Harnessing Mixed Fatty Acid Synergy for Selective Flotation of Apatite from Calcite and Quartz with Sodium Alginate
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Pure Mineral Specimens
2.1.2. Chemical Reagents
2.2. Experimental Methods
2.2.1. Micro-Flotation Tests
2.2.2. Zeta Potential Measurements
2.2.3. Adsorption Tests
2.2.4. FTIR Spectra Analyses
3. Results and Discussion
3.1. Single Mineral Flotation
3.2. Adsorption Behavior and Mechanistic Insights
3.3. Zeta Potential and Surface Charge Behavior
3.4. FTIR Interpretation of Reagent-Surface Interactions
4. Conclusions
- Adsorption tests indicated that NaAl efficiently depresses calcite and quartz without interfering with FAM adsorption on apatite surfaces, ensuring mineral-specific separation.
- Zeta potential measurements revealed a shift toward more negative values after conditioning with NaAl/FAM. The overlapping trends between (i) NaAl and NaAl + FAM curves for calcite and (ii) FAM and NaAl + FAM curves for apatite highlighted distinct adsorption behaviors, supporting the system’s selectivity.
- FTIR spectral analysis identified characteristic functional groups involved in collector and depressant interactions, further validating the proposed adsorption mechanism and surface affinities.
- The NaAl + FAM system demonstrated a high flotation selectivity with minimal depressant consumption, achieving effective calcite depression while maintaining high apatite recovery and minimal quartz flotation. This underlines the system’s technical efficiency and economic advantage in processing carbonate-rich phosphate ores.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Manoukian, L.; Metson, G.; Hernández, E.M.; Vaneeckhaute, C.; Frigon, D.; Omelon, S. Forging a Cohesive Path: Integrating Life Cycle Assessments of Primary-Origin Phosphorus Fertilizer Production and Secondary-Origin Recovery from Municipal Wastewater. Resour. Conserv. Recycl. 2023, 199, 107260. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, K.; Yu, M.; Dong, X.; Sarwar, M.T.; Yang, H. Facet-Engineering Strategy of Phosphogypsum for Production of Mineral Slow-Release Fertilizers with Efficient Nutrient Fixation and Delivery. Waste Manag. 2024, 182, 259–270. [Google Scholar] [CrossRef]
- Bai, Z.; Liu, L.; Kroeze, C.; Strokal, M.; Chen, X.; Yuan, Z.; Ma, L. Optimizing Phosphorus Fertilizer Use to Enhance Water Quality, Food Security and Social Equality. Resour. Conserv. Recycl. 2024, 203, 107400. [Google Scholar] [CrossRef]
- Wu, Z.; Feng, X.; Zhang, Y.; Fan, S. Repositioning Fertilizer Manufacturing Subsidies for Improving Food Security and Reducing Greenhouse Gas Emissions in China. J. Integr. Agric. 2024, 23, 430–443. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Othman, M.H.D.; Liang, X.; Goh, H.H.; Chew, K.W. From Liquid Waste to Mineral Fertilizer: Recovery, Recycle and Reuse of High-Value Macro-Nutrients from Landfill Leachate to Contribute to Circular Economy, Food Security, and Carbon Neutrality. Process Saf. Environ. Prot. 2023, 170, 791–807. [Google Scholar] [CrossRef]
- Zhu, G.; Sun, Y.; Shakoor, N.; Zhao, W.; Wang, Q.; Wang, Q.; Imran, A.; Li, M.; Li, Y.; Jiang, Y.; et al. Phosphorus-Based Nanomaterials as a Potential Phosphate Fertilizer for Sustainable Agricultural Development. Plant Physiol. Biochem. 2023, 205, 108172. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.; He, D.; Chi, R. Review on Beneficiation Techniques and Reagents Used for Phosphate Ores. Minerals 2019, 9, 253. [Google Scholar] [CrossRef]
- Sajid, M.; Bary, G.; Asim, M.; Ahmad, R.; Ahamad, M.I.; Alotaibi, H.; Rehman, A.; Khan, I.; Guoliang, Y. Synoptic View on P Ore Beneficiation Techniques. Alex. Eng. J. 2022, 61, 3069–3092. [Google Scholar] [CrossRef]
- Lamghari, K.; Taha, Y.; Ait-Khouia, Y.; Elghali, A.; Hakkou, R.; Benzaazoua, M. Sustainable Phosphate Mining: Enhancing Efficiency in Mining and Pre-Beneficiation Processes. J. Environ. Manag. 2024, 358, 120833. [Google Scholar] [CrossRef]
- Zeng, L.; Ding, K.; Zhang, X.; Zhou, Y.; Han, H. New Insights into the Influence of Mineral Surface Transformation on the Flotation Behavior of Anhydrite/Apatite. Colloids Surf. A Physicochem. Eng. Asp. 2024, 685, 133215. [Google Scholar] [CrossRef]
- Gomez-Flores, A.; Heyes, G.W.; Ilyas, S.; Kim, H. Prediction of Grade and Recovery in Flotation from Physicochemical and Operational Aspects Using Machine Learning Models. Miner. Eng. 2022, 183, 107627. [Google Scholar] [CrossRef]
- Faramarzpour, A.; Yazdi, M.S.; Mohammadi, B.; Chelgani, S.C. Calcite in Froth Flotation—A Review. J. Mater. Res. Technol. 2022, 19, 1231–1241. [Google Scholar] [CrossRef]
- Huang, H.; Gao, W.; Li, X. Effect of SO42- and PO43- on Flotation and Surface Adsorption of Dolomite: Experimental and Molecular Dynamics Simulation Studies. Colloids Surf. A Physicochem. Eng. Asp. 2024, 680, 132699. [Google Scholar] [CrossRef]
- Han, H.; Peng, M.; Nguyen, A.V.; Hu, Y.; Sun, W.; Wei, Z. The Interfacial Water Structure at Mineral Surfaces. In Encyclopedia of Solid-Liquid Interfaces, 1st ed.; Wandelt, K., Bussetti, G., Eds.; Elsevier: Oxford, UK, 2024; pp. 552–566. [Google Scholar] [CrossRef]
- Molaei, N.; Forster, J.; Shoaib, M.; Wani, O.; Khan, S.; Bobicki, E. Efficacy of Sustainable Polymers to Mitigate the Negative Effects of Anisotropic Clay Minerals in Flotation and Dewatering Operations. Clean. Eng. Technol. 2022, 8, 100470. [Google Scholar] [CrossRef]
- Feng, B.; Zhang, L.; Zhang, W.; Wang, H.; Gao, Z. Mechanism of Calcium Lignosulfonate in Apatite and Dolomite Flotation System. Int. J. Miner. Metall. Mater. 2022, 29, 1697–1704. [Google Scholar] [CrossRef]
- Li, H.; Chen, Y.; Zheng, H.; Huang, P.; Yang, P.; Chen, Q.; Weng, X.; He, D.; Song, S. Effect of Geological Origin of Apatite on Reverse Flotation Separation of Phosphate Ores Using Phosphoric Acid as Depressant. Miner. Eng. 2021, 172, 107182. [Google Scholar] [CrossRef]
- Boucif, R.; Filippov, L.O.; Maza, M.; Benabdeslam, N.; Foucaud, Y.; Marin, J.; Korbel, C.; Demeusy, B.; Diot, F.; Bouzidi, N. Optimizing Liberation of Phosphate Ore through High Voltage Pulse Fragmentation. Powder Technol. 2024, 437, 119549. [Google Scholar] [CrossRef]
- He, J.; Huang, S.; Chen, H.; Zhu, L.; Guo, C.; He, X.; Yang, B. Recent Advances in the Intensification of Triboelectric Separation and Its Application in Resource Recovery: A Review. Chem. Eng. Process.-Process Intensif. 2023, 185, 109308. [Google Scholar] [CrossRef]
- Hassanzadeh, A.; Safari, M.; Hoang, D.H.; Khoshdast, H.; Albijanic, B.; Kowalczuk, P.B. Technological Assessments on Recent Developments in Fine and Coarse Particle Flotation Systems. Miner. Eng. 2022, 180, 107509. [Google Scholar] [CrossRef]
- Lv, X.; Xiang, L.; Wang, T. Intensification of Low-Grade Phosphate Ore Purification Using a Hydrocyclone with Venturi-Style Inlet. J. Ind. Eng. Chem. 2024, 135, 257–269. [Google Scholar] [CrossRef]
- Tang, H.; Deng, Z.; Tang, Y.; Tong, X.; Wei, Z. Hotspots and Trends of Sphalerite Flotation: Bibliometric Analysis. Sep. Purif. Technol. 2023, 312, 123316. [Google Scholar] [CrossRef]
- Han, J.; Chen, P.; Liu, T.; Li, Y. Research and Application of Fluidized Flotation Units: A Review. J. Ind. Eng. Chem. 2023, 126, 50–68. [Google Scholar] [CrossRef]
- Filippov, L.O.; Filippova, I.V.; Fekry, A.M. Evaluation of Interaction Mechanism for Calcite and Fluorapatite with Phosphoric Acid Using Electrochemical Impedance Spectroscopy. J. Mater. Res. Technol. 2024, 29, 2316–2325. [Google Scholar] [CrossRef]
- Zhang, W.; Ren, Q.; Tu, R.; Liu, S.; Qiu, F.; Guo, Z.; Liu, P.; Xu, S.; Sun, W.; Tian, M. The Application of a Novel Amine Collector, 1-(Dodecylamino)-2-Propanol, in the Reverse Flotation Separation of Apatite and Quartz. J. Mol. Liq. 2024, 399, 124377. [Google Scholar] [CrossRef]
- Lan, S.; Dong, L.; Shen, P.; Zheng, Q.; Qiao, L.; Liu, D. Synergistic Impact of Surfactant and Sodium Oleate on Dolomite Removal from Fluorapatite via Reverse Flotation. Appl. Surf. Sci. 2024, 655, 159504. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, Q.; Wang, X. New Insights on Depressive Mechanism of Citric Acid in the Selective Flotation of Dolomite from Apatite. Colloids Surf. A Physicochem. Eng. Asp. 2022, 653, 130075. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, Q. Depression Mechanism of Acid for Flotation Separation of Fluorapatite and Dolomite Using ToF-SIMS and XPS. J. Mol. Liq. 2024, 394, 123584. [Google Scholar] [CrossRef]
- Yu, H.; Zhu, Y.; Lu, L.; Hu, X.; Li, S. Removal of Dolomite and Potassium Feldspar from Apatite Using Simultaneous Flotation with a Mixed Cationic-Anionic Collector. Int. J. Min. Sci. Technol. 2023, 33, 783–791. [Google Scholar] [CrossRef]
- Singh, A.; Pocock, J. The ‘Crago Process’ and Its Applicability to a South African Sedimentary Phosphate Deposit. Min. Metall. Explor. 2023, 40, 893–900. [Google Scholar] [CrossRef]
- Aarab, I.; Derqaoui, M.; El Amari, K.; Yaacoubi, A.; Abidi, A.; Etahiri, A.; Baçaoui, A. Flotation Tendency Assessment Through DOE: Case of Low-Grade Moroccan Phosphate Ore. Min. Metall. Explor. 2022, 39, 1721–1741. [Google Scholar] [CrossRef]
- Aarab, I.; El Amari, K.; Yaacoubi, A.; Etahiri, A.; Baçaoui, A. Optimization of the Flotation of Low-Grade Phosphate Ore Using DOE: A Comparative Evaluation of Fatty Acid Formulation to Sodium Oleate. Min. Metall. Explor. 2023, 40, 95–108. [Google Scholar] [CrossRef]
- Ding, Z.; Li, J.; Yuan, J.; Yu, A.; Wen, S.; Bai, S. Insights into the Influence of Calcium Ions on the Adsorption Behavior of Sodium Oleate and Its Response to Flotation of Quartz: FT-IR, XPS and AMF Studies. Miner. Eng. 2023, 204, 108437. [Google Scholar] [CrossRef]
- He, D.; Zhu, X.; Fu, Y.; Li, Z.; Tang, Y. Effects of Sodium Oleate Surface Properties on the Characteristics of Two-Phase Foam in Froth Flotation. Colloids Surf. A Physicochem. Eng. Asp. 2024, 694, 134119. [Google Scholar] [CrossRef]
- Cheng, R.; Li, C.; Liu, X.; Deng, S. Synergism of Octane Phenol Polyoxyethylene-10 and Oleic Acid in Apatite Flotation. Physicochem. Probl. Miner. Process. 2017, 53, 1214–1227. [Google Scholar] [CrossRef]
- Jong, K.; Han, Y.; Ryom, S. Flotation Mechanism of Oleic Acid Amide on Apatite. Colloids Surf. A Physicochem. Eng. Asp. 2017, 523, 127–131. [Google Scholar] [CrossRef]
- Cao, Q.; Cheng, J.; Wen, S.; Li, C.; Bai, S.; Liu, D. A Mixed Collector System for Phosphate Flotation. Miner. Eng. 2015, 78, 114–121. [Google Scholar] [CrossRef]
- Filippova, I.V.; Filippov, L.O.; Lafhaj, Z.; Barres, O.; Fornasiero, D. Effect of Calcium Minerals Reactivity on Fatty Acids Adsorption and Flotation. Colloids Surf. A Physicochem. Eng. Asp. 2018, 545, 157–166. [Google Scholar] [CrossRef]
- Eskanlou, A.; Huang, Q.; Foucaud, Y.; Badawi, M.; Romero, A.H. Effect of Al3+ and Mg2+ on the Flotation of Fluorapatite Using Fatty- and Hydroxamic-Acid Collectors—A Multiscale Investigation. Appl. Surf. Sci. 2022, 572, 151499. [Google Scholar] [CrossRef]
- Yu, J.; Ge, Y.; Hou, J. Behavior and Mechanism of Collophane and Dolomite Separation Using Alkyl Hydroxamic Acid as a Flotation Collector. Physicochem. Probl. Miner. Process. 2016, 52, 155–169. [Google Scholar] [CrossRef]
- Aarab, I.; El Amari, K.; He, D.; Fu, Y.; Boujounoui, K.; Etahiri, A. Eco-Friendly Apatite Flotation: Unlocking the Potential of Spent Coffee Grounds as a Bio-Based Collector. Miner. Eng. 2025, 233, 109652. [Google Scholar] [CrossRef]
- Wang, P.; Liu, W.; Zhuo, Q.; Luo, Q.; Sun, X.; Li, J. Mechanism of Interaction between Mixed Collectors and Low-Rank Coal: An Experimental and Simulation Study. Int. J. Coal Prep. Util. 2023, 43, 346–360. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, L.; Wu, H.; Wang, Z.; Shu, K.; Fang, S.; Zhang, Z. Flotation and Co–Adsorption of Mixed Collectors Octanohydroxamic Acid/Sodium Oleate on Bastnaesite. J. Alloys Compd. 2020, 819, 152948. [Google Scholar] [CrossRef]
- Buckley, A.N.; Hope, G.A.; Parker, G.K.; Steyn, J.; Woods, R. Mechanism of Mixed Dithiophosphate and Mercaptobenzothiazole Collectors for Cu Sulfide Ore Minerals. Miner. Eng. 2017, 109, 80–97. [Google Scholar] [CrossRef]
- Sis, H.; Chander, S. Adsorption and Contact Angle of Single and Binary Mixtures of Surfactants on Apatite. Miner. Eng. 2003, 16, 839–848. [Google Scholar] [CrossRef]
- Rao, K.H.; Forssberg, K.S.E. Interactions of Anionic Collectors in Flotation of Semi-Soluble Salt Minerals. In Innovations in Flotation Technology; Mavros, P., Matis, K.A., Eds.; Springer: Dordrecht, The Netherlands, 1992; pp. 331–356. [Google Scholar] [CrossRef]
- Aarab, I.; Derqaoui, M.; El Amari, K.; Yaacoubi, A.; Abidi, A.; Etahiri, A.; Baçaoui, A. Influence of Surface Dissolution on Reagents’ Adsorption on Low-Grade Phosphate Ore and Its Flotation Selectivity. Colloids Surf. A Physicochem. Eng. Asp. 2021, 631, 127700. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, W.; Ren, Q.; Tu, R.; Qiu, F.; Gao, Z.; Xu, S.; Sun, W.; Tian, M. Innovating an Amphoteric Collector Derived from Dodecylamine Molecular Structure: Facilitating the Selective Flotation Separation of Apatite from Quartz and Dolomite. Miner. Eng. 2024, 215, 108819. [Google Scholar] [CrossRef]
- Zhang, W.; Tu, R.; Ren, Q.; Liu, S.; Guo, Z.; Liu, P.; Tian, M. The Selective Flotation Separation of Apatite from Dolomite and Calcite Utilizing a Combination of 2-Chloro-9-Octadecenoic Acid Collector and Sodium Pyrophosphate Depressant. Sep. Purif. Technol. 2025, 353, 128446. [Google Scholar] [CrossRef]
- Karlkvist, T.; Patra, A.; Rao, K.H.; Bordes, R.; Holmberg, K. Flotation Selectivity of Novel Alkyl Dicarboxylate Reagents for Apatite–Calcite Separation. J. Colloid Interface Sci. 2015, 445, 40–47. [Google Scholar] [CrossRef]
- Santos, L.H.; Santos, A.M.A.; de Magalhães, L.F.; de Souza, T.F.; da Silva, G.R.; Peres, A.E.C. Synergetic Effects of Fatty Acids in Amazon Oil-Based Collectors for Phosphate Flotation. Miner. Eng. 2023, 191, 107932. [Google Scholar] [CrossRef]
- El-Midany, A.A.; Arafat, Y. Enhancing Phosphate Grade Using Oleic Acid–Sodium Dodecyl Sulfate Mixtures. Chem. Eng. Commun. 2016, 203, 660–665. [Google Scholar] [CrossRef]
- Filippova, I.; Filippov, L.; Duverger, A.; Severov, V. Synergetic Effect of a Mixture of Anionic and Nonionic Reagents: Ca Mineral Contrast Separation by Flotation at Neutral pH. Miner. Eng. 2014, 66–68, 135–144. [Google Scholar] [CrossRef]
- Farid, Z.; Abdennouri, M.; Barka, N.; Sadiq, M. Grade-Recovery Beneficing and Optimization of the Froth Flotation Process of a Mid-Low Phosphate Ore Using a Mixed Soybean and Sunflower Oil as a Collector. Appl. Surf. Sci. Adv. 2022, 11, 100287. [Google Scholar] [CrossRef]
- Guimarães, R.C.; Araujo, A.C.; Peres, A.E.C. Reagents in Igneous Phosphate Ores Flotation. Miner. Eng. 2005, 18, 199–204. [Google Scholar] [CrossRef]
- Gregory, G.R.E.C. The Determination of Residual Anionic Surface-Active Reagents in Mineral Flotation Liquors. Analyst 1966, 91, 251. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Aarab, I.; Derqaoui, M.; Abidi, A.; Yaacoubi, A.; El Amari, K.; Etahiri, A.; Baçaoui, A. Direct Flotation of Low-Grade Moroccan Phosphate Ores: A Preliminary Micro-Flotation Study to Develop New Beneficiation Routes. Arab. J. Geosci. 2020, 13, 1252. [Google Scholar] [CrossRef]
- Derqaoui, M.; Aarab, I.; Abidi, A.; Yaacoubi, A.; El Amari, K.; Etahiri, A.; Baçaoui, A. Valorization of Seaweeds Biomass as Source an Eco-Friendly and Efficient Depressant of Calcite in the Flotation of Apatite Containing Ore. Waste Biomass Valorization 2022, 13, 2623–2636. [Google Scholar] [CrossRef]
- Gao, Z.; Li, C.; Sun, W.; Hu, Y. Anisotropic Surface Properties of Calcite: A Consideration of Surface Broken Bonds. Colloids Surf. A Physicochem. Eng. Asp. 2017, 520, 53–61. [Google Scholar] [CrossRef]
- Antti, B.-M.; Forssberg, E. Pulp Chemistry in Industrial Mineral Flotation. Studies of Surface Complex on Calcite and Apatite Surfaces Using FTIR Spectroscopy. Miner. Eng. 1989, 2, 217–227. [Google Scholar] [CrossRef]
- Wang, L.; Lyu, W.; Li, F.; Liu, J.; Zhang, H. Discrepant Adsorption Behavior of Sodium Alginate onto Apatite and Calcite Surfaces: Implications for Their Selective Flotation Separation. Miner. Eng. 2022, 181, 107553. [Google Scholar] [CrossRef]
- Owens, C.L.; Nash, G.R.; Hadler, K.; Fitzpatrick, R.S.; Anderson, C.G.; Wall, F. Apatite Enrichment by Rare Earth Elements: A Review of the Effects of Surface Properties. Adv. Colloid Interface Sci. 2019, 265, 14–28. [Google Scholar] [CrossRef]
- Jiang, H.; Xu, Y.; Li, M.; Wang, Y. Microscopic Perspective of the Combined Collector CTAB/SPA on the Flotation Separation of Fluorite and Calcite: Adsorption Morphology and Interaction Force. Colloids Surf. A Physicochem. Eng. Asp. 2024, 688, 133534. [Google Scholar] [CrossRef]
- Cao, Q.; Luo, B.; Wen, S.; Cheng, J. Influence of Synergistic Effect between Dodecyl Amine and Sodium Oleate on Improving the Hydrophobicity of Fluorapatite. Physicochem. Probl. Miner. Process 2016, 53, 42–55. [Google Scholar] [CrossRef]
- Lerma-García, M.; Ramis-Ramos, G.; Herrero-Martinez, J.M.; Simó-Alfonso, E.F. Authentication of Extra Virgin Olive Oils by Fourier-Transform Infrared Spectroscopy. Food Chem. 2010, 118, 78–83. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, C.; Sun, Z.; Hu, X.; Shen, Q.; Wu, J. Authentication of Edible Vegetable Oils Adulterated with Used Frying Oil by Fourier Transform Infrared Spectroscopy. Food Chem. 2012, 132, 1607–1613. [Google Scholar] [CrossRef]
- Rohman, A.; Man, Y.B.C. Fourier Transform Infrared (FTIR) Spectroscopy for Analysis of Extra Virgin Olive Oil Adulterated with Palm Oil. Food Res. Int. 2010, 43, 886–892. [Google Scholar] [CrossRef]
- Kou, J.; Tao, D.; Xu, G. Fatty Acid Collectors for Phosphate Flotation and Their Adsorption Behavior Using QCM-D. Int. J. Miner. Process. 2010, 95, 1–9. [Google Scholar] [CrossRef]
- Chen, W.; Feng, Q.; Zhang, G.; Yang, Q.; Zhang, C. The Effect of Sodium Alginate on the Flotation Separation of Scheelite from Calcite and Fluorite. Miner. Eng. 2017, 113, 1–7. [Google Scholar] [CrossRef]
Minerals | Composition, % | ||||||||
---|---|---|---|---|---|---|---|---|---|
P2O5 | CaO | SiO2 | MgO | Fe2O3 | Al2O3 | MnO | K2O | Na2O | |
Fluorapatite | 41.86 | 56.70 | 0.72 | 0.10 | 0.01 | 0.12 | 0.01 | 0.04 | 0.63 |
Calcite | 0.13 | 99.05 | 0.41 | 0.04 | 0.01 | 0.25 | 0.02 | 0.05 | 0.05 |
Quartz | 0.01 | 0.07 | 99.32 | 0.02 | 0.35 | 0.22 | 0.02 | 0.02 | 0.00 |
Reagent | Role | Formula | Purity |
---|---|---|---|
Sodium alginate (NaAl) | Depressant | (NaC6H7O6)n | Alginic acid sodium salt from brown algae, low viscosity |
Methyl isobutyl carbinol (MIBC) | Frother | C6H14O | AR grade 98% |
Sodium hydroxide | pH controller | NaOH | ACS reagent ≥ 97% |
Fatty Acid | Oleic Acid C18:1 | Linoleic Acid C18:2 | Palmitic Acid C16:0 | Stearic Acid C18:0 | Palmitoleic Acid C16:1 |
---|---|---|---|---|---|
Content, %wt. | 81 | 10 | 4 | 2 | <1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aarab, I.; El Amari, K.; Yaacoubi, A.; Baçaoui, A.; Etahiri, A. Harnessing Mixed Fatty Acid Synergy for Selective Flotation of Apatite from Calcite and Quartz with Sodium Alginate. Minerals 2025, 15, 822. https://doi.org/10.3390/min15080822
Aarab I, El Amari K, Yaacoubi A, Baçaoui A, Etahiri A. Harnessing Mixed Fatty Acid Synergy for Selective Flotation of Apatite from Calcite and Quartz with Sodium Alginate. Minerals. 2025; 15(8):822. https://doi.org/10.3390/min15080822
Chicago/Turabian StyleAarab, Imane, Khalid El Amari, Abdelrani Yaacoubi, Abdelaziz Baçaoui, and Abderahman Etahiri. 2025. "Harnessing Mixed Fatty Acid Synergy for Selective Flotation of Apatite from Calcite and Quartz with Sodium Alginate" Minerals 15, no. 8: 822. https://doi.org/10.3390/min15080822
APA StyleAarab, I., El Amari, K., Yaacoubi, A., Baçaoui, A., & Etahiri, A. (2025). Harnessing Mixed Fatty Acid Synergy for Selective Flotation of Apatite from Calcite and Quartz with Sodium Alginate. Minerals, 15(8), 822. https://doi.org/10.3390/min15080822