
- Sautter, V.; Toplis, M.J.; Beck, P.; Mangold, N.; Wiens, R.C.; Pinet, P.; Cousin, A.; Maurice, S.; Le Deit, L.; Hewins, R.; et al. Magmatic complexity on early Mars as seen through a combination of orbital, in situ, and meteorite data. Lithos 2016, 254–255, 36–52. [Google Scholar] [CrossRef]
- Mangold, N.; Thompson, L.; Forni, O.; Fabre, C.; Le Deit, L.; Wiens, R.C.; Williams, A.; Williams, R.; Anderson, R.B.; Blaney, D.L.; et al. Composition of conglomerates analyzed by the Curiosity rover: Implications for Gale crater crust and sediment sources. J. Geophys. Res. Planets 2016, 121, 353–387. [Google Scholar] [CrossRef]
- Mangold, N.; Williams, A.; Clegg, S.; Gasnault, O.; Forni, O.; Ming, D.; Gellert, R.; McLennan, S.; Cousin, A.; Grotzinger, J.P.; et al. Classification scheme for sedimentary and igneous rocks in Gale crater, Mars. Icarus 2017, 284, 1–17. [Google Scholar] [CrossRef]
- Cousin, A.; Sautter, V.; Payré, V.; Forni, O.; Mangold, N.; Gasnault, O.; Le Deit, L.; Johnson, J.; Maurice, S.; Salvatore, M.; et al. Classification of igneous rocks analyzed by ChemCam at Gale crater, Mars. Icarus 2017, 288, 265–283. [Google Scholar] [CrossRef]
- Bowden, D.L.; Bridges, J.C.; Cousin, A.; Rapin, W.; Semprich, J.; Gasnault, O.; Forni, O.; Gasda, P.; Das, D.; Payré, V.; et al. Askival: An altered feldspathic cumulate sample in Gale crater. Met. Planet. Sci. 2022, 101, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, M.A.; Broquet, A.; McLennan, S.M.; Rivoldini, A.; Golombek, M.; Antonangeli, D.; Beghein, C.; Giardini, D.; Gudkova, T.; Gyalay, S.; et al. InSight Constraints on the Global Character of the Martian Crust. J. Geophys. Res. Planets 2022, 127, e2022JE007298. [Google Scholar] [CrossRef]
- Frydenvang, J.; Gasda, P.J.; Hurowitz, J.A.; Grotzinger, J.P.; Wiens, R.C.; Newsom, H.E.; Bridges, J.; Maurice, S.; Fisk, M.; Elhmann, B.; et al. Diagenetic silica enrichment and late-stage groundwater activity in Gale crater, Mars. Geophys. Res. Lett. 2017, 44, 4716–4724. [Google Scholar] [CrossRef]
- Le Deit, L.; Anderson, R.B.; Blaney, D.L.; Clegg, S.M.; Cousin, A.; Dromart, G.; Fabre, C.; Fisk, M.; Forni, O.; Gasnault, O.; et al. The potassic sedimentary rocks in Gale crater, Mars, as seen by ChemCam on board Curiosity. J. Geophys. Res. Planets 2016, 121, 784–804. [Google Scholar] [CrossRef]
- Goetz, W.; Dehouck, E.; Gasda, P.J.; Johnson, J.R.; Meslin, P.-Y.; Lanza, N.L.; Wiens, R.C.; Rapin, W.; Frydenvang, J.; Payré, V.; et al. Detection of copper by the ChemCam instrument along Curiosity’s traverse in Gale crater, Mars: Elevated abundances in Glen Torridon. J. Geophys. Res. Planets 2023, 128, e2021JE007101. [Google Scholar] [CrossRef]
- Gasda, P.J.; Lanza, N.L.; Meslin, P.-Y.; Lamm, S.N.; Cousin, A.; Anderson, R.; Forni, O.; Swanner, E.; L’Haridon, J.; Frydenvang, J.; et al. Manganese-rich sandstones as an indicator of ancient oxic lake water conditions in Gale crater, Mars. J. Geophys. Res. Planets 2024, 129, e2023JE007923. [Google Scholar] [CrossRef]
- Mangold, N.; Dehouck, E.; Fedo, C.; Forni, O.; Achilles, C.; Bristow, T.; Frydenvang, J.; Gasnault, O.; L’Haridon, J.; Le Deit, L.; et al. Chemical alteration of fine-grained sedimentary rocks at Gale crater. Icarus 2019, 321, 619–631. [Google Scholar] [CrossRef]
- Dehouck, E.; Cousin, A.; Mangold, N.; Frydenvang, J.; Gasnault, O.; Forni, O.; Rapin, W.; Gasda, P.J.; Bedford, C.; Caravaca, G.; et al. In situ geochemical characterization of the clay-bearing Glen Torridon region of Gale crater, Mars, using the ChemCam instrument. J. Geophys. Res. Planets 2022, 127, e2021JE007103. [Google Scholar] [CrossRef]
- Leveille, R.J.; Cousin, A.; Lanza, N.; Ollila, A.; Wiens, R.C.; Mangold, N.; Forni, O.; Bridges, J.; Berger, G.; Clark, B.; et al. Chemistry of fracture-filling raised ridges in Yellowknife Bay, Gale crater: Windows in to past aqueous activity and habitability on Mars. J. Geophys. Res. Planets 2014, 119, 2398–2415. [Google Scholar] [CrossRef]
- l’Haridon, J.; Mangold, N.; Meslin, P.-Y.; Johnson, J.R.; Rapin, W.; Forni, O.; Cousin, A.; Payré, V.; Dehouck, E.; Nachon, M.; et al. Chemical variability in mineralized veins observed by ChemCam on the lower slopes of Mount Sharp in Gale Crater, Mars. Icarus 2018, 311, 69–86. [Google Scholar] [CrossRef]
- Nellessen, M.A.; Gasda, P.; Crossey, L.; Peterson, E.; Ali, A.; Zhang, J.; Zhou, W.; Hao, M.; Spilde, M.; Newsom, H.; et al. Boron adsorption in clay minerals: Implications for Martian groundwater chemistry and boron on Mars. Icarus 2023, 401, 115599. [Google Scholar] [CrossRef]
- Lanza, N.L.; Wiens, R.C.; Arvidson, R.E.; Clark, B.C.; Fischer, W.W.; Gellert, R.; Grotzinger, J.P.; Hurowitz, J.A.; McLennan, S.M.; Morris, R.V.; et al. Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars. Geophys. Res. Lett. 2016, 43, 7398–7407. [Google Scholar] [CrossRef]
- Frydenvang, J.; Nikolajsen, K.W.; Dehouck, E.; Gasda, P.J.; Clegg, S.M.; Bryk, A.B.; Edgar, L.A.; Rapin, W.; Forni, O.; Cloutis, E.; et al. Geochemical variations observed by the ChemCam instrument as the Curiosity rover transitioned from clay-mineral to sulfate-mineral rich regions on Aeolis Mons in Gale crater, Mars. J. Geophys. Res. Planets, 2025; in preparation. [Google Scholar]
- Rapin, W.; Dromart, G.; Clark, B.C.; Schieber, J.; Kite, E.S.; Kah, L.C.; Thompson, L.M.; Gasnault, O.; Lasue, J.; Meslin, P.-Y.; et al. Sustained wet–dry cycling on early Mars. Nature 2023, 620, 299–302. [Google Scholar] [CrossRef]
- Dromart, G.; Le Deit, L.; Rapin, W.; Gasnault, O.; Le Mouelic, S.; Quantin-Nataf, C.; Mangold, N.; Rubin, D.; Lasue, J.; Maurice, S.; et al. Deposition and erosion of the light-toned yardang unit of Mt. Sharp, Gale crater, Mars Science Laboratory Mission. Earth Planet. Sci. Lett. 2020, 554, 116681. [Google Scholar] [CrossRef]
- Wiens, R.C.; Udry, A.; Beyssac, O.; Quantin-Nataf, C.; Mangold, N.; Cousin, A.; Mandon, L.; Bosak, T.; Forni, O.; McLennan, S.M.; et al. The SuperCam Team Compositionally and density stratified igneous terrain in Jezero crater, Mars. Sci. Adv. 2022, 8, eabo3399. [Google Scholar] [CrossRef]
- Farley, K.A.; Stack Morgan, K.M.; Shuster, D.L.; Horgan, B.H.N.; Tarnas, J.D.; Simon, J.I.; Sun, V.Z.; Scheller, E.L.; Moore, K.R.; McLennan, S.M.; et al. Aqueously altered igneous rocks on the floor of Jezero crater, Mars. Science 2022, 377, eabo2196. [Google Scholar] [CrossRef]
- Beyssac, O.; Forni, O.; Cousin, A.; Udry, A.; Kah, L.C.; Mandon, L.; Clavé, E.; Liu, Y.; Poulet, F.; Quantin-Nataf, C.; et al. Petrological traverse of the olivine cumulate Séítah formation at Jezero crater; Mars: A perspective from SuperCam onboard Perseverance. J. Geophys. Res. Planets 2023, 128, e2022JE007638. [Google Scholar] [CrossRef]
- Udry, A.; Ostwald, A.; Sautter, V.; Cousin, A.; Beyssac, O.; Forni, O.; Dromart, G.; Benzerara, K.; Nachon, M.; Horgan, B.; et al. The SuperCam team A Mars 2020 Perseverance SuperCam Perspective on the Igneous Nature of the Máaz formation at Jezero crater and link with Séítah, Mars. J. Geophys. Res. Planets 2023, 128, e2022JE007440. [Google Scholar] [CrossRef]
- Mangold, N.; Gupta, S.; Gasnault, O.; Dromart, G.; Tarnas, J.D.; Sholes, S.F.; Horgan, B.; Quantin-Nataf, C.; Brown, A.J.; Le Mouelic, S.; et al. The Mars 2020 Science Team Evidence for a delta-lake system and ancient flood deposits at Jezero crater, Mars, from the Perseverance rover. Science 2021, 374, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Dehouck, E.; Forni, O.; Quantin-Nataf, C.; Beck, P.; Mangold, N.; Royer, C.; Clavé, E.; Beyssac, O.; Johnson, J.R.; Mandon, L.; et al. The SuperCam Team Overview of the bedrock geochemistry and mineralogy observed by SuperCam during Perseverance’s delta front campaign. In Proceedings of the 54th Lunar Planetary Science Conference, The Woodlands, TX, USA, 13–17 March 2023; Available online: https://www.hou.usra.edu/meetings/lpsc2023/pdf/2862.pdf (accessed on 12 August 2025).
- Bosak, T.; Shuster, D.L.; Scheller, E.L.; Siljeström, S.; Zawaski, M.J.; Mandon, L.; Simon, J.I.; Weiss, B.P.; Stack, K.M.; Mansbach, E.N.; et al. Other members of the Mars 2020 Science Team; Astrobiological potential of rocks acquired by the Perseverance rover at a sedimentary fan front in Jezero crater, Mars. AGU Adv. 2024, 5, e2024AV001241. [Google Scholar] [CrossRef]
- Horgan, B.H.N.; Anderson, R.B.; Dromart, G.; Amador, E.S.; Rice, M.S. The mineral diversity of Jezero crater: Evidence for possible lacustrine carbonates on Mars. Icarus 2020, 339, 113526. [Google Scholar] [CrossRef]
- Zastrow, A.M.; Glotch, T.D. Distinct Carbonate Lithologies in Jezero Crater, Mars. Geophys. Res. Lett. 2021, 48, e2020GL092365. [Google Scholar] [CrossRef]
- Williford, K.H.; Farley, K.A.; Horgan, B.; Garczynski, B.; Treiman, A.H.; Gupta, S.; Jones, A.J.; Siljeström, S.; Cardarelli, E.; Clavé, E.; et al. Carbonated ultramafic rocks in Jezero crater, Mars. Science, 2025; accepted. [Google Scholar]
- Bedford, C.C.; Ravanis, E.; Clavé, E.; Wiens, R.C.; Forni, O.; Jones, A.; Royer, C.; Garczynski, B.; Beck, P.; Connell, S.; et al. Investigating the origin and variable diagenetic overprint of the Margin Unit in Jezero crater, Mars, with SuperCam. J. Geophys. Res. Planets, 2025; in preparation. [Google Scholar]
- Mandon, L.; Forni, O.; Mangold, N.; Wiens, R.C.; Manelski, H.; Wolf, U.; Dehouck, E.; Beck, P.; Beyssac, O.; Johnson, J.R.; et al. Diagenetically altered fine sediments at Neretva Vallis, Mars. In Proceedings of the 56th Lunar Planetary Science Conference, The Woodlands, TX, USA, 10–14 March 2025; Available online: https://www.hou.usra.edu/meetings/lpsc2025/pdf/1400.pdf (accessed on 12 August 2025).
- Hurowitz, J.A.; Tice, M.M.; Allwood, A.C.; Cable, M.L.; Hand, K.P.; Murphy, A.E.; Uckert, K.; Bell, J.F., III; Bosak, T.; Broz, A.P.; et al. Redox-Driven Mineral and Organic Associations in Jezero Crater, Mars. Science, 2025; accepted. [Google Scholar]
- Beck, P.; Dehouck, E.; Beyssac, O.; Bernard, S.; Mandon, L.; Royer, C.; Clavé, E.; Forni, O.; Pineau, M.; Francis, R.; et al. From hydrated silica to quartz: Potential hydrothermal precipitates found in Jezero crater, Mars. Earth Planet. Sci. Lett. 2025, 656, 119256. [Google Scholar] [CrossRef]
- Udry, A.; Beyssac, O.; Forni, O.; Clave, E.; Bedford, C.; Beck, P.; Dehouck, E.; Quantin-Nataf, C.; Motta, G.; Cousin, A.; et al. Igneous compositions in the rim of Jezero crater using SuperCam data. In Proceedings of the 56th Lunar Planetary Science Conference, The Woodlands, TX, USA, 10–14 March 2025; Available online: https://www.hou.usra.edu/meetings/lpsc2025/pdf/1352.pdf (accessed on 12 August 2025).
- Quantin-Nataf, C.; Dehouck, E.; Beck, P.; Bedford, C.; Mandon, L.; Beyssac, O.; Clave, E.; Forni, O.; Udry, A.; Mayhew, L.; et al. Alteration diversity observed in the inner part of Jezero Crater Rim. In Proceedings of the 56th Lunar Planetary Science Conference, The Woodlands, TX, USA, 10–14 March 2025; Available online: https://www.hou.usra.edu/meetings/lpsc2025/pdf/2189.pdf (accessed on 12 August 2025).
- Bedford, C.C.; Wiens, R.C.; Horgan, B.H.N.; Klidaras, A.; Quantin-Nataf, C.; Udry, A.; Alwmark, S.; Herd, C.D.K.; Ravanis, E.; Treiman, A.; et al. Geological diversity in the Jezero crater rim investigated with SuperCam: Insights into impact processes on Mars. In Proceedings of the 56th Lunar Planetary Science Conference, The Woodlands, TX, USA, 10–14 March 2025; Available online: https://www.hou.usra.edu/meetings/lpsc2025/pdf/2495.pdf (accessed on 12 August 2025).
- Comellas, J.M.; Sharma, S.K.; Gasda, P.J.; Cousin, A.; Essunfeld, A.; Mayhew, L.E.; Fryer, P.; Sun, L.; Brown, A.J.; Acosta-Maeda, T.E.; et al. Serpentinization in Jezero Crater: Comparing SuperCam Mars Data to Terrestrial Serpentinites. J. Geophys. Res. Planets, 2025; in preparation. [Google Scholar]
- Quantin-Nataf, C.; Dehouck, E.; Clavé, E.; Beck, P.; Johnson, J.; Mayhew, L.; Mandon, L.; Forni, O.; Beyssac, O.; Mangold, N.; et al. The SuperCam team; Serpentinized megablock exposed in Jezero crater rim. 2025; in preparation. [Google Scholar]
- Royer, C.; Bedford, C.C.; Johnson, J.R.; Horgan, B.; Broz, A.; Forni, O.; Connell, S.; Wiens, R.C.; Mandon, L.; Kathir, B.S.; et al. Intense alteration on early Mars revealed by high-aluminum rocks at Jezero Crater. Nat. Earth Environ. 2024, 5, 671. [Google Scholar] [CrossRef]
- Forni, O.; Bedford, C.C.; Royer, C.; Liu, Y.; Wiens, R.C.; Udry, A.; Dehouck, E.; Meslin, P.-Y.; Beyssac, O.; Beck, P.; et al. Nickel-Copper Deposits On Mars: Origin And Formation. In Proceedings of the The Tenth International Conference on Mars, Pasadena, CA, USA, 22–25 July 2024; Available online: https://www.hou.usra.edu/meetings/tenthmars2024/pdf/3131.pdf (accessed on 12 August 2025).
- Ece, O.I.; Ercan, H.U. Global occurrence, geology and characteristics of hydrothermal-origin kaolin deposits. Minerals 2024, 14, 353. [Google Scholar] [CrossRef]
- Liu, J.; Li, C.; Zhang, R.; Rao, W.; Cui, X.; Geng, Y.; Jia, Y.; Huang, H.; Ren, X.; Yan, W.; et al. Geomorphic contexts and science focus of the Zhurong landing site on Mars. Nat. Astron. 2022, 6, 65–71. [Google Scholar] [CrossRef]
- Wan, W.; Wang, J.; Liu, Z.; Di, K.; Peng, M.; Wang, Y.; Liu, B.; Hu, G.; Han, S.; Li, X.; et al. Visual Localization and Topographic Mapping for Zhurong Rover in Tianwen-1 Mars Mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 6393–6408. [Google Scholar] [CrossRef]
- Tanaka, K.L.; Skinner, J.A., Jr.; Dohm, J.M.; Irwin, R.P., III; Kolb, E.J.; Fortezzo, C.M.; Platz, T.; Michael, G.G.; Hare, T.M. Geologic map of Mars. Sci. Investig. Map 2014, 3292, 43. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, B.; Wang, Y.; Liu, S.; Li, Z.; Yang, C.; Dong, J.; Rao, W. Rock abundance and erosion rate at the Zhurong landing site in southern Utopia Planitia on Mars. Earth Spa. Sci. 2022, 9, e2022EA002252. [Google Scholar] [CrossRef]
- Chen, Z.; Caravaca, G.; Loche, M.; Chide, B.; Kurfis-Pal, B.; Zhang, J.; Cousin, A.; Forni, O.; Guo, L.; Lasue, J.; et al. Unexpected Aeolian Buildup Illustrates Low Modern Erosion Along Zhurong Traverse on Mars. In Proceedings of the 55th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 1–15 March 2024; Available online: https://www.hou.usra.edu/meetings/lpsc2024/pdf/1308.pdf (accessed on 12 August 2025).
- Ding, L.; Zhou, R.; Yu, T.; Gao, H.; Yang, H.; Li, J.; Yuan, Y.; Liu, C.; Wang, J.; Zhao, Y.-Y.S.; et al. Surface characteristics of the Zhurong Mars rover traverse at Utopia Planitia. Nat. Geosci. 2022, 15, 171–176. [Google Scholar] [CrossRef]
- Xiao, L.; Huang, J.; Kusky, T.; Head, J.W.; Zhao, J.; Wang, J.; Wang, L.; Yu, W.; Shi, Y.; Wu, B.; et al. Evidence for marine sedimentary rocks in Utopia Planitia: Zhurong rover observations. Natl. Sci. Rev. 2023, 10, nwad137. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, X.; Zhao, Y.Y.S.; Pan, L.; Wang, C.; Liu, J.; Zhao, Z.; Zhou, X.; Zhang, C.; Wu, Y.; et al. Zhurong reveals recent aqueous activities in Utopia Planitia, Mars. Sci. Adv. 2022, 8, eabn8555. [Google Scholar] [CrossRef]
- Liu, J.; Qin, X.; Ren, X.; Wang, X.; Sun, Y.; Zeng, X.; Wu, H.; Chen, Z.; Chen, W.; Chen, Y.; et al. Martian dunes indicative of wind regime shift in line with end of ice age. Nature 2023, 620, 303–309. [Google Scholar] [CrossRef]
- Minitti, M.E.; Kah, L.C.; Yingst, R.A.; Edgett, K.S.; Anderson, R.C.; Beegle, L.W.; Carsten, J.L.; Deen, R.G.; Goetz, W.; Hardgrove, C.; et al. MAHLI at the Rocknest sand shadow: Science and science-enabling activities. J. Geophys. Res. Planets 2013, 118, 2338–2360. [Google Scholar] [CrossRef]
- Lasue, J.; Meslin, P.-Y.; Cousin, A.; Forni, O.; Anderson, R.; Beck, P.; Clegg, S.M.; Dehouck, E.; Frydenvang, J.; Gasda, P.; et al. The SuperCam Team Comparison of dust between Gale and Jezero. In Proceedings of the 53rd Lunar and Planetary Science Conference, The Woodlands, TX, USA, 7–11 March 2022; Available online: https://www.hou.usra.edu/meetings/lpsc2022/pdf/1758.pdf (accessed on 12 August 2025).
- Qin, X.; Ren, X.; Wang, X.; Liu, J.; Wu, H.; Zeng, X.; Sun, Y.; Chen, Z.; Zhang, S.; Zhang, Y.; et al. Modern water at low latitudes on Mars: Potential evidence from dune surfaces. Sci. Adv. 2023, 9, eadd8868. [Google Scholar] [CrossRef] [PubMed]
- Head, J.W.; Mustard, J.F.; Kreslavsky, M.A.; Milliken, R.E.; Marchant, D.R. Recent ice ages on Mars. Nature 2003, 426, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Liu, J.; Chen, Z.; Zhang, Y.; Wang, X.; Ren, X.; Liu, X.; Zhang, Z.; Xu, W.; Shu, R. Alkali trace elements observed by MarSCoDe LIBS at Zhurong landing site on Mars: Quantitative analysis and its geological implications. J. Geophys. Res. Planets 2024, 129, e2024JE008366. [Google Scholar] [CrossRef]
- Morris, R.V.; Vaniman, D.T.; Blake, D.F.; Gellert, R.; Chipera, S.J.; Rampe, E.B.; Ming, D.W.; Morrison, S.M.; Downs, R.T.; Treiman, A.H.; et al. Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater. Proc. Natl. Acad. Sci. USA 2016, 113, 7071–7076. [Google Scholar] [CrossRef] [PubMed]
- Czarnecki, S.; Hardgrove, C.; Gasda, P.; Calef, F.; Gengl, H.; Rapin, W.; Frydenvang, J.; Nowicki, S.; Thompson, L.; Wiens, R.C.; et al. Constraints on the hydration and distribution of high-silica layers in Gale crater using LIBS geochemistry and active neutron measurements. JGR Planets 2020, 125, e2019JE006180. [Google Scholar] [CrossRef]
- Nellessen, M.A.; Newsom, H.E.; Scuderi, L.; Nachon, M.; Rivera-Hernandez, F.; Hughes, E.; Gasda, P.J.; Lanza, N.; Ollila, A.; Clegg, S.; et al. Identification of Ca-sulfate cemented bedrock and mixed vein-bedrock features using statistical analysis of ChemCam shot-to-shot data. In Proceedings of the 56th Lunar Planetary Science Conference, The Woodlands, TX, USA, 10–14 March 2025; Available online: https://www.hou.usra.edu/meetings/lpsc2025/pdf/2358.pdf (accessed on 12 August 2025).
- Milliken, R.E.; Grotzinger, J.P.; Thomson, B.J. Paleoclimate of Mars as captured by the stratigraphic record of Gale crater. Geophys. Res. Lett. 2010, 31, L04201. [Google Scholar] [CrossRef]
- Rivera-Hernandez, F.; Sumner, D.Y.; Mangold, N.; Stack, K.M.; Forni, O.; Newsom, H.; Williams, A.; Nachon, M.; L’Haridon, J.; Gasnault, O.; et al. Using ChemCam LIBS data to constrain grain size in rocks on Mars: Proof of concept and application to rocks at Yellowknife Bay and Pahrump Hills, Gale crater. Icarus 2019, 321, 82–98. [Google Scholar] [CrossRef]
- Lasue, J.; Cousin, A.; Meslin, P.-Y.; Wiens, R.C.; Gasnault, O.; Rapin, W.; Schroeder, S.; Ollila, A.; Fabre, C.; Mangold, N.; et al. The MSL Science Team Martian eolian dust probed by ChemCam. Geophys. Res. Lett. 2018, 45, 10968–10977. [Google Scholar] [CrossRef]
- Cousin, A.; Meslin, P.-Y.; Forni, O.; Beyssac, O.; Clavé, E.; Hausrath, E.; Beck, P.; Bedford, C.; Sullivan, R.; Schröder, S.; et al. Soil diversity at Jezero crater and Comparison to Gale crater, Mars. Icarus 2025, 425, 116299. [Google Scholar] [CrossRef]
- Edwards, P.H.; Bridges, J.C.; Wiens, R.C.; Anderson, R.; Dyar, M.D.; Fisk, M.; Thompson, L.; Gasda, P.; Filiberto, J.; Schwenzer, S.P.; et al. Basalt-trachybasalt samples from Gale crater, Mars. Met. Planet. Sci. 2017, 52, 2410–2931. [Google Scholar] [CrossRef]
- McSween, H.Y.; Ruff, S.W.; Morris, R.V.; Bell, J.F., III; Herkenhoff, K.; Gellert, R.; Stockstill, K.R.; Tornabene, L.L.; Squyres, S.W.; Crisp, J.A.; et al. Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars. J. Geophys. Res. Planets 2006, 111, E09S91. [Google Scholar] [CrossRef]
- Bedford, C.C.; Bridges, J.C.; Schwenzer, S.P.; Wiens, R.C.; Rampe, E.; Frydenvang, J.; Gasda, P.J. Alteration trends and geochemical source region characteristics preserved in the fluviolacustrine sedimentary record of Gale crater, Mars. Geochim. Cosmochim. Acta 2019, 246, 234–266. [Google Scholar] [CrossRef]
- Ollila, A.M.; Lanza, N.; Garczynski, B.; Theuer, S.; Schmidt, M.E.; Chide, B.; Bedford, C.; Gasda, P.; Forni, O.; Cousin, A.; et al. Rock Coatings In Jezero Crater As Observed By The Perseverance Rover. In Proceedings of the The Tenth International Conference on Mars, Pasadena, CA, USA, 22–25 July 2024; Available online: https://www.hou.usra.edu/meetings/tenthmars2024/pdf/3451.pdf (accessed on 12 August 2025).
- Garczynski, B.J.; Horgan, B.H.N.; Johnson, J.R.; Rice, M.S.; Mandon, L.; Chide, B.; Bechtold, A.; Beck, P.; Bell, J.F.; Dehouck, E.; et al. Rock coatings as evidence for late surface alteration on the floor of Jezero crater, Mars. J. Geophys. Res. Planets, 2025; accepted. [Google Scholar]
- Dehouck, E.; Forni, O.; Quantin-Nataf, C.; Beck, P.; Mangold, N.; Beyssac, O.; Royer, C.; Clavé, E.; Johnson, J.R.; Mandon, L.; et al. The SuperCam Team Chemostratigraphy and Mineralogy of the Jezero Western Fan as Seen by the SuperCam Instrument: Evidence for a Complex Aqueous History and Variable Alteration Conditions. In Proceedings of the Tenth International Conference on Mars, Pasadena, CA, USA, 22–25 July 2024; Available online: https://www.hou.usra.edu/meetings/tenthmars2024/pdf/3364.pdf (accessed on 12 August 2025).
- Sridhar, R.V.L.N.; Goswami, A.; Lohar, K.A.; Raha, B.; Rao, M.V.H.; Gowda, G.; Smaran, T.S.; Kumar, A.S.; Bhuvaneswari, S.; Umesh, S.B.; et al. Close-range in-situ LIBS (laser induced breakdown spectroscope) experiment aboard the Chandrayaan-3 Pragyaan rover: Operations and initial results. In Proceedings of the 55th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 1–15 March 2024; Available online: https://www.hou.usra.edu/meetings/lpsc2024/pdf/1135.pdf (accessed on 12 August 2025).
- Rapin, W.; Maurice, S.; Ollila, A.; Wiens, R.C.; Dubois, B.; Nelson, T.; Bonhomme, L.; Parot, Y.; Clegg, S.; Newell, R.; et al. μLIBS: Developing a Lightweight Elemental Micro-Mapper for In Situ Exploration. In Proceedings of the 55th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 1–15 March 2024; Available online: https://www.hou.usra.edu/meetings/lpsc2024/pdf/2670.pdf (accessed on 12 August 2025).
- Pavlov, S.G.; Jessberger, E.K.; Huebers, H.-W.; Schroeder, S.; Rauschenbach, I.; Florek, S.; Neumann, J.; Henkel, H.; Klinkner, S. Miniaturized laser-induced plasma spectrometry for planetary in situ analysis—The case for Jupiter’s moon Europa. Adv. Spa. Res. 2011, 48, 764–778. [Google Scholar] [CrossRef]
N 1 | SiO2 | TiO2 | Al2O3 | FeOT | MgO | CaO | Na2O | K2O | |
---|---|---|---|---|---|---|---|---|---|
Gale crater 2 | 28,243 | 47.9 | 0.98 | 10.5 | 18.0 | 6.1 | 5.9 | 2.6 | 0.97 |
Jezero crater 3 | 8004 | 44.2 | 0.36 | 6.7 | 19.9 | 16.0 | 3.9 | 1.8 | 0.52 |
Utopia Planitia 4 | 38 | 50.5 | 1.11 | 8.6 | 15.5 | 3.0 | 4.6 | 1.6 | 0.77 |
Earth cont. crust 5 | 61.6 | 0.67 | 15.0 | 5.6 | 3.6 | 5.4 | 3.2 | 2.58 | |
Earth ocean crust 6 | 50.0 | 1.11 | 16.3 | 9.7 | 8.7 | 11.8 | 2.5 | 0.05 |
ChemCam [12,13] | SuperCam [15,16] | MarSCoDe [18] | |
---|---|---|---|
Laser type | Nd:KGW | Nd:YAG | Cr:YAG |
Operating temp. | −20 to +20 °C | −30 to +10 °C | −60 to +30 °C |
Laser wavelength | 1067 nm | 1064 nm | 1064 nm |
Energy on target | 14 mJ | 12 mJ | 10 mJ |
Repetition rate | 3 Hz | 3 Hz | 1–3 Hz |
Telescope type | Schmidt–Cassegrain | Schmidt–Cassegrain | Schmidt–Cassegrain |
Telescope aperture | 110 mm | 107 mm | 100 mm |
Distance range | 2–7 m | 2–7 m | 1.6–5 (or 7) m |
Target acquisition | Mast gimbals | Mast gimbals | Periscope mirror |
Spectrometer type | Czerny–Turner | Czerny–Turner & Transmission | Czerny–Turner |
Detectors | CCD | CCD and ICCD | CCD |
Wavelength range | 240–340, 385–850 nm | 243–342, 382–468, 535–850 | 240–850 nm |
# of channels | 6000 | 10,000 | 5400 |
Resolution, FWHM | 0.15–0.65 nm | 0.12–0.70 nm | 0.19–0.45 nm |
Onboard standards | 10 | 22 | 12 |
Instrument mass | 10.8 kg | 10.8 kg | 16.2 kg |
Additional techniques | Imaging, passive VIS spectra | Imaging, Raman, VIS-IR spectra, Microphone | Imaging, VIS-IR spectra |
SiO2 | TiO2 | Al2O3 | FeOT | MgO | CaO | Na2O | K2O | |
---|---|---|---|---|---|---|---|---|
Shergottite standard | 48.4 | 0.43 | 10.8 | 17.5 | 6.4 | 14.2 | 1.6 | 0.10 |
Norite standard | 47.9 | 0.70 | 14.7 | 15.7 | 9.6 | 12.8 | 1.5 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiens, R.C.; Cousin, A.; Clegg, S.M.; Gasnault, O.; Chen, Z.; Maurice, S.; Shu, R. Geochemistry of Mars with Laser-Induced Breakdown Spectroscopy (LIBS): ChemCam, SuperCam, and MarSCoDe. Minerals 2025, 15, 882. https://doi.org/10.3390/min15080882
Wiens RC, Cousin A, Clegg SM, Gasnault O, Chen Z, Maurice S, Shu R. Geochemistry of Mars with Laser-Induced Breakdown Spectroscopy (LIBS): ChemCam, SuperCam, and MarSCoDe. Minerals. 2025; 15(8):882. https://doi.org/10.3390/min15080882
Chicago/Turabian StyleWiens, Roger C., Agnes Cousin, Samuel M. Clegg, Olivier Gasnault, Zhaopeng Chen, Sylvestre Maurice, and Rong Shu. 2025. "Geochemistry of Mars with Laser-Induced Breakdown Spectroscopy (LIBS): ChemCam, SuperCam, and MarSCoDe" Minerals 15, no. 8: 882. https://doi.org/10.3390/min15080882
APA StyleWiens, R. C., Cousin, A., Clegg, S. M., Gasnault, O., Chen, Z., Maurice, S., & Shu, R. (2025). Geochemistry of Mars with Laser-Induced Breakdown Spectroscopy (LIBS): ChemCam, SuperCam, and MarSCoDe. Minerals, 15(8), 882. https://doi.org/10.3390/min15080882