Chemical and Textural Variability of Zircon from Slightly Peralkaline Madeira Albite Granite, Pitinga Magmatic Province, Brazil
Abstract
1. Introduction
2. Geological Setting and Samples
3. Methods
4. Results
4.1. Geological Structure of the Madeira Albite Granite
4.2. Shape and Structure of Zircon Crystals and Aggregates
4.3. Chemical Composition of Zircon
Pluton | Madeira | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Rock Type | Albite Granite, Border Facies | ||||||||||
Sample | 215 | ||||||||||
Crystal | 36 | 37 | |||||||||
Position | Unmixed Core | Unmixed Core | Rim | Rim | Rim | Rim | Unmixed Core | Rim | Rim | Rim | Rim |
Spot | 589 | 590 | 591 | 592 | 593 | 594 | 566 | 567 | 568 | 569 | 570 |
P2O5 | 0.20 | 0.32 | 0.28 | 0.16 | 0.21 | 0.29 | 0.43 | 0.37 | 0.20 | 0.27 | 0.40 |
As2O5 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 |
Nb2O5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
SiO2 | 31.86 | 30.57 | 31.83 | 32.15 | 31.90 | 31.18 | 30.08 | 30.12 | 31.89 | 31.48 | 31.61 |
TiO2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
ZrO2 | 63.23 | 61.41 | 62.33 | 62.48 | 62.63 | 56.26 | 61.64 | 61.15 | 61.64 | 56.53 | 55.09 |
HfO2 | 3.98 | 3.09 | 5.05 | 5.65 | 5.12 | 11.04 | 3.03 | 3.31 | 5.25 | 11.79 | 12.87 |
ThO2 | 0.00 | 0.14 | 0.06 | 0.00 | 0.03 | 0.06 | 0.14 | 0.03 | 0.05 | 0.08 | 0.02 |
UO2 | 0.04 | 0.19 | 0.01 | 0.03 | 0.00 | 0.00 | 0.11 | 0.12 | 0.02 | 0.02 | 0.00 |
Y2O3 | 0.05 | 0.32 | 0.13 | 0.04 | 0.14 | 0.12 | 0.47 | 0.25 | 0.06 | 0.12 | 0.26 |
Dy2O3 | 0.06 | 0.00 | 0.08 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Er2O3 | 0.07 | 0.08 | 0.04 | 0.07 | 0.08 | 0.04 | 0.19 | 0.16 | 0.12 | 0.10 | 0.23 |
Yb2O3 | 0.21 | 0.40 | 0.38 | 0.26 | 0.34 | 0.54 | 0.45 | 0.35 | 0.26 | 0.46 | 0.89 |
Al2O3 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 |
Sc2O3 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Bi2O3 | 0.01 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.01 | 0.03 | 0.00 | 0.01 |
MnO | 0.00 | 0.19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.14 | 0.02 | 0.00 | 0.03 |
FeO | 0.05 | 0.81 | 0.00 | 0.00 | 0.00 | 0.00 | 0.86 | 1.16 | 0.00 | 0.02 | 0.04 |
CaO | 0.00 | 0.24 | 0.01 | 0.00 | 0.01 | 0.00 | 0.13 | 0.33 | 0.01 | 0.01 | 0.00 |
PbO | 0.00 | 0.04 | 0.01 | 0.01 | 0.00 | 0.05 | 0.05 | 0.00 | 0.00 | 0.00 | 0.01 |
SO3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
F | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Total | 99.77 | 97.87 | 100.22 | 100.85 | 100.50 | 99.57 | 97.68 | 97.50 | 99.55 | 100.89 | 101.47 |
P | 0.005 | 0.009 | 0.007 | 0.004 | 0.005 | 0.008 | 0.012 | 0.010 | 0.005 | 0.007 | 0.011 |
As | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Nb | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Si | 0.993 | 0.976 | 0.992 | 0.997 | 0.992 | 1.001 | 0.965 | 0.968 | 1.000 | 1.001 | 1.004 |
Ti | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Zr | 0.961 | 0.956 | 0.948 | 0.945 | 0.950 | 0.881 | 0.964 | 0.958 | 0.942 | 0.876 | 0.853 |
Hf | 0.035 | 0.028 | 0.045 | 0.050 | 0.045 | 0.101 | 0.028 | 0.030 | 0.047 | 0.107 | 0.117 |
Th | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.001 | 0.000 |
U | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 |
Y | 0.001 | 0.005 | 0.002 | 0.001 | 0.002 | 0.002 | 0.008 | 0.004 | 0.001 | 0.002 | 0.004 |
Dy | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Er | 0.001 | 0.001 | 0.000 | 0.001 | 0.001 | 0.000 | 0.002 | 0.002 | 0.001 | 0.001 | 0.002 |
Yb | 0.002 | 0.004 | 0.004 | 0.002 | 0.003 | 0.005 | 0.004 | 0.003 | 0.002 | 0.004 | 0.009 |
Al | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 |
Sc | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Bi | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Mn | 0.000 | 0.005 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.004 | 0.001 | 0.000 | 0.001 |
Fe | 0.001 | 0.022 | 0.000 | 0.000 | 0.000 | 0.000 | 0.023 | 0.031 | 0.000 | 0.001 | 0.001 |
Ca | 0.000 | 0.008 | 0.000 | 0.000 | 0.000 | 0.000 | 0.004 | 0.011 | 0.000 | 0.000 | 0.000 |
Pb | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
S | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
F | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Zr/Hf | 27.14 | 33.95 | 21.09 | 18.89 | 20.90 | 8.71 | 34.75 | 31.56 | 20.06 | 8.19 | 7.31 |
Y/Yb | 0.38 | 1.38 | 0.60 | 0.28 | 0.73 | 0.39 | 1.81 | 1.24 | 0.41 | 0.44 | 0.51 |
Th/U | 0.00 | 0.75 | 4.72 | 0.07 | 1.31 | 0.27 | 2.51 | 3.82 | |||
Pluton | Madeira | ||||||||||
Rock Type | Core Albite Granite Pegmatoidal | ||||||||||
Sample | PHR-128 | 212 | |||||||||
Crystal | 3a | 3b | 11 | ||||||||
Position | Core | Rim | Core | Rim | Rim | Core | Core | Core | Rim | Rim | |
Spot | 47 | 48 | 49 | 50 | 51 | 632 | 633 | 634 | 635 | 636 | |
P2O5 | 0.27 | 0.36 | 0.04 | 0.47 | 0.26 | 0.99 | 0.91 | 0.39 | 0.75 | 0.79 | |
As2O5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | |
Nb2O5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.31 | |
SiO2 | 31.65 | 31.51 | 32.06 | 31.33 | 30.44 | 30.75 | 29.85 | 31.38 | 30.93 | 25.87 | |
TiO2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
ZrO2 | 62.59 | 62.55 | 62.81 | 60.81 | 52.84 | 61.33 | 60.08 | 64.18 | 60.80 | 51.38 | |
HfO2 | 4.86 | 5.26 | 4.48 | 5.22 | 13.99 | 3.47 | 3.56 | 4.60 | 5.46 | 5.86 | |
ThO2 | 0.09 | 0.04 | 0.00 | 0.11 | 0.15 | 0.02 | 0.02 | 0.00 | 0.31 | 1.97 | |
UO2 | 0.00 | 0.02 | 0.03 | 0.02 | 0.00 | 0.00 | 0.09 | 0.02 | 0.00 | 0.05 | |
Y2O3 | 0.15 | 0.28 | 0.00 | 0.36 | 0.26 | 0.58 | 0.36 | 0.10 | 0.56 | 1.20 | |
Dy2O3 | 0.02 | 0.05 | 0.05 | 0.00 | 0.08 | 0.05 | 0.00 | 0.01 | 0.12 | 0.40 | |
Er2O3 | 0.04 | 0.21 | 0.00 | 0.18 | 0.19 | 0.41 | 0.26 | 0.10 | 0.32 | 0.67 | |
Yb2O3 | 0.23 | 0.48 | 0.00 | 0.45 | 0.57 | 0.89 | 1.02 | 0.53 | 1.00 | 1.25 | |
Al2O3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.46 | |
Sc2O3 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | |
Bi2O3 | 0.01 | 0.00 | 0.04 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | |
MnO | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.02 | 0.07 | 0.00 | 0.00 | 0.01 | |
FeO | 0.04 | 0.07 | 0.00 | 0.07 | 0.23 | 0.02 | 0.55 | 0.00 | 0.00 | 0.89 | |
CaO | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.01 | 0.08 | 0.01 | 0.02 | 0.06 | |
PbO | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.12 | 0.01 | 0.04 | 2.67 | |
SO3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
F | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.85 | |
Total | 99.98 | 100.84 | 99.53 | 99.03 | 99.06 | 98.54 | 97.01 | 101.35 | 100.30 | 95.68 | |
P | 0.007 | 0.010 | 0.001 | 0.012 | 0.007 | 0.026 | 0.025 | 0.010 | 0.020 | 0.024 | |
As | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Nb | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.005 | |
Si | 0.989 | 0.981 | 1.001 | 0.990 | 0.999 | 0.972 | 0.964 | 0.971 | 0.973 | 0.920 | |
Ti | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Zr | 0.953 | 0.950 | 0.956 | 0.937 | 0.846 | 0.945 | 0.946 | 0.969 | 0.933 | 0.891 | |
Hf | 0.043 | 0.047 | 0.040 | 0.047 | 0.131 | 0.031 | 0.033 | 0.041 | 0.049 | 0.059 | |
Th | 0.001 | 0.000 | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 | 0.002 | 0.016 | |
U | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | |
Y | 0.002 | 0.005 | 0.000 | 0.006 | 0.005 | 0.010 | 0.006 | 0.002 | 0.009 | 0.023 | |
Dy | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.005 | |
Er | 0.000 | 0.002 | 0.000 | 0.002 | 0.002 | 0.004 | 0.003 | 0.001 | 0.003 | 0.007 | |
Yb | 0.002 | 0.005 | 0.000 | 0.004 | 0.006 | 0.009 | 0.010 | 0.005 | 0.010 | 0.014 | |
Al | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.019 | |
Sc | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Bi | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Mn | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.002 | 0.000 | 0.000 | 0.000 | |
Fe | 0.001 | 0.002 | 0.000 | 0.002 | 0.006 | 0.001 | 0.015 | 0.000 | 0.000 | 0.026 | |
Ca | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.003 | 0.000 | 0.001 | 0.002 | |
Pb | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.026 | |
S | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
F | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.208 | |
Zr/Hf | 22.00 | 20.31 | 23.95 | 19.90 | 6.45 | 30.19 | 28.83 | 23.83 | 19.02 | 14.98 | |
Y/Yb | 1.08 | 1.04 | 1.40 | 0.79 | 1.14 | 0.62 | 0.33 | 0.97 | 1.68 | ||
Th/U | 3.04 | 6.30 | 0.21 | 0.00 | 42.68 | ||||||
Pluton | Madeira | ||||||||||
Rock Type | Common Core Albite Granite | ||||||||||
Sample | 213 | 214 | |||||||||
Crystal | 22 | 18 | |||||||||
Position | Unmixed Core | Rim | Rim | Rim | Core | Core | Core | Unmixed Rim | Unmixed Rim | ||
Spot | 511 | 512 | 513 | 514 | 642 | 643 | 644 | 645 | 646 | ||
P2O5 | 0.32 | 0.20 | 0.27 | 0.54 | 0.18 | 0.36 | 0.07 | 0.53 | 0.24 | ||
As2O5 | 0.03 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
Nb2O5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.11 | 0.00 | ||
SiO2 | 30.80 | 30.23 | 31.35 | 31.08 | 32.00 | 28.94 | 32.13 | 28.25 | 30.07 | ||
TiO2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.07 | 0.03 | ||
ZrO2 | 61.75 | 61.72 | 62.05 | 59.74 | 62.46 | 58.41 | 64.00 | 58.22 | 61.95 | ||
HfO2 | 3.09 | 3.28 | 4.17 | 7.48 | 4.64 | 3.01 | 4.95 | 1.76 | 2.12 | ||
ThO2 | 0.47 | 0.05 | 0.03 | 0.07 | 0.07 | 0.28 | 0.01 | 0.88 | 0.43 | ||
UO2 | 0.11 | 0.07 | 0.02 | 0.00 | 0.00 | 0.09 | 0.01 | 0.35 | 0.15 | ||
Y2O3 | 0.27 | 0.21 | 0.04 | 0.35 | 0.12 | 0.70 | 0.00 | 0.97 | 0.22 | ||
Dy2O3 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
Er2O3 | 0.15 | 0.03 | 0.03 | 0.15 | 0.05 | 0.12 | 0.06 | 0.15 | 0.00 | ||
Yb2O3 | 0.34 | 0.18 | 0.41 | 0.63 | 0.28 | 0.36 | 0.09 | 0.59 | 0.20 | ||
Al2O3 | 0.06 | 0.09 | 0.03 | 0.00 | 0.00 | 0.70 | 0.00 | 0.61 | 0.38 | ||
Sc2O3 | 0.00 | 0.00 | 0.03 | 0.01 | 0.01 | 0.00 | 0.01 | 0.01 | 0.00 | ||
Bi2O3 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | ||
MnO | 0.13 | 0.35 | 0.09 | 0.01 | 0.00 | 0.69 | 0.03 | 0.70 | 0.44 | ||
FeO | 0.45 | 1.11 | 0.46 | 0.02 | 0.03 | 1.32 | 0.00 | 1.32 | 1.28 | ||
CaO | 0.01 | 0.04 | 0.03 | 0.03 | 0.01 | 0.15 | 0.00 | 0.07 | 0.08 | ||
PbO | 0.06 | 0.07 | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.16 | 0.12 | ||
SO3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
F | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.66 | 0.00 | 0.74 | 0.07 | ||
Total | 98.03 | 97.75 | 99.02 | 100.12 | 99.84 | 95.96 | 101.36 | 95.51 | 97.77 | ||
P | 0.009 | 0.005 | 0.007 | 0.014 | 0.005 | 0.010 | 0.002 | 0.015 | 0.007 | ||
As | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Nb | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | ||
Si | 0.981 | 0.969 | 0.987 | 0.982 | 0.998 | 0.953 | 0.990 | 0.940 | 0.962 | ||
Ti | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.002 | 0.001 | ||
Zr | 0.959 | 0.965 | 0.953 | 0.921 | 0.950 | 0.938 | 0.962 | 0.945 | 0.966 | ||
Hf | 0.028 | 0.030 | 0.037 | 0.067 | 0.041 | 0.028 | 0.044 | 0.017 | 0.019 | ||
Th | 0.003 | 0.000 | 0.000 | 0.000 | 0.001 | 0.002 | 0.000 | 0.007 | 0.003 | ||
U | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.003 | 0.001 | ||
Y | 0.005 | 0.004 | 0.001 | 0.006 | 0.002 | 0.012 | 0.000 | 0.017 | 0.004 | ||
Dy | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Er | 0.001 | 0.000 | 0.000 | 0.001 | 0.000 | 0.001 | 0.001 | 0.002 | 0.000 | ||
Yb | 0.003 | 0.002 | 0.004 | 0.006 | 0.003 | 0.004 | 0.001 | 0.006 | 0.002 | ||
Al | 0.002 | 0.003 | 0.001 | 0.000 | 0.000 | 0.027 | 0.000 | 0.024 | 0.014 | ||
Sc | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Bi | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Mn | 0.003 | 0.010 | 0.003 | 0.000 | 0.000 | 0.019 | 0.001 | 0.020 | 0.012 | ||
Fe | 0.012 | 0.030 | 0.012 | 0.000 | 0.001 | 0.036 | 0.000 | 0.037 | 0.034 | ||
Ca | 0.000 | 0.002 | 0.001 | 0.001 | 0.000 | 0.005 | 0.000 | 0.003 | 0.003 | ||
Pb | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.001 | 0.001 | ||
S | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
F | 0.000 | 0.008 | 0.000 | 0.000 | 0.000 | 0.068 | 0.000 | 0.078 | 0.007 | ||
Zr/Hf | 34.14 | 32.15 | 25.42 | 13.64 | 23.00 | 33.15 | 22.09 | 56.51 | 49.92 | ||
Y/Yb | 1.40 | 2.02 | 0.19 | 0.99 | 0.72 | 3.44 | 0.02 | 2.86 | 1.87 | ||
Th/U | 4.39 | 0.68 | 1.28 | 3.25 | 1.03 | 2.55 | 3.05 | ||||
Pluton | Madeira | ||||||||||
Rock Type | Li-Poor Core Albite Granite | Li-Poor Core Albite Granite Altered | |||||||||
Sample | PHR-249 | PHR-240 | PHR-241 | ||||||||
Crystal | 2 | 6 | 2 | ||||||||
Rem. | Patchy | Altered | Patchy Altered | ||||||||
Spot | 830 | 831 | 832 | 833 | 65 | 66 | 67 | 45 | 46 | 47 | 48 |
P2O5 | 0.07 | 0.06 | 0.14 | 0.16 | 0.67 | 0.55 | 0.11 | 0.12 | 0.06 | 0.07 | 0.15 |
As2O5 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Nb2O5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
SiO2 | 31.65 | 31.71 | 30.10 | 29.81 | 29.24 | 29.18 | 31.10 | 30.71 | 32.10 | 32.06 | 30.41 |
TiO2 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
ZrO2 | 65.46 | 66.07 | 62.48 | 60.60 | 59.71 | 57.35 | 63.15 | 62.39 | 64.75 | 65.31 | 62.14 |
HfO2 | 1.83 | 1.74 | 1.58 | 1.56 | 1.71 | 2.32 | 2.20 | 1.36 | 1.43 | 1.25 | 1.42 |
ThO2 | 0.00 | 0.00 | 0.02 | 0.02 | 0.06 | 0.41 | 0.11 | 0.00 | 0.01 | 0.00 | 0.00 |
UO2 | 0.03 | 0.01 | 0.23 | 0.28 | 0.26 | 0.34 | 0.16 | 0.24 | 0.03 | 0.00 | 0.16 |
Y2O3 | 0.05 | 0.00 | 0.11 | 0.19 | 0.66 | 0.76 | 0.07 | 0.03 | 0.06 | 0.00 | 0.05 |
Dy2O3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.19 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 |
Er2O3 | 0.00 | 0.00 | 0.02 | 0.10 | 0.30 | 0.21 | 0.00 | 0.06 | 0.00 | 0.04 | 0.02 |
Yb2O3 | 0.06 | 0.02 | 0.26 | 0.25 | 1.01 | 0.79 | 0.19 | 0.08 | 0.00 | 0.00 | 0.16 |
Al2O3 | 0.02 | 0.00 | 0.29 | 0.44 | 0.42 | 0.52 | 0.05 | 0.24 | 0.00 | 0.00 | 0.27 |
Sc2O3 | 0.01 | 0.02 | 0.01 | 0.02 | 0.00 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
Bi2O3 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 |
MnO | 0.03 | 0.01 | 0.38 | 0.62 | 0.41 | 0.51 | 0.07 | 0.44 | 0.04 | 0.00 | 0.39 |
FeO | 0.00 | 0.01 | 0.65 | 1.16 | 1.51 | 2.18 | 1.35 | 0.72 | 0.05 | 0.00 | 0.83 |
CaO | 0.01 | 0.02 | 0.04 | 0.06 | 0.08 | 0.08 | 0.00 | 0.05 | 0.00 | 0.00 | 0.08 |
PbO | 0.04 | 0.02 | 0.05 | 0.10 | 0.06 | 0.06 | 0.01 | 0.04 | 0.00 | 0.01 | 0.07 |
SO3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
F | 0.00 | 0.00 | 0.01 | 0.18 | 0.23 | 0.60 | 0.00 | 0.13 | 0.00 | 0.00 | 0.07 |
Total | 99.31 | 99.72 | 96.35 | 95.59 | 96.42 | 96.08 | 98.64 | 96.60 | 98.54 | 98.74 | 96.22 |
P | 0.002 | 0.002 | 0.004 | 0.005 | 0.018 | 0.015 | 0.003 | 0.003 | 0.002 | 0.002 | 0.004 |
As | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Nb | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Si | 0.985 | 0.983 | 0.970 | 0.971 | 0.952 | 0.960 | 0.980 | 0.983 | 1.000 | 0.996 | 0.978 |
Ti | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Zr | 0.993 | 0.998 | 0.982 | 0.963 | 0.948 | 0.920 | 0.971 | 0.974 | 0.983 | 0.990 | 0.975 |
Hf | 0.016 | 0.015 | 0.015 | 0.015 | 0.016 | 0.022 | 0.020 | 0.012 | 0.013 | 0.011 | 0.013 |
Th | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.003 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 |
U | 0.000 | 0.000 | 0.002 | 0.002 | 0.002 | 0.002 | 0.001 | 0.002 | 0.000 | 0.000 | 0.001 |
Y | 0.001 | 0.000 | 0.002 | 0.003 | 0.011 | 0.013 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001 |
Dy | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Er | 0.000 | 0.000 | 0.000 | 0.001 | 0.003 | 0.002 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 |
Yb | 0.001 | 0.000 | 0.003 | 0.002 | 0.010 | 0.008 | 0.002 | 0.001 | 0.000 | 0.000 | 0.002 |
Al | 0.001 | 0.000 | 0.011 | 0.017 | 0.016 | 0.020 | 0.002 | 0.009 | 0.000 | 0.000 | 0.010 |
Sc | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Bi | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Mn | 0.001 | 0.000 | 0.010 | 0.017 | 0.011 | 0.014 | 0.002 | 0.012 | 0.001 | 0.000 | 0.011 |
Fe | 0.000 | 0.000 | 0.017 | 0.032 | 0.041 | 0.060 | 0.036 | 0.019 | 0.001 | 0.000 | 0.022 |
Ca | 0.000 | 0.001 | 0.002 | 0.002 | 0.003 | 0.003 | 0.000 | 0.002 | 0.000 | 0.000 | 0.003 |
Pb | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 |
S | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
F | 0.000 | 0.000 | 0.001 | 0.019 | 0.024 | 0.062 | 0.000 | 0.013 | 0.000 | 0.000 | 0.007 |
Zr/Hf | 61.11 | 64.87 | 67.55 | 66.36 | 59.65 | 42.23 | 49.04 | 78.37 | 77.35 | 89.26 | 74.76 |
Y/Yb | 1.55 | 0.30 | 0.72 | 1.32 | 1.14 | 1.68 | 0.64 | 0.61 | 0.56 | ||
Th/U | 0.00 | 0.00 | 0.08 | 0.09 | 0.24 | 1.23 | 0.70 | 0.22 | |||
Pluton | Madeira | Europa | |||||||||
Rock Type | Amp-Bt Granite | Bt Granite | Hypersolvus Granite | Rbk Granite | |||||||
Sample | F13.50 m | PHR-96 | PHR-176 | PHR-191 | PHR-197 | ||||||
Spot | 14 | 15 | 6 | 12 | 13 | 34 | 43 | 44 | 45 | 46 | |
P2O5 | 0.02 | 0.01 | 0.11 | 0.10 | 0.27 | 0.07 | 0.21 | 0.09 | 0.14 | 0.06 | |
As2O5 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Nb2O5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
SiO2 | 30.48 | 31.54 | 28.50 | 31.79 | 29.07 | 30.55 | 29.81 | 31.60 | 30.06 | 31.55 | |
TiO2 | 0.02 | 0.02 | 0.00 | 0.06 | 0.10 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | |
ZrO2 | 62.42 | 64.76 | 60.43 | 67.05 | 61.13 | 62.11 | 60.76 | 66.60 | 60.80 | 66.25 | |
HfO2 | 1.26 | 1.22 | 1.55 | 1.57 | 1.53 | 2.60 | 0.92 | 1.24 | 1.14 | 1.26 | |
ThO2 | 0.10 | 0.00 | 0.18 | 0.00 | 0.21 | 0.00 | 0.11 | 0.00 | 0.06 | 0.00 | |
UO2 | 0.08 | 0.05 | 0.35 | 0.07 | 0.13 | 0.17 | 0.14 | 0.01 | 0.17 | 0.00 | |
Y2O3 | 0.12 | 0.00 | 0.30 | 0.06 | 0.73 | 0.03 | 2.49 | 0.26 | 1.39 | 0.25 | |
Dy2O3 | 0.03 | 0.00 | 0.00 | 0.03 | 0.09 | 0.00 | 0.22 | 0.04 | 0.14 | 0.04 | |
Er2O3 | 0.02 | 0.03 | 0.00 | 0.02 | 0.00 | 0.05 | 0.29 | 0.03 | 0.19 | 0.04 | |
Yb2O3 | 0.09 | 0.10 | 0.12 | 0.00 | 0.08 | 0.05 | 0.39 | 0.08 | 0.31 | 0.02 | |
Al2O3 | 0.03 | 0.00 | 1.29 | 0.01 | 0.67 | 0.07 | 0.01 | 0.00 | 0.22 | 0.00 | |
Sc2O3 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Bi2O3 | 0.13 | 0.11 | 0.02 | 0.02 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | |
MnO | 0.08 | 0.02 | 1.28 | 0.00 | 0.70 | 0.31 | 0.07 | 0.00 | 0.20 | 0.00 | |
FeO | 0.46 | 0.22 | 2.00 | 0.33 | 1.45 | 0.63 | 0.46 | 0.03 | 0.81 | 0.16 | |
CaO | 1.17 | 0.02 | 0.26 | 0.01 | 0.11 | 0.02 | 0.58 | 0.01 | 1.14 | 0.01 | |
PbO | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 | 0.02 | 0.00 | 0.00 | |
SO3 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.01 | |
F | 0.39 | 0.01 | 0.49 | 0.00 | 0.21 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Total | 97.21 | 98.54 | 96.90 | 101.13 | 96.48 | 96.68 | 96.54 | 100.03 | 96.80 | 99.66 | |
P | 0.001 | 0.000 | 0.003 | 0.002 | 0.007 | 0.002 | 0.006 | 0.002 | 0.004 | 0.002 | |
As | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Nb | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Si | 0.978 | 0.990 | 0.927 | 0.974 | 0.943 | 0.982 | 0.966 | 0.977 | 0.967 | 0.978 | |
Ti | 0.000 | 0.001 | 0.000 | 0.001 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Zr | 0.976 | 0.991 | 0.959 | 1.001 | 0.967 | 0.974 | 0.960 | 1.004 | 0.953 | 1.002 | |
Hf | 0.012 | 0.011 | 0.014 | 0.014 | 0.014 | 0.024 | 0.008 | 0.011 | 0.010 | 0.011 | |
Th | 0.001 | 0.000 | 0.001 | 0.000 | 0.002 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | |
U | 0.001 | 0.000 | 0.003 | 0.000 | 0.001 | 0.001 | 0.001 | 0.000 | 0.001 | 0.000 | |
Y | 0.002 | 0.000 | 0.005 | 0.001 | 0.013 | 0.000 | 0.043 | 0.004 | 0.024 | 0.004 | |
Dy | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.002 | 0.000 | 0.001 | 0.000 | |
Er | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.003 | 0.000 | 0.002 | 0.000 | |
Yb | 0.001 | 0.001 | 0.001 | 0.000 | 0.001 | 0.000 | 0.004 | 0.001 | 0.003 | 0.000 | |
Al | 0.001 | 0.000 | 0.050 | 0.000 | 0.026 | 0.003 | 0.000 | 0.000 | 0.008 | 0.000 | |
Sc | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Bi | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Mn | 0.002 | 0.001 | 0.035 | 0.000 | 0.019 | 0.008 | 0.002 | 0.000 | 0.005 | 0.000 | |
Fe | 0.012 | 0.006 | 0.054 | 0.009 | 0.039 | 0.017 | 0.013 | 0.001 | 0.022 | 0.004 | |
Ca | 0.040 | 0.001 | 0.009 | 0.000 | 0.004 | 0.001 | 0.020 | 0.000 | 0.039 | 0.000 | |
Pb | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | |
S | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | |
F | 0.040 | 0.001 | 0.050 | 0.000 | 0.022 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Zr/Hf | 84.63 | 90.90 | 66.60 | 72.96 | 68.25 | 40.81 | 113.14 | 91.75 | 91.27 | 89.82 | |
Y/Yb | 2.49 | 0.02 | 4.24 | 22.92 | 16.06 | 0.90 | 11.26 | 5.35 | 7.86 | 21.64 | |
Th/U | 1.35 | 0.54 | 1.58 | 0.83 | 0.37 |
5. Discussion
5.1. Comparison of the EPMA and LA-ICP-MS Data of Madeira Zircon
5.2. Basic Chemical Characteristics of Zircon from the Madeira Albite Granite
- Zircons from all varieties of albite granite are nearly poor (Zr, Hf)SiO4 with Zr + Hf > 0.95 apfu. Zircons from the Madeira biotite granite and from the Europa pluton contain much more impurities (up to 0.3 apfu, Figure 8c).
- Zircons from all varieties of albite granite are relatively rich in HREE, best represented by Yb. The average Y/Yb atomic value in zircon here is as low as 1, and in nearly all cases < 3. This separates the Madeira albite granite from all other granite types in the area (Figure 8d), as well as from other weakly peralkaline to subaluminous A-type rare-metal granites [12].
- In albite granite, REE and Y enter the zircon crystal lattice as the xenotime component, i.e., (REE + Y)/P = 1, while REE + Y distinctly prevail over P in zircons from all neighboring granites (Figure 9a).
- Although a number of zircon analyses from albite granite yielded low analytical totals down to 95 wt%, the contents of non-formula elements (Al, Ca, Fe) are significantly lower than in zircons from the surrounding granites (Figure 9b–e).
- The atomic Zr/Hf value of 40 may serve as a threshold dividing Madeira zircons into two groups with different grades of fractionation (Figure 10). The great majority of zircon data from the Li-poor core albite granite subfacies together with zircons from the Madeira Amf-Bt and hypersolvus granites and from the Europa granite are relatively less evolved (Zr/Hf = 40–100), while all zircon analyses from the border albite granite and pegmatoidal core albite granite, and nearly all from the common core albite granite are more fractionated, with Zr/Hf < 40. Zircon from the Madeira Bt granite with Zr/Hf values of 30–50 has a transitional position. Each of the groups of analyses also contains several spots with significantly above-group average Zr/Hf values. These data may represent old inherited zircon cores or a local Hf deficit during the crystallization.
5.3. Evolution of Zircon from the Madeira Albite Granite
5.4. Changes in Zircon Chemistry During Magma Evolution
5.5. Relations of Zircon to Xenotime, Thorite and Coffinite
5.6. Relations of Zircon to Nb,Ta-Minerals
5.7. Constraints on the Genetic Model
- The initial magma of albite granite was already strongly fractionated, showing K/Rb~7 and Zr/Hf~25, and enriched in F, Th, and HREE. Th-rich cores of zircon grains from the common core and border facies crystallized from this magma as one of the earliest minerals, i.e., prior to the main crystallization of thorite.
- After further crystallization of magma associated with partial dissolution of primary zircon during the emplacement, a new population of Th-poor and Hf-enriched crystals and outer parts of already existing zircon grains crystallized. Due to the uneven crystallization of zircon and thorite and the uneven movement of crystal mush, Th-rich zircon crystallized again in some magma domains, forming rims of composite crystals.
- Before the complete crystallization of magma, residual melt of the pegmatoidal subfacies separated, and zircon rich in Hf and slightly enriched in Yb and Th crystallized from this melt. In other facies, Hf-rich compositions form only the thin outermost rims.
- Zircon with the locally highest Zr/Hf values crystallized from the Li-poor subfacies, which represented residual melt after decoupling with cryolite-rich pegmatite liquid.
- The outer part of the albite granite intrusion was strongly altered by post-magmatic fluids and transformed to the border facies. It is possible that it was at this stage that thorite inclusions were unmixed from the Th-rich parts of the zircon crystals.
6. Conclusions
- Common core subfacies, occupying most of the intrusion volume, contains mostly composite zircon crystals with euhedral cores rich in thorite inclusions and with zoned, inclusions-free, Hf-enriched rims; the Zr/Hf value decreased from 40 to 20 during the crystallization.
- Pegmatoidal subfacies, representing crystallization of residual magma, contains zircon without thorite inclusions but rich in albite and cryolite inclusions with Zr/Hf value from 35 to 5. The Th/U and Y/Yb values evolved into Th, Yb-enriched compositions (Th/U up to >10, Y/Yb down to 0.1) during the fractionation from the common to the pegmatoidal facies.
- A Li-poor subfacies was found in the central part of the stock near cryolite nests and pegmatites. This facies most probably represents granitic residuum after unmixing of a F-rich liquid forming cryolite pegmatites. Zircon from this facies is patchy, inhomogeneous, without regular zoning, and with comparatively high Zr/Hf values of 45–70 and elevated U and Y contents.
- The pericontact part of the common facies was later hydrothermally altered to border facies but zircon did not change noticeably during this process.
- -
- Many crystals yielded low analytical totals, down to 95 wt%, and are enriched in Al, Fe, Mn, Ca, and F, but this process does not influence the primary Zr/Hf, Th/U, and Y/Yb values.
- -
- Cores or outer zones rich in thorite inclusions indicate that a solid solution Zrn–Thr phase crystallized during certain episodes. It was later almost completely unmixed. The actual contents of HFSE minor elements in all zircon varieties are generally low (U + Th + Y + REE ˂ 0.05 apfu).
- -
- Y and REE are incorporated into zircon exclusively in the form of the xenotime component.
- -
- The contents of Hf, usually in the range of 1.5–2 wt% HfO2, increase in crystals rims in the pegmatoidal subfacies up to 14 wt% HfO2 (0.13 apfu Hf), which is a relatively high value but still significantly lower than the maxima found in some subaluminous A-type granites with up to 35 wt% HfO2 [59].
- -
- Zircon from albite granite evolved to a strong relative enrichment in Th and Yb, reaching extreme values of Y/Yb = 0.5–1 and Th/U = 0.1–0.5.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pupin, J.P. Zircon and granite petrology. Contrib. Mineral. Petrol. 1980, 73, 207–220. [Google Scholar] [CrossRef]
- Pupin, J.-P. Granite genesis related to geodynamics from Hf–Y in zircon. Earth Environ. Sci. Trans. R. Soc. Edinb. 2000, 91, 245–256. [Google Scholar]
- Speer, J.A. Zircon. Rev. Miner. Geochem. 1980, 5, 67–112. [Google Scholar]
- Hanchar, J.M.; Hoskin, P.W.O. Zircon. Rev. Miner. Geochem. 2003, 53, 89–112. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Miner. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Breiter, K.; Förster, H.-J.; Škoda, R. Extreme P-, Bi-, Nb-, Sc-, U- and F-rich zircon from fractionated perphosphorus granites: The peraluminous Podlesí granite system, Czech Republic. Lithos 2006, 88, 15–34. [Google Scholar] [CrossRef]
- Van Lichtervelde, M.; Holtz, F.; Dziony, W.; Ludwig, T.; Meyer, H.-P. Incorporation mechanisms of Ta and Nb in zircon and implications for pegmatitic systems. Am. Miner. 2011, 96, 1079–1089. [Google Scholar] [CrossRef]
- Breiter, K.; Škoda, R. Vertical zonality of fractionated granite plutons reflected in zircon chemistry: The Cínovec A-type versus the Beauvoir S-type suite. Geol. Carpathica 2012, 63, 383–398. [Google Scholar] [CrossRef]
- Breiter, K.; Škoda, R. Zircon and whole-rock Zr/Hf ratios as markers of the evolution of granitic magmas: Examples from the Teplice caldera (Czech Republic/Germany). Mineral. Petrol. 2017, 111, 435–457. [Google Scholar] [CrossRef]
- Lamarão, C.N.; Marques, G.T.; de Oliveira, D.C.; Costi, H.T.; Borges, R.M.K.; Dall’Agnol, R. Morphology and composition of zircons in rare metal granites from Brazilian tin provinces. J. S. Am. Earth Sci. 2018, 84, 1–15. [Google Scholar] [CrossRef]
- Zaraisky, G.P.; Aksyuk, A.M.; Devyatova, V.N.; Udoratina, O.V.; Chevychelov, V.Y. Zr/Hf ratio as an indicator of fractionation of rare-metal granites by the example of the Kukulbei Complex, Eastern Transbaikalia. Petrology 2008, 16, 710–736. [Google Scholar] [CrossRef]
- Breiter, K.; Lamarão, C.N.; Borges, R.M.K.; Dall’Agnol, R. Chemical characteristics of zircon from A-type granites and comparison to zircon of S-type granites. Lithos 2014, 192–195, 208–225. [Google Scholar] [CrossRef]
- Kovalenko, V.I.; Tsaryeva, G.M.; Goreglyad, A.V.; Yarmolyuk, V.V.; Troitsky, V.A. The peralkaline granite-related Khaldzan-Buregtey rare metal (Zr, Nb, REE) deposit, Western Mongolia. Econ. Geol. 1995, 90, 530–547. [Google Scholar] [CrossRef]
- Kynicky, J.; Chakhmouradian, A.R.; Xu, C.; Krmicek, L.; Galiová, M. Distribution and evolution of zirconium mineralization in peralkaline granites and associated pegmatites of the Khan Bogd complex, Southern Mongolia. Can. Mineral. 2011, 49, 947–965. [Google Scholar] [CrossRef]
- Marks, M.A.; Hettmann, K.; Schilling, J.; Frost, B.R.; Markl, G. The mineralogical diversity of alkaline igneous rocks: Critical factors for the transition from miaskitic to agpaitic phase assemblages. J. Petrol. 2011, 52, 439–455. [Google Scholar] [CrossRef]
- Sarangua, N.; Watanabe, Y.; Echigo, T.; Hoshino, M. Chemical characteristic of zircon from Khaldzan Burgedei peralkaline complex, Western Mongolia. Minerals 2018, 9, 10. [Google Scholar] [CrossRef]
- Costi, H.T.; Krás Borges, R.M.; Dall’Agnol, R. Depósitos de estanho da mina Pitinga, estado Amazonas. In Caracterizacao de Depósitos Minerais em Distritos Mineiros da Amazónia; Marini, O.J., Queiroz, E.T., Ramos, B.W., Eds.; DNPM-CT/Mineral-ADIMB: Brasília, Brazil, 2005; pp. 395–475. [Google Scholar]
- Bastos Neto, A.C.; Pereira, V.P.; Ronchi, L.H.; de Lima, E.F.; Frantz, J.C. The world-class Sn, Nb, Ta, F (Y, REE, Li) deposit and the massive cryolite associated with the albite-enriched facies of the Madeira A-type granite, Pitinga mining district, Amazonas State, Brazil. Can. Mineral. 2009, 47, 1329–1357. [Google Scholar] [CrossRef]
- Minuzzi, O.R.R.; Bastos Neto, A.C.; Flores, J.A.A.; Pereira, V.P.; Ferron, J.T.M.M. O dep’osito criolítico maciço e o min’erio disseminado de criolita da mina Pitinga (Amazonas, Brasil). Rev. Bras. Geocienc. 2006, 36, 104–123. (In Portuguese) [Google Scholar] [CrossRef][Green Version]
- Paludo, C.M.; Neto, A.C.B.; Pereira, V.P.; Botelho, N.F. Mineralogia e geoquímica de pegmatitos ricos em ETR, F e metais alcalinos associados a facies albita granito no depósito de Sn-Nb-Ta- (F, ETR, U, Th) Madeira (mina Pitinga, AM, Brasil). Pesqui. Geociências 2018, 45, e0747, (In Portuguese, with English Abstract). [Google Scholar] [CrossRef]
- Hadlich, I.W.; Neto, A.C.B.; Botelho, N.F.; Pereira, V.P. The thorite mineralization in the Madeira Sn-Nb-Ta world-class deposit (Pitinga, Brazil). Ore Geol. Rev. 2019, 105, 445–466. [Google Scholar] [CrossRef]
- Breiter, K.; Costi, H.T.; Korbelová, Z. Pyrochlore-supergroup minerals and their relation to columbite-group minerals in peralkaline to subaluminous A-type rare-metal granites with special emphasis on the Madeira pluton, Amazonas, Brazil. Minerals 2024, 14, 1302. [Google Scholar] [CrossRef]
- Costi, H.T.; Dall’Agnol, R.; Moura, C.A.V. Geology and Pb-Pb geochronology of Paleoproterozoic volcanic and granitic rocks of Pitinga province, Amazonian craton, northern Brazil. Int. Geol. Rev. 2000, 42, 832–849. [Google Scholar] [CrossRef]
- Nardi, L.V.S.; Formoso, M.L.L.; Jarvis, K.; Oliveira, L.; Neto, A.C.B.; Fontana, E. REE, Nb, U a Th contents and tetrad effect in zircon from a magmatic-hydrothermal F-rich system of Sn-rare metal-cryolite mineralized granites from the Pitinga mine, Amazonia, Brazil. J. S. Am. Earth Sci. 2012, 33, 34–42. [Google Scholar] [CrossRef]
- Costi, H.T.; Dall’Agnol, R.; Pichavant, M.; Ramo, O.T. The peralkaline tin-mineralized Madeira cryolite albite-rich granite of Pitinga, Amazonian craton, Brazil: Petrography, mineralogy and crystallization processes. Can. Miner. 2009, 47, 1301–1327. [Google Scholar] [CrossRef]
- Lenharo, S.L.R.; Pollard, P.J.; Born, H. Petrology and textural evolution of granites associated with tin and rare-metals mineralization at the Pitinga mine, Amazonas, Brazil. Lithos 2003, 66, 37–61. [Google Scholar] [CrossRef]
- Bettencourt, J.S.; Juliani, C.; Xavier, R.P.; Monteiro, L.V.; Neto, A.C.B.; Klein, E.L.; Assis, R.R.; Leite, W.B.; Moreto, C.P.; Fernandes, C.M.D.; et al. Metallogenetic systems associated with granitoid magmatism in the Amazonian Craton: An overview of the present level of understanding and exploration significance. J. S. Am. Earth Sci. 2016, 68, 22–49. [Google Scholar] [CrossRef]
- Ferron, J.M.T.M.; Neto, A.C.B.; Lima, E.F.; Nardi, L.V.S.; Costi, H.T.; Pierosan, R.; Prado, M. Petrology, geochemistry, and geochronology of Paleoproterozoic volcanic and granitic rocks (1.89–1.88 Ga) of the Pitinga province, Amazonian craton, Brazil. J. S. Am. Earth Sci. 2010, 29, 483–497. [Google Scholar] [CrossRef]
- Costi, H.T.C. Petrologia de Granitos Alcalinos com alto Flúor Mineralisados em Metais Raros: O Examplo do Albita Granito da mina Pitinga, Amazonas, Brazil. Ph.D. Thesis, Universidade Federal do Pará, Belém, Brazil, 2005; p. 345, (In Portuguese with English Abstract). [Google Scholar]
- Lenharo, S.L.R. Evolucao Magmática e Modelo Metalogenético dos Granitos Mineralizados da Regiao de PITINGA, Amazonas, Brasil. Ph.D. Thesis, Universidade de Sao Paulo, Escola Politécnica, Departamento de Engenharia de Minas, Sao Paulo, Brazil, 1998; pp. 1–290. (In Portuguese). [Google Scholar]
- Borges, R.M.K.; Villas, R.N.N.; Fuzikawa, K.; Dall Agnol, R.; Pimenta, M.A. Phase separation, fluid mixing, and origin of the greisens and potassic episyenite associated with the Água Boa pluton, Pitinga tin province, Amazonian Craton, Brazil. J. S. Am. Earth Sci. 2009, 27, 161–183. [Google Scholar] [CrossRef]
- Borges, R.M.K.; Amorim, L.E.D.; Rios, F.J.; dos Santos, G.C.S.; Freitas, M.E.; Lima, T.A.F.D.; Santos, A.; Pedrosa, T.A. Melt-melt immiscibility and implications for the origin of Madeira albite-rich granite, Pitinga mine, Amazonas, Brazil: A melt inclusion study. Braz. J. Geol. 2021, 51, e20210011. [Google Scholar] [CrossRef]
- Hrstka, T.; Gottlieb, P.; Skála, R.; Breiter, K.; Motl, D. Automated mineralogy and petrology-applications of TESCAN Integrated Mineral Analyzer (TIMA). J. Geosci. 2018, 63, 47–63. [Google Scholar] [CrossRef]
- Warr, L.N. IMA-CNMNC approved mineral symbols. Miner. Mag. 2021, 85, 291–320. [Google Scholar] [CrossRef]
- Nasdala, L.; Kronz, A.; Wirth, R.; Váczi, T.; Pérez-Soba, C.; Willner, A.; Kennedy, A.K. The phenomenon of deficient electron microprobe totals in radiation-damaged and altered zircon. Geochim. Cosmochim. Acta 2009, 73, 1637–1650. [Google Scholar] [CrossRef]
- Yin, R.; Wang, R.C.; Zhang, A.C.; Hu, H.; Zhu, J.C.; Rao, C.; Zhang, H. Extreme fractionation from zircon to hafnon in the Koktokay No. 1 granitic pegmatite, Altai, Northwestern China. Am. Miner. 2013, 98, 1714–1724. [Google Scholar] [CrossRef]
- Goldschmidt, V.M.; Muir, A. Geochemistry; Oxford University Press: Oxford, UK, 1954. [Google Scholar]
- Cerny, P.; Meintzner, R.E.; Anderson, A.J. Extreme fractionation in rare-element granitic pegmatites: Selected examples of data and mechanisms. Can. Miner. 1985, 23, 381–421. [Google Scholar]
- Hoskin, P.W.O.; Ireland, T.R. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 2000, 28, 627–630. [Google Scholar] [CrossRef]
- Kirkland, C.L.; Smithies, R.H.; Taylor, R.J.M.; Evans, N.; McDonald, B. Zircon Th/U ratios in magmatic environs. Lithos 2015, 212–215, 397–414. [Google Scholar] [CrossRef]
- Sheard, E.R.; Williams-Jones, A.E.; Heiligmann, M.; Pederson, C.; Trueman, D.L. Controls on the concentration of zirconium, niobium, and the rare earth elements in the Thor Lake rare metal deposit, Northwest Territories, Canada. Econ. Geol. 2012, 107, 81–104. [Google Scholar] [CrossRef]
- Raimbault, L.; Cuney, M.; Azencott, C.; Duthou, J.L.; Joron, J.L. Geochemical evidence for a multistage magmatic genesis of Ta–Sn–Li mineralization in the granite at Beauvoir, French Massif Central. Econ. Geol. 1995, 90, 548–596. [Google Scholar] [CrossRef]
- Breiter, K.; Ďurišová, J.; Korbelová, Z.; Vašinová Galiová, M.; Hložková, M. Granite Pluton at the Panasqueira Tungsten Deposit, Portugal: Genetic Implications as Revealed from New Geochemical Data. Minerals 2023, 13, 163. [Google Scholar] [CrossRef]
- Pollard, P.J. The Yichun Ta-Sn-Li deposit, South China: Evidence for extreme chemical fractionation in F-Li-P-rich magma. Econ. Geol. 2021, 116, 453–469. [Google Scholar] [CrossRef]
- Breiter, K.; Müller, A.; Leichmann, J.; Gabašová, A. Textural and chemical evolution of a fractionated granitic sytem: The Podlesí stock, Czech Republic. Lithos 2005, 80, 323–345. [Google Scholar] [CrossRef]
- Breiter, K. Monazite and zircon as major carriers of Th, U, and Y in peraluminous granites: Examples from the Bohemian Massif. Mineral. Petrol. 2016, 110, 767–785. [Google Scholar] [CrossRef]
- Badanina, E.V.; Veksler, I.V.; Thomas, R.; Syritso, L.F.; Trumbull, R.B. Magmatic evolution of Li-F rare-metal granites: A case study of melt inclusions in the Khangilay complex, Eastern Transbaikalia (Russia). Chem. Geol. 2004, 210, 113–133. [Google Scholar] [CrossRef]
- Haappala, I.; Lukkari, S. petrological and geochemical evolution of the Kymi stock, a topaz granite cupola within the Wiborg rapakivi batholith, Finland. Lithos 2005, 80, 347–362. [Google Scholar] [CrossRef]
- Sami, M.; Ntaflos, T.; Farahat, E.S.; Mohamed, H.A.; Hauzenberger, C.; Ahmed, A.F. Petrogenesis and geodynamic implications of Ediacaran highly fractionated A-type granitoids in the north Arabian-Nubian Shield (Egypt): Constraints from whole-rock geochemistry and Sr-Nd isotopes. Lithos 2018, 304–307, 329–346. [Google Scholar] [CrossRef]
- Haapala, I.; Frindt, S.; Kandara, J. Cretaceous Gross Spitzkoppe and Klein Spitzkoppe stocks in Namibia: Topaz-bearing A-type granites related to continental rifting and mantle plume. Lithos 2007, 97, 174–192. [Google Scholar] [CrossRef]
- Kempe, U.; Möckel, R.; Graupner, T.; Kynický, J.; Dombon, E. The genesis of Zr–Nb–REE mineralisation at Khalzan Buregte (Western Mongolia) reconsidered. Ore Geol. Rev. 2015, 64, 602–625. [Google Scholar] [CrossRef]
- Goodenough, K.M.; Upton, B.G.J.; Ellam, R.M. Geochemical evolution of the Ivigtut granite, South Greenland: A fluorine-rich “A-type” intrusion. Lithos 2000, 51, 205–221. [Google Scholar] [CrossRef]
- Sami, M.; Osman, H.; Ahmed, A.F.; Zaky, K.S.; Abart, R.; Sanislav, I.V.; Abdelrahman, K.; Fnais, M.S.; Xiao, W.; Abbas, H. Magmatic evolution and rare metal mineralization in Mount El-Sibai peralkaline granites, Central Eastern Desert, Egypt: Insights from whole-rock geochemistry and mineral chemistry data. Minerals 2023, 13, 1039. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Belousova, E.A.; Griffin, W.L.; O’Reilly, S.Y.; Fisher, N.I. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Breiter, K.; Kynický, J.; Korbelová, Z. Chemical and textural peculiarities of zircon from peralkaline granites and quartz-bearing syenites. Minerals 2024, 14, 187. [Google Scholar] [CrossRef]
- Breiter, K.; Čopjaková, R.; Škoda, R. The involvement of F, CO2, and As in the alteration of Zr-Th-REE-bearing accessory minerals in the Hora Svaté Kateřiny A-type granite, Czech Republic. Can. Miner. 2009, 47, 1375–1398. [Google Scholar] [CrossRef]
- Xie, L.; Wang, R.; Chen, X.; Qui, J.; Wang, D. Th-rich zircon from peralkaline A-type granite: Mineralogical features and petrological implications. Chin. Sci. Bull. 2005, 50, 809–817. [Google Scholar]
- Wang, R.C.; Fontan, F.; Shijin, X.; Xiaoming, C.; Monchoux, P. Hafnian zircon from the apical part of the Suzhou granite, China. Can. Mineral. 1996, 34, 1001–1010. [Google Scholar]
- Abdalla, H.M.; Helba, H.; Matsueda, H. Chemistry of zircon in rare metal granitoids and associated rocks, Eastern Desert, Egypt. Resour. Geol. 2009, 59, 51–68. [Google Scholar] [CrossRef]
- Cheng, W.R.; Fontan, F.; Monchoux, P. Mineraux dissemines indicateurs du caractere pegmatitique du granite Beauvoir, Massif d’Echassieres, Allier, France. Can. Mineral. 1992, 30, 763–770, (In France with English Abstract). [Google Scholar]
- Breiter, K.; Ďurišová, J.; Korbelová, Z.; Lima, A.; Galiová, M.V.; Hložková, M.; Dosbaba, M. Rock textures and mineral zoning—A clue to understanding rare-metal granite evolution: Argemela stock, Central-Eastern Portugal. Lithos 2022, 410–411, 106562. [Google Scholar] [CrossRef]
- Breiter, K.; Müller, A.; Shail, R.; Simons, B. Composition of zircons from the Cornubian Batholith of SW England and comparison with zircons from other European Variscan rare-metal granites. Miner. Mag. 2016, 80, 1273–1289. [Google Scholar] [CrossRef]
- Pérez-Soba, C.; Villaseca, C.; Del Tanago, J.G.; Nasdala, L. The composition of zircon in the peraluminous Hercynian granites of the Spanish Central System batholith. Can. Mineral. 2007, 45, 509–527. [Google Scholar] [CrossRef]
- Huang, X.L.; Wang, R.C.; Chen, X.M.; Hu, H.; Liu, C.S. Vertical variations in the mineralogy of the Yichun topaz-lepidolite granite, Jiangxi, Southern China. Can. Mineral. 2002, 40, 1047–1068. [Google Scholar] [CrossRef]
- Thomas, J.B.; Bodnar, R.J.; Shimizu, N.; Sinha, A.K. Determination of zircon/melt trace element partition coefficients from SIMS analysis of melt inclusions in zircon. Geochim. Cosmochim. Acta 2002, 66, 2887–2901. [Google Scholar] [CrossRef]
- Rubato, D.; Hermann, J. Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chem. Geol. 2007, 241, 38–61. [Google Scholar] [CrossRef]
- Nardi, L.V.S.; Formoso, M.L.L.; Müller, I.F.; Fontana, E.; Jarvis, K.; Lamarão, C. Zircon/rock partition coefficients of REEs, Y, Th, U, Nb, and Ta in granitic rocks: Uses for provenance and mineral exploration purposes. Chem. Geol. 2013, 335, 1–7. [Google Scholar] [CrossRef]
- Speer, J.A. The actinide orthosilicates. Rev. Miner. Geochem. 1982, 5, 113–135. [Google Scholar]
- Förster, H.-J. Composition and origin of intermediate solid solutions in the system thorite-xenotime-zircon-coffinite. Lithos 2006, 88, 35–55. [Google Scholar] [CrossRef]
- Breiter, K.; Korbelová, Z.; Chládek, Š.; Uher, P.; Knesl, I.; Rambousek, P.; Honig, S.; Šešulka, V. Diversity of Ti–Sn–W–Nb–Ta oxide minerals in the classic granite-related magmatic–hydrothermal Cínovec/Zinnwald Sn–W–Li deposit (Czech Republic). Eur. J. Miner. 2017, 29, 727–738. [Google Scholar] [CrossRef]
Pluton | Europa | Madeira Pluton | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Rock Type | Rbk-Bt Granite | Amp-Bt Granite | Bt Granite | Hypersolvus Granite | Hypersolvus Granite | Border Albite Granite | ||||
Sample | PHR-195 | PHR-101 | PHR-96 | PHR-176 | PHR-191 | PHR-174 | ||||
Albite | 26.03 | 32.38 | 23.84 | 28.95 | 36.48 | 39.29 | ||||
Quartz | 40.97 | 30.19 | 34.20 | 34.34 | 29.16 | 30.63 | ||||
Orthoclase | 26.82 | 28.32 | 37.08 | 30.76 | 27.50 | 25.09 | ||||
Li-mica/Muscovite | 0.31 | 0.34 | 0.52 | 0.64 | 1.13 | 0.34 | ||||
Annite | 0.06 | 5.05 | 2.57 | 4.37 | 3.34 | 0.52 | ||||
Riebeckite | 5.19 | 0.10 | 0.00 | 0.00 | 1.35 | 0.01 | ||||
Cryolite | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | ||||
Fluorite | 0.00 | 0.47 | 0.65 | 0.44 | 0.40 | 0.69 | ||||
Zircon | 0.18 | 0.15 | 0.09 | 0.10 | 0.19 | 1.78 | ||||
Thorite + alter. Thorite | 0.00 | 0.02 | 0.02 | 0.06 | 0.01 | 0.15 | ||||
Hematite | 0.01 | 0.50 | 0.01 | 0.01 | 0.09 | 0.82 | ||||
Cassiterite | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | ||||
Pyrochlore | 0.00 | 0.02 | 0.00 | 0.00 | 0.02 | 0.06 | ||||
Columbite | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.21 | ||||
Galena | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | ||||
Sphalerite | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | ||||
Genthelvite | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||||
Titanite | 0.00 | 0.30 | 0.00 | 0.00 | 0.00 | 0.00 | ||||
Ilmenite | 0.07 | 0.34 | 0.00 | 0.07 | 0.07 | 0.00 | ||||
Apatite | 0.00 | 0.20 | 0.00 | 0.00 | 0.00 | 0.00 | ||||
Pluton | Madeira Pluton, Core Albite Granite | |||||||||
Facies | Common | Common | Common | Pegmat | Pegmat | Pegmat | Pegmat | Li-Poor | Li-Poor | Li-Poor |
Sample | PHR-82a | PHR-160 | PHR-163 | PHR-127 | PHR-128 | PHR-159 | PHR-161 | PHR-240 | PHR-247 | PHR-249 |
Albite | 34.77 | 24.05 | 39.22 | 36.70 | 45.38 | 34.43 | 39.49 | 57.64 | 33.15 | 51.29 |
Quartz | 25.00 | 33.90 | 26.62 | 20.36 | 21.38 | 29.38 | 25.09 | 8.32 | 30.49 | 10.43 |
Orthoclase | 28.10 | 19.97 | 25.72 | 34.02 | 23.56 | 25.75 | 23.37 | 27.11 | 21.90 | 25.32 |
Li-mica | 2.29 | 4.75 | 1.71 | 1.68 | 2.08 | 2.14 | 2.08 | 0.00 | 0.00 | 0.00 |
Annite (Rb, Cs, Li, Zn-annite) | 0.33 | 1.22 | 1.07 | 0.15 | 0.71 | 1.03 | 0.34 | 3.12 | 3.27 | 4.31 |
Riebeckite | 1.57 | 4.05 | 0.46 | 2.83 | 1.40 | 0.87 | 1.27 | 0.90 | 1.34 | 0.42 |
Cryolite | 4.99 | 7.35 | 2.89 | 1.76 | 3.36 | 4.06 | 4.80 | 1.94 | 6.58 | 6.48 |
Fluorite | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 |
Zircon | 1.44 | 2.55 | 1.07 | 0.49 | 1.12 | 0.92 | 1.33 | 0.24 | 2.69 | 0.65 |
Thorite + alter. Thorite | 0.15 | 0.02 | 0.11 | 0.10 | 0.02 | 0.02 | 0.03 | 0.01 | 0.03 | 0.00 |
Hematite | 0.54 | 0.75 | 0.55 | 0.19 | 0.29 | 0.66 | 1.06 | 0.65 | 0.10 | 0.91 |
Cassiterite | 0.20 | 0.24 | 0.17 | 0.20 | 0.20 | 0.06 | 0.16 | 0.00 | 0.03 | 0.01 |
Pyrochlore | 0.55 | 0.86 | 0.33 | 0.46 | 0.38 | 0.61 | 0.59 | 0.04 | 0.25 | 0.00 |
Columbite | 0.05 | 0.07 | 0.03 | 0.12 | 0.08 | 0.06 | 0.11 | 0.00 | 0.05 | 0.00 |
Galena | 0.00 | 0.01 | 0.00 | 0.51 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Sphalerite | 0.00 | 0.00 | 0.00 | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Genthelvite | 0.00 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.17 | 0.00 | 0.00 | 0.00 |
Rock Type | Border Albite Granite | Common Core Albite Granite | ||
---|---|---|---|---|
Position | Cores | Rims | Cores | Rims |
n | 29 | 34 | 18 | 25 |
SiO2 | 30.94 | 31.18 | 30.76 | 31.08 |
ZrO2 | 62.77 | 61.15 | 62.35 | 61.27 |
HfO2 | 3.13 | 4.72 | 3.00 | 4.00 |
ThO2 | 0.069 | 0.052 | 0.081 | 0.066 |
UO2 | 0.077 | 0.041 | 0.353 | 0.070 |
P2O5 | 0.253 | 0.287 | 0.266 | 0.266 |
Y2O3 | 0.184 | 0.138 | 0.217 | 0.208 |
Yb2O3 | 0.274 | 0.360 | 0.281 | 0.351 |
Analytical total | 98.79 | 99.33 | 98.03 | 99.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breiter, K.; Costi, H.T.; Korbelová, Z.; Dosbaba, M. Chemical and Textural Variability of Zircon from Slightly Peralkaline Madeira Albite Granite, Pitinga Magmatic Province, Brazil. Minerals 2025, 15, 863. https://doi.org/10.3390/min15080863
Breiter K, Costi HT, Korbelová Z, Dosbaba M. Chemical and Textural Variability of Zircon from Slightly Peralkaline Madeira Albite Granite, Pitinga Magmatic Province, Brazil. Minerals. 2025; 15(8):863. https://doi.org/10.3390/min15080863
Chicago/Turabian StyleBreiter, Karel, Hilton Tulio Costi, Zuzana Korbelová, and Marek Dosbaba. 2025. "Chemical and Textural Variability of Zircon from Slightly Peralkaline Madeira Albite Granite, Pitinga Magmatic Province, Brazil" Minerals 15, no. 8: 863. https://doi.org/10.3390/min15080863
APA StyleBreiter, K., Costi, H. T., Korbelová, Z., & Dosbaba, M. (2025). Chemical and Textural Variability of Zircon from Slightly Peralkaline Madeira Albite Granite, Pitinga Magmatic Province, Brazil. Minerals, 15(8), 863. https://doi.org/10.3390/min15080863