Enhancement on KCl Flotation at Low Temperature by a Novel Amine-Alcohol Compound Collector: Experiment and Molecular Dynamic Simulation
Abstract
1. Introduction
2. Material and Methods
2.1. Material
2.2. KCl Micro-Flotation Experiment
2.3. Contact Angle Measurement
2.4. Molecular Dynamic Simulations
2.4.1. Construction of Models
2.4.2. Simulation Details
3. Results and Discussion
3.1. Effect of Temperature on KCl Flotation Recovery
3.2. Effect of Alcohol Content on KCl Flotation Recovery
3.3. Influence of ODA-DOD Collector on KCl Flotation Selectivity
3.4. Contact Angle Analysis
3.5. Molecular Dynamics Simulation
3.5.1. The Thickness of Hydration Layers at the KCl Crystal Surface
3.5.2. Dynamic Properties of Water Molecules in the Hydration Layer
3.5.3. The Hydrogen Bonds of Water Molecule in the Hydrated Layer
3.5.4. Dynamic Behavior of ODA Molecules in the Systems
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jena, S.K. A Review on Potash Recovery from Different Rock and Mineral Sources. Min. Metall. Explor. 2021, 38, 47–68. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhan, W.; Valdivieso, A.L.; Ma, S.; Tian, Y.; Yi, H.; Dong, G.; Song, S.; Cisternas, L.A.; Jia, F. Novel insights into sylvite flotation modulated by exposing facets. Powder Technol. 2024, 443, 119969. [Google Scholar] [CrossRef]
- Du, H.; Ozdemir, O.; Wang, X.; Cheng, F.; Celik, M.S.; Miller, J.D. Flotation chemistry of soluble salt minerals: From ion hydration to colloid adsorption. Min. Metall. Explor. 2014, 31, 1–20. [Google Scholar] [CrossRef]
- Wang, L.; Xu, Y.; Song, X. Froth stability and entrainment evaluation of a novel frother for KCl/NaCl flotation. AIChE J. 2023, 69, e18039. [Google Scholar] [CrossRef]
- Sun, K.; Nguyen, C.V.; Nguyen, N.N.; Nguyen, A.V. Flotation surface chemistry of water-soluble salt minerals: From experimental results to new perspectives. Adv. Colloid. Interface Sci. 2022, 309, 102775. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, P.; Chen, T.; Yi, H.; Xia, L.; Song, S.; Jia, F. Effect of particle size and coenobium on KCl and NaCl flotation kinetics. CrystEngComm 2025, 27, 523–537. [Google Scholar] [CrossRef]
- Cao, Q.; Du, H.; Miller, J.D.; Wang, X.; Cheng, F. Surface chemistry features in the flotation of KCl. Miner. Eng. 2010, 23, 365–373. [Google Scholar] [CrossRef]
- Wang, X.; Miller, J.; Cheng, F.; Cheng, H. Potash flotation practice for carnallite resources in the Qinghai Province, PRC. Miner. Eng. 2014, 66, 33–39. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhan, W.; Tian, Y.; López Valdivieso, A.; Yi, H.; Song, S.; Cisternas, L.A.; Jia, F. Novel strategy for improved sylvite flotation through controlled crystallization. Miner. Eng. 2024, 211, 108695. [Google Scholar] [CrossRef]
- Cheng, F.; Xue, N.; Cao, B.; Cao, Z.; Jiao, Y.J.X.I.; Delhi, N. Experimental study on mixed amine collector for KCl flotation at low temperature. In Proceedings of the XXVI International Mineral Processing Congress, New Delhi, India, 24–28 September 2012; pp. 888–898. [Google Scholar]
- Wu, Y.; Chen, H.; Wang, R.; Song, X. A Novel Ether Amine Reagent for the Low-Temperature Flotation Separation of KCl. Ind. Eng. Chem. Res. 2025, 64, 8403–8413. [Google Scholar] [CrossRef]
- Li, E.; Du, Z.; Yuan, S.; Cheng, F. Low temperature molecular dynamic simulation of water structure at sylvite crystal surface in saturated solution. Miner. Eng. 2015, 83, 53–58. [Google Scholar] [CrossRef]
- Essilfie, E. Modification of Amine Collector for Low Temperature Flotation of Potash; University of Saskatchewan: Saskatoon, SK, Canada, 2014. [Google Scholar]
- Li, E.; Zhang, Y.; Du, Z.; Li, D.; Cheng, F. Bubbles facilitate ODA adsorption and improve flotation recovery at low temperature during KCl flotation. Chem. Eng. Res. Des. 2017, 117, 557–563. [Google Scholar] [CrossRef]
- Ozdemir, O.; Karaguzel, C.; Nguyen, A.V.; Celik, M.S.; Miller, J.D. Contact angle and bubble attachment studies in the flotation of trona and other soluble carbonate salts. Miner. Eng. 2009, 22, 168–175. [Google Scholar] [CrossRef]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E.J.S. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef]
- Berendsen, H.J.; van der Spoel, D.; van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 1995, 91, 43–56. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236. [Google Scholar] [CrossRef]
- Bayly, C.I.; Cieplak, P.; Cornell, W.; Kollman, P.A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J. Phys. Chem. 1993, 97, 10269–10280. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H.; et al. Gaussian 16 Revision, version C. 01; Gaussian, Inc.: Wallingford, CT, USA, 2016.
- Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N log (N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089. [Google Scholar] [CrossRef]
- Ai, Z.; Li, S.; Zhao, Y.; Yi, H.; Chen, L.; Chen, P.; Nie, G.; Song, S. Atomic insights into flotation separation of KCl and NaCl from a new viewpoint of hydration layer: A molecular dynamic study. Colloids Surf. A Physicochem. Eng. Asp. 2020, 602, 125071. [Google Scholar] [CrossRef]
- Chowdhuri, S.; Chandra, A. Molecular dynamics simulations of aqueous NaCl and KCl solutions: Effects of ion concentration on the single-particle, pair, and collective dynamical properties of ions and water molecules. T. J. Chem. Phys. 2001, 115, 3732–3741. [Google Scholar] [CrossRef]
- Michalet, X. Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium. Phys. Rev. E 2010, 82, 041914. [Google Scholar] [CrossRef] [PubMed]
Items | Saturated Salt Solution | Temperature (°C) | Collector |
---|---|---|---|
1 | KCl | 0 | ODA |
2 | KCl | 15 | ODA |
3 | KCl | 25 | ODA |
4 | KCl | 25 | ODA-DOD ODA: 3 × 10−6 mol/L DOD:ODA = 1:1, 5:1, 10:1, 20:1 |
5 | KCl | 25 | ODA-butanol ODA: 3 × 10−6 mol/L Butanol:ODA = 1:1, 5:1, 10:1, 20:1 |
6 | KCl | 25 | ODA-octanol ODA: 3 × 10−6 mol/L Octanol:ODA = 1:1, 5:1, 10:1, 20:1 |
7 | KCl | 0 | ODA-DOD ODA: 3 × 10−6 mol/L~6 × 10−5 mol/L (DOD:ODA = 5:1) |
8 | KCl | 0 | DOD DOD: 3 × 10−6 mol/L~6 × 10−5 mol/L |
9 | KCl-NaCl | 0 | ODA-DOD ODA: 3 × 10−6 mol/L DOD:ODA = 1:1, 5:1, 10:1, 20:1 |
System | Number of Molecules | Temperature (K) | |||
---|---|---|---|---|---|
KCl | ODA | DOD | H2O | ||
System 1 | 308 | 1 | 0 | 4200 | 273.15 |
System 2 | 364 | 1 | 0 | 4200 | 298.15 |
System 3 | 308 | 1 | 5 | 4200 | 273.15 |
System 4 | 364 | 1 | 5 | 4200 | 298.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Tian, J.; Fan, B.; Wang, X.; Li, E. Enhancement on KCl Flotation at Low Temperature by a Novel Amine-Alcohol Compound Collector: Experiment and Molecular Dynamic Simulation. Minerals 2025, 15, 862. https://doi.org/10.3390/min15080862
Wang B, Tian J, Fan B, Wang X, Li E. Enhancement on KCl Flotation at Low Temperature by a Novel Amine-Alcohol Compound Collector: Experiment and Molecular Dynamic Simulation. Minerals. 2025; 15(8):862. https://doi.org/10.3390/min15080862
Chicago/Turabian StyleWang, Bo, Jintai Tian, Biao Fan, Xin Wang, and Enze Li. 2025. "Enhancement on KCl Flotation at Low Temperature by a Novel Amine-Alcohol Compound Collector: Experiment and Molecular Dynamic Simulation" Minerals 15, no. 8: 862. https://doi.org/10.3390/min15080862
APA StyleWang, B., Tian, J., Fan, B., Wang, X., & Li, E. (2025). Enhancement on KCl Flotation at Low Temperature by a Novel Amine-Alcohol Compound Collector: Experiment and Molecular Dynamic Simulation. Minerals, 15(8), 862. https://doi.org/10.3390/min15080862